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Abstract
Smoothing Newton methods, which usually inherit local quadratic convergence rate,
have been successfully applied to solve various mathematical programming problems.
In this paper, we propose an accelerated smoothing Newton method (ASNM) for
solving the weighted complementarity problem (wCP) by reformulating it as a system
of nonlinear equations using a smoothing function. In spirit, when the iterates are
close to the solution set of the nonlinear system, an additional approximate Newton
step is computed by solving one of two possible linear systems formed by using
previously calculated Jacobian information. When a Lipschitz continuous condition
holds on the gradient of the smoothing function at two checking points, this additional
approximate Newton step can be obtained with a much reduced computational cost.
Hence, ASNM enjoys local cubic convergence rate but with computational cost only
comparable to standard Newton’s method at most iterations. Furthermore, a second-
order nonmonotone line search is designed in ASNM to ensure global convergence.
Our numerical experiments verify the local cubic convergence rate of ASNM and
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show that the acceleration techniques employed in ASNM can significantly improve
the computational efficiency compared with some well-known benchmark smoothing
Newton method.

Keywords Nonlinear programming · Weighted complementarity problem ·
Accelerated smoothing Newton method · Nonmonotone line search · Cubic
convergence

1 Introduction

In 2012, Potra [23] introduced the notion of a weighted complementarity problem
(wCP), which consists in finding a pair of vectors (x, s) belonging to the intersection
of a manifold with a cone, such that their product in a certain algebra, x ◦ s, equals
a given weight vector w. The significance of studying the wCP lies in the fact that a
large variety of equilibrium problems in economics can be formulated in a natural way
as wCP [23]. Moreover, those formulations could lead to the development of highly
efficient algorithms for solving the corresponding equilibrium problems [23]. More
details on the applications of wCP can be found in the survey paper [25].

After the introduction of wCP by Potra [23], many researchers studied the weighted
linear complementarity problem (wLCP) over the nonnegative orthant of Rn , which
finds (x, s, y) ∈ Rn × Rn × Rm such that

(wLCP) x ≥ 0, s ≥ 0, Px + Qs + Ry = a, xs = w. (1)

Here, P ∈ R(n+m)×n, Q ∈ R(n+m)×n, R ∈ R(n+m)×m and a ∈ Rn+m are given
matrices and vector with R assuming to have full column rank, w ≥ 0 is a given
weight vector and xs denotes the component-wise product. Various types of interior-
point methods [1, 23, 24], smoothing Newton-type methods [32, 40] and damped
Gauss–Newton methods [35] have been studied for solving wLCP. More recently,
infeasible interior-point methods as well as their computational complexities were
proposed in [5, 6] for solving the special wLCP:

(special wLCP) x ≥ 0, s ≥ 0, Ax = b, AT y + s = c, xs = w, (2)

which often appears in the iterations of interior-point methods for linear program-
ming. In 2021, Tang and Zhou [36] proposed a nonmonotone Levenberg–Marquardt
type method, which has local quadratic convergence under some local error bound
condition, to solve the weighted nonlinear complementarity problem (wNCP):

(wNCP) x ≥ 0, s ≥ 0, F(x, s, y) = 0, xs = w, (3)

where F : R2n+m → Rn+m is a continuously differentiable nonlinear function.
In this paper, we aim to study the wCP in a general Jordan algebra [8] setting

since this general framework reveals the essential geometric features of a wCP. Let
(V, 〈·, ·〉, ◦) be a Euclidean Jordan algebra (see the definition in Sect. 2) and K =
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{x ◦ x : x ∈ V} be the symmetric cone formed by the squares of its elements. Given a
vector w ∈ K, we consider the wCP which finds (x, s, y) ∈ V × V × Rm such that

(wCP) x ∈ K, s ∈ K, F(x, s, y) = 0, x ◦ s = w, (4)

where F : V × V × Rm → V × Rm is a continuously differentiable map. When
w is the zero vector, wCP would reduce to the complementarity problem (CP) over
symmetric cones, for example, studied in [39], which finds (x, s, y) ∈ V × V × Rm

such that

(CP) x ∈ K, s ∈ K, F(x, s, y) = 0, x ◦ s = 0. (5)

The wCP in general Jordan algebra setting has been also studied in the literature. Chi
et. al. [4] considered the weighted horizontal LCP in the setting of Euclidean Jordan
algebras and established some existence and uniqueness results. Gowda [9] studied
wLCPs and interior-point systems for copositive linear transformations on Euclidean
Jordan algebras and showed that both problems have solutions under suitable condi-
tions. Tang and Zhang [33] proposed a nonmonotone smoothing Newton algorithm
for solving the general wCP (4) and established its local quadratic convergence under
proper assumptionsweaker than the usual nonsingularity assumption of the considered
nonlinear system.

Since Smale [29] initiated the study on smoothing (non-interior continuation)
Newton-type methods for solving linear programming problems and LCPs, there has
been much interests in studying smoothing Newton-type methods. The main idea of
this class of methods is to use a smoothing function to reformulate the problem con-
cerned as a system of smooth nonlinear equations and then solve it approximately by
Newtonmethod.When driving the smoothing parameter to zero, one can expect to find
a solution of the original problem. Note that the convergence rates of many smoothing
Newton-type methods (e.g., [7, 31]) strongly depend on the strict complementarity
condition. In 2000, Qi, Sun and Zhou [28] proposed a class of new smoothing New-
ton methods for solving NCPs and box constrained variational inequality problems.
The Qi–Sun–Zhou (QSZ) method treats the smoothing parameter as a free variable
and solves one system of linear equations (the Newton step) at each iteration. Based
on the strong semismoothness of the smoothing function, QSZ method possess local
quadratic convergence under the nonsingularity assumption. Due to its encouraging
convergent properties and numerical performances, the QSZ algorithmic framework
has been extensively studied to deal with various optimization problems (e.g., [2, 3,
11–21, 26, 37, 40, 41]).

It is well known that the convergence rate of the classical two-step Newton method
for solving nonlinear system is cubic if its Jacobian is Lipschitz continuous and non-
singular at the solution [22]. Motivated from this observation and the QSZ method, in
this paper, we propose to design an accelerated smoothing Newton method (ASNM)
for solving wCP (4). Similar to the QSZ method, ASNM computes one approximate
Newton step at the beginning iterations. But when the iteration points are close to a
solution, an additional approximate Newton step is calculated by solving one of two
possible linear systems by using previously calculated Jacobian information. A Lips-
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chitz continuous condition on the gradient of the smoothing function at two checking
points is used to determine which linear system should be solved. This technique
ensures ASNM has local cubic convergence rate but with computational cost com-
parable to standard Newton’s method at most iterations. In addition, a second-order
nonmonotone line search is proposed in ASNM to ensure global convergence. Based
on the strong semismoothness of the smoothing function,we show that the convergence
rate of ASNM is cubic under certain nonsingularity assumption and the assumption
that gradient of F is locally Lipschitz continuous, which obviously holds when F is a
linear map. Moreover, we give brief discussions on how to solve the resulted approxi-
mate Newton system efficiently by equivalently translating it to a smaller dimensional
problem. Our numerical experiments verify the local cubic convergence rate as well
as show that ASNM is much more efficient comparing with the well-established QSZ
method. To the best of our knowledge, this is the first smoothing Newton-type method
for solving wCPs in mathematical programming which achieves local cubic conver-
gence rate.

This paper is organized as follows. We reformulate wCP as a system of smooth
nonlinear equations in Sect. 2 and our ASNM is proposed for solving wCP in Sect. 3.
The global convergence of ASNM is studied in Sect. 4, while the local cubic conver-
gence properties of ASNM are analyzed in Sect. 5. We further give some discussions
on solving the (approximate) Newton equations in Sect. 6 and show some numerical
experiments in Sect. 7. Finally, some conclusions are drawn in the last section.

2 Equivalent Reformulation of the wCP

As it iswell known, the theory of Euclidean Jordan algebras is a basic tool for analyzing
optimization problems over symmetric cones. A Euclidean Jordan algebra is a triple
(V, 〈·, ·〉, ◦), where (V, 〈·, ·〉) is a finite dimensional inner product space over R and
(x, s) �→ x ◦s : V×V → V is a bilinear mapping satisfying the following conditions:

(i) x ◦ s = s ◦ x for all x, s ∈ V;
(ii) x ◦ (x2 ◦ s) = x2 ◦ (x ◦ s) for all x, s ∈ V, where x2 := x ◦ x;
(iii) 〈x ◦ s, z〉 = 〈x, s ◦ z〉 for all x, s, z ∈ V.
We call x ◦ s the Jordan product of x and s. For a comprehensive discussion of

Jordan algebras, one can refer to [8]. Some basic results and properties of Euclidean
Jordan algebras can be found in [13, 15–20, 33].

To reformulate wCP (4) as a system of smooth nonlinear equations, we apply the
following smoothing function

ψ(μ, x, s) = x + s −
√

(x − s)2 + 4w + 4μ2e, ∀(μ, x, s) ∈ R × V × V, (6)

where w is the weight vector given in the wCP and e is the identity element in V
satisfying e ◦ x = x ◦ e = x for all x ∈ V. The function ψ is a special case of the
weighted smoothing function introduced in [33]. By [33, Theorem 3], we have that ψ
is continuously differentiable on R++ × V × V and it satisfies

ψ(0, x, s) = 0 ⇐⇒ x ∈ K, s ∈ K, x ◦ s = w. (7)
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In the following, let us denote z = (μ, x, s, y) ∈ R × V × V × Rm and define the
function H(z) as

H(z) =
⎛

⎝
μ

F(x, s, y)
ψ(μ, x, s)

⎞

⎠ , (8)

where the smoothing function ψ is given in (6). Then, from (7) it holds that

H(z) = 0 ⇐⇒ μ = 0 and (x, s, y) is a solution of the wCP (4). (9)

Moreover, H(z) is continuously differentiable at any z ∈ R++ ×V×V×Rm and its
Jacobian is

H′(z) =
⎡

⎣
1 0 0 0
0 F ′

x (x, s, y) F ′
s(x, s, y) F ′

y(x, s, y)
ψ ′

μ(μ, x, s) ψ ′
x (μ, x, s) ψ ′

s(μ, x, s) 0

⎤

⎦ . (10)

Here,ψ ′
μ(μ, x, s), ψ ′

x (μ, x, s) andψ ′
s(μ, x, s) are the derivatives ofψ with respect to

μ, x and s, respectively. In particular, given c = √
(x − s)2 + 4w + 4μ2e, defining the

Lyapunov transformationLcx := x◦c, ∀x ∈ V, then for any (μ, x, s) ∈ R++×V×V
and (h, u, v) ∈ R × V × V, we will have

ψ ′
μ(μ, x, s)h = −∑r

i=1
4μh√
λi+4μ2

ci ,

ψ ′
x (μ, x, s)u = u − L−1

c [(x − s) ◦ u] and ψ ′
s(μ, x, s)v = v + L−1

c [(x − s) ◦ v],

where (λi , ci ), i, . . . , r , are given by the spectral decomposition of (x − s)2 =∑r
i=1 λi ci and L−1

c is the inverse of Lc. One could refer to [33, Theorem 3] for
more detail explanations.

To discuss convergence properties of our accelerated smoothing Newton method,
we define

JH(z, ẑ) =
⎡

⎣
1 0 0 0
0 F ′

x (x, s, y) F ′
s(x, s, y) F ′

y(x, s, y)
ψ ′

μ(μ̂, x̂, ŝ) ψ ′
x (μ̂, x̂, ŝ) ψ ′

s(μ̂, x̂, ŝ) 0

⎤

⎦ , (11)

where z = (μ, x, s, y) ∈ R++×V×V×Rm and ẑ = (μ̂, x̂, ŝ, ŷ) ∈ R++×V×V×Rm .
Obviously, H′(z) = JH(z, ẑ) when z = ẑ. In addition, we assume that F ′(x, s, y) has
the following rank and monotone property.

Assumption 1 rank F ′
y(x, s, y) = m and for any (u, v,Λ) ∈ V × V × Rm ,

F ′(x, s, y)(u, v,Λ) = 0 �⇒ 〈u, v〉 ≥ 0.

Assumption 1 is very standard and has been extensively used to analyze smoothing
Newton-type methods (e.g., [2, 21, 33, 34]). For wLCP (1), Assumption 1 in fact
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reduces to require that the matrix R has full column rank and the wLCP is monotone,
that is,

Pu + Qv + RΛ = 0 implies uT v ≥ 0,

which was originally introduced by Potra [23] and has been widely used to analyze
interior-point methods [1, 23] and smoothing Newton methods [32, 40]. We now show
the nonsingularity property of JH(z, ẑ) under Assumption 1, which plays a key role
for our ASNM.

Theorem 1 If Assumption 1 holds, then JH(z, ẑ) defined by (11) is nonsingular at any
z = (μ, x, s, y) ∈ R++ ×V×V×Rm and ẑ = (μ̂, x̂, ŝ, ŷ) ∈ R++ ×V×V×Rm .

Proof Let intK denote the interior of K and we write u �K v if u − v ∈ intK for
any u, v ∈ V. For any z = (μ, x, s, y) ∈ R++ ×V×V×Rm and ẑ = (μ̂, x̂, ŝ, ŷ) ∈
R++ × V × V × Rm , it suffices to prove that the following system

F ′
x (x, s, y)Δx + F ′

s(x, s, y)Δs + F ′
y(x, s, y)Δy = 0, (12)

ψ ′
x (μ̂, x̂, ŝ)Δx + ψ ′

s(μ̂, x̂, ŝ)Δs = 0, (13)

has only zero solution. Let ĉ = √
(x̂ − ŝ)2 + 4w + 4μ̂2e. Since w ∈ K and μ̂ > 0,

we have ĉ �K 0 and ĉ2 �K (x̂ − ŝ)2 = (ŝ− x̂)2, which together with [10, Proposition
8] gives

ĉ − (x̂ − ŝ) �K 0, ĉ − (ŝ − x̂) �K 0. (14)

In addition, by w ∈ K and μ̂ > 0, it holds

[ĉ − (x̂ − ŝ)] ◦ [ĉ − (ŝ − x̂)] = 4w + 4μ̂2e �K 0. (15)

Moreover, Assumption 1 and (12) imply

〈�x,�s〉 ≥ 0. (16)

By [33, Theorem 3], we have

ψ ′
x (μ̂, x̂, ŝ)Δx = Δx − L−1

ĉ [(x̂ − ŝ) ◦ Δx],
ψ ′
s(μ̂, x̂, ŝ)Δs = Δs + L−1

ĉ [(x̂ − ŝ) ◦ Δs].

This and (13) give

Lĉ(Δx + Δs) − [(x̂ − ŝ) ◦ (Δx − Δs)] = 0,

i.e.,

ĉ ◦ (Δx + Δs) − (x̂ − ŝ) ◦ (Δx − Δs) = 0.
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It follows that

[ĉ − (x̂ − ŝ)] ◦ Δx + [ĉ − (ŝ − x̂)] ◦ Δs = 0. (17)

By (14)–(17), we can obtain from [39, Lemma 2.6]1 that Δx = 0 and Δs = 0. So, by
(12) we have F ′

y(x, s, y)Δy = 0, which and the assumption on rank F ′
y(x, s, y) = m

give Δy = 0. We complete the proof. ��
Since H′(z) = JH(z, z), we immediately have the following corollary.

Corollary 1 If Assumption 1 holds, then H′(z) defined by (10) is nonsingular at any
z = (μ, x, s, y) ∈ R++ × V × V × Rm .

3 An Accelerated Smoothing NewtonMethod

Let H(z) be defined by (8) and the merit function f : R × V × V × Rm → R+ be
defined as

f (z) = 1

2
‖H(z)‖2. (18)

Then, our accelerated smoothing Newton method is described as the following.
Algorithm 1: An accelerated smoothing Newton method (ASNM)

Step 0: Choose δ, τ ∈ (0, 1), λ > 0, μ0 > 0 and L > 0. Choose (x0, s0, y0) ∈
V × V × Rm , set z0 = (μ0, x0, s0, y0) and C0 = f (z0) + c, where c > 0 is a

constant. Choose γ ∈ (0, 1) such that γ < min
{

μ0

C3/2
0

, 2
μ0C

1/2
0

}
. Let h = (1, 0, 0, 0) ∈

R × V × V × Rm . Set k = 0.
Step 1: If ‖H(zk)‖ = 0, then stop.
Step 2: Compute Δz̄k = (Δμ̄k,Δx̄ k,Δs̄k,Δȳk) ∈ R × V × V × Rm by solving

H′(zk)Δz̄k = −H(zk) + γC
3
2
k h. (19)

Set ẑk = zk + Δz̄k . If ‖H(ẑk)‖ = 0, then stop.
Step 3: If

‖H(ẑk)‖ > λmin{1, ‖H(zk)‖}, (20)

then set Δẑk = 0 and go to Step 5.
Step 4: If

‖ψ ′(μk, xk, sk) − ψ ′(μ̂k, x̂ k, ŝk)‖ ≤ L‖(μk, xk, sk) − (μ̂k, x̂ k, ŝk)‖, (21)

1 [39, Lemma 2.6]: Let a, b ∈ V with a �K 0, b �K 0 and a ◦ b �K 0. Then for all u, v ∈ V satisfying
〈u, v〉 ≥ 0 and a ◦ u + b ◦ v = 0, we have u = v = 0.
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then compute Δẑk = (Δμ̂k,Δx̂ k,Δŝk,Δŷk) ∈ R × V × V × Rm by solving

H′(zk)Δẑk = −H(ẑk) + γC
3
2
k h; (22)

Else, compute Δẑk = (Δμ̂k,Δx̂ k,Δŝk,Δŷk) ∈ R × V × V × Rm by solving

JH(zk, ẑk)Δẑk = −H(ẑk) + γC
3
2
k h. (23)

Step 5: Set αk = δlk , where lk is the smallest nonnegative integer l satisfying

f (zk + δlΔz̄k + (δl)2Δẑk) ≤ Ck − τ(δl f (zk))2. (24)

Step 6: Set zk+1 = zk + αkΔz̄k + α2
kΔẑk . Set

Ck+1 = (Ck + 1) f (zk+1)

f (zk+1) + 1
. (25)

Set k := k + 1 and go to Step 1.

For ASNM, we have the following remarks.
(I) Different from existing smoothing Newton methods, a new perturbation term

γC3/2
k is used into the approximated Newton equations (19), (22) and (23) in Step

2 and Step 4 of ASNM. This particularly designed perturbation term is crucial for
establishing the local cubic convergence of ASNM.

(II) As QSZ method [28], ASNM only solves one system of linear equations when
the condition (20) holds. Otherwise, ASNM solves an additional system of linear
equations. However, different from the classical two-step Newton methods, ASNM
includes two possible approximated Newton steps (22) and (23) by using previously
obtained Jacobian information. The Lipschitz continuous condition (21) is used to
determine which one should be solved. This technique ensures ASNM has cubic
convergence rate but with computational cost only comparable to standard Newton’s
method at most iterations.

(III) Note that Δz̄k + Δẑk calculated by ASNM may not be a decent direction of
the merit function f at zk . Hence, to ensure the global convergence of ASNM, we
adopt a second-order nonmonotone line search in Step 5. It is worth pointing out that
the technique of updating Ck in (25) had been originally introduced in [33].

The following theorem shows ASNM is well defined and gives some of its basic
properties.

Theorem 2 If Assumption 1 holds, then ASNM is well defined and its generated
sequence {zk = (μk, xk, sk, yk)} satisfies for all k ≥ 0,

(i) zk ∈ R++ × V × V × Rm; (ii) Ck > f (zk); (iii) μk > γC
3
2
k .

Proof We will prove the theorem by induction. Suppose zk = (μk, xk, sk, yk) ∈
R++×V×V×Rm ,Ck > f (zk) andμk > γC

3
2
k for some k. Then,H′(zk) is nonsingular
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by Corollary 1. Moreover, by the first equation of (19), we have Δμ̄k = −μk + γC
3
2
k ,

which yields

ẑk = (γC
3
2
k , xk + Δx̄ k, sk + Δs̄k, yk + Δȳk). (26)

This indicates ẑk ∈ R++ × V × V × Rm . Then, it follows from Theorem 1 that
JH(zk, ẑk) is nonsingular. Thus, Eqs. (19), (22) and (23) are all solvable. Moreover,
by (19) we have

∇ f (zk)TΔz̄k = H(zk)TH′(zk)Δz̄k

= −‖H(zk)‖2 + μkγC
3
2
k

= −μk(μk − γC
3
2
k ) − ‖F(xk, sk, yk)‖2 − ‖ψ(μk, x

k, sk)‖2,

which together with μk > 0 and μk > γC
3
2
k yields

∇ f (zk)TΔz̄k < 0. (27)

Notice that if for any nonnegative integer l,

f (zk + δlΔz̄k + (δl)2Δẑk) > Ck − τ(δl f (zk))2,

then by Ck > f (zk) we have

f (zk + δl(Δz̄k + δlΔẑk)) − f (zk)

δl
> −τδl f (zk)2. (28)

By letting l → ∞ in both sides of (28), we have ∇ f (zk)TΔz̄k ≥ 0 which contradicts
(27). Thus, we can find a step size αk ∈ (0, 1] satisfying (24) in Step 5 and get the
(k + 1)th iteration zk+1 = zk + αkΔz̄k + α2

kΔẑk in Step 6.
Now we show zk+1 = (μk+1, xk+1, sk+1, yk+1) ∈ R++ × V × V × Rm , Ck+1 >

f (zk+1) and μk+1 > γC
3
2
k+1. In fact, by (26) and the first equations of (22) and (23),

we have Δμ̂k = −γC
3
2
k + γC

3
2
k = 0. It follows that

μk+1 = μk + αkΔμ̄k + α2
kΔμ̂k = (1 − αk)μk + αkγC

3
2
k , (29)

which gives μk+1 > 0, i.e., zk+1 ∈ R++ ×V×V×Rm . Moreover, since f (zk) > 0,
by (24) we have Ck > f (zk+1). This together with (25) and f (zk+1) > 0 gives

Ck+1 = (Ck + 1) f (zk+1)

f (zk+1) + 1
> f (zk+1).
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Furthermore, by Ck > f (zk+1) and (25), we have

Ck+1 = Ck f (zk+1) + f (zk+1)

f (zk+1) + 1
<

Ck f (zk+1) + Ck

f (zk+1) + 1
= Ck . (30)

By (29), (30) and μk > γC
3
2
k , we have

μk+1 ≥ (1 − αk)γC
3
2
k + αkγC

3
2
k = γC

3
2
k > γC

3
2
k+1.

Therefore, we can conclude that if zk ∈ R++ × V × V × Rm , Ck > f (zk) and μk >

γC
3
2
k for some k, then zk+1 generated by Algorithm ASNM satisfies zk+1 ∈ R++ ×

V×V×Rm , Ck+1 > f (zk+1) and μk+1 > γC
3
2
k+1. Since z

0 ∈ R++ ×V×V×Rm ,

C0 > f (z0) and μ0 > γC
3
2
0 , by induction on k, we prove the theorem. ��

4 Global Convergence

In this section, we discuss global convergence of ASNM. For this purpose, we first
give the following lemmas.

Lemma 1 Let Assumption 1 hold and {zk = (μk, xk, sk, yk)} be the iteration sequence
generated by ASNM. Then, Ck > Ck+1 and μk > μk+1 for all k ≥ 0.

Proof The first result holds by (30). By (iii) of Theorem 2, we have μk > γC
3
2
k for all

k ≥ 0. So, we obtain from (29) that μk+1 < (1−αk)μk +αkμk = μk for all k ≥ 0. ��
Lemma 2 Let Assumption 1 hold and {zk = (μk, xk, sk, yk)} be the iteration sequence
generated by ASNM. Then, there exists a constant C∗ > 0 such that

lim
k→∞ f (zk) = lim

k→∞Ck = C∗. (31)

Moreover, we have

lim
k→∞ αk f (z

k) = 0. (32)

Proof By Lemma 1, {Ck} is strictly monotonically decreasing. Hence, there exists a
constant C∗ ≥ 0 such that lim

k→∞Ck = C∗. Moreover, by (25) we have

lim
k→∞ f (zk) = lim

k→∞

(
Ck

1 + Ck−1 − Ck

)
= C∗.

This proves (31). By Step 5 and Step 6, we have

τ(αk f (z
k))2 ≤ Ck − f (zk+1),
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which together with (31) proves (32). ��
Theorem 3 Let Assumption 1 hold and {zk = (μk, xk, sk, yk)} be the iteration
sequence generated by ASNM. Then, any accumulation point of {zk} is a solution
of H(z) = 0.

Proof ByLemma2, there exists a constantC∗ ≥ 0 such that lim
k→∞ f (zk) = lim

k→∞Ck =
C∗. It follows from (18) that

lim
k→∞ ‖H(zk)‖ = √

2C∗. (33)

Let z∗ = (μ∗, x∗, s∗, y∗) be an accumulation point of {zk = (μk, xk, sk, yk)}, and
without loss of generality, we assume lim

(K�)k→∞
zk = z∗ where K is a subset of

{0, 1, ...}. Then, by the continuity of H and (33), we have

lim
(K�)k→∞

‖H(zk)‖ = ‖H(z∗)‖ = √
2C∗. (34)

Now we assume ‖H(z∗)‖ > 0, i.e., C∗ > 0 and will derive a contradiction. Since

μk > γC
3
2
k for all k ≥ 0, we have μ∗ ≥ γ (C∗) 3

2 > 0 which means z∗ ∈ R++ × V ×
V×Rm . Then, H(z) is continuously differentiable at z∗ and H′(z∗) is nonsingular by
Corollary 1. So, from (19), we have

lim
(K�)k→∞

Δz̄k = H′(z∗)−1[−H(z∗) + γ (C∗)
3
2 h] =: Δz̄∗.

Denote Δz̄∗ = (Δμ̄∗,Δx̄∗,Δs̄∗,Δȳ∗). Then, by (26) we have

lim
(K�)k→∞

ẑk = (γ (C∗)
3
2 , x∗ + Δx̄∗, s∗ + Δs̄∗, y∗ + Δȳ∗) =: ẑ∗.

Obviously, ẑ∗ ∈ R++ × V × V × Rm . Since ψ is continuously differentiable at any
(μ, x, s) ∈ R++ × V × V, by the continuity, we have

lim
(K�)k→∞

JH(zk, ẑk) = JH(z∗, ẑ∗).

Since z∗, ẑ∗ ∈ R++×V×V×Rm , H′(z∗) and JH(z∗, ẑ∗) are all nonsingular. So, there
exists a constant M > 0 such that ‖H′(zk)−1‖ ≤ M and ‖JH(zk, ẑk)−1‖ ≤ M for all
k ∈ K. Hence, for any k ∈ K, if the condition (20) holds, then Δẑk = 0. Otherwise,
we have

‖H(ẑk)‖ ≤ λ‖H(zk)‖ = λ

√
2 f (zk) < λ

√
2Ck < λ

√
2C0,

which together with (22) and (23) yields

‖Δẑk‖ ≤ M(‖H(ẑk)‖ + γC
3
2
k ) < M(λ

√
2C0 + γC

3
2
0 ).
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This indicates that {Δẑk}k∈K is bounded. Since lim
(K�)k→∞

f (zk) = C∗ > 0, by (32)

we have lim
(K�)k→∞

αk = 0. Let α̃k = δ−1αk . Then,

lim
(K�)k→∞

α̃k = 0, lim
(K�)k→∞

(Δz̄k + α̃kΔẑk) = Δz̄∗. (35)

Moreover, by Step 5, for all sufficiently large k ∈ K,

f (zk + α̃kΔz̄k + α̃2
kΔẑk) > Ck − τ(α̃k f (z

k))2,

which together with Ck > f (zk) gives

f (zk + α̃k(Δz̄k + α̃kΔẑk)) − f (zk)

α̃k
> −τ α̃k f (z

k)2. (36)

Since f is continuously differentiable at z∗ ∈ R++ ×V×V×Rm , by letting k → ∞
with k ∈ K in (36), we have from (35) that

∇ f (z∗)TΔz̄∗ ≥ 0. (37)

On the other hand, by (19) and (33), we have

∇ f (z∗)TΔz̄∗ = H(z∗)TH′(z∗)Δz̄∗

= −‖H(z∗)‖2 + γμ∗(C∗)
3
2

= −(2 − γμ∗(C∗)
1
2 )C∗. (38)

Since the sequences {μk} and {Ck} are all strictly monotonically decreasing, we have

γμ∗(C∗) 1
2 < γμ0C

1
2
0 < 2. Thus, by (38) and C∗ > 0, we have

∇ f (z∗)TΔz̄∗ < 0,

which is contrary to (37). We complete the proof. ��

5 Local Cubic Convergence

In this section, we establish the local cubic convergence properties of ASNM by
employing the strong semismoothness of the function H. The readers can refer to [30]
for the definition of (strong) semismoothness. In addition, note that H is (strongly)
semismooth if and only if its each component function is (strongly) semismooth, see
[27, Corollary 2.4].
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Lemma 3 IfH is semismooth at z∗ and all V ∈ ∂H(z∗) are nonsingular where ∂H(z∗)
is the Clarke’s generalized Jacobian of H at z∗, then there exist ε > and ξ > 0 such
that

‖z − z∗‖ ≤ ξ‖H(z)‖, ∀ z ∈ N (z∗, ε) := {z| ‖z − z∗‖ ≤ ε}.

Proof The proof of the lemma is similar as that of [34, Lemma 7]. ��
Theorem 4 Let Assumption 1 hold and z∗ be any accumulation point of the iteration
sequence {zk} generated by ASNM. Suppose that F ′ is locally Lipschitz continuous
andH is strongly semismooth at z∗. If all V ∈ ∂H(z∗) are nonsingular, then the whole
sequence {zk} converges to z∗ and for all zk sufficiently close to z∗,

zk+1 = zk + Δz̄k + Δẑk, (39)

and

‖zk+1 − z∗‖ = O(‖zk − z∗‖3), (40)

and

‖H(zk+1)‖ = O(‖H(zk)‖3). (41)

Proof By Theorem 3, we have H(z∗) = 0. Since all V ∈ ∂H(z∗) are nonsingular, by
[27, Proposition 3.1], there is a constant M1 > 0 such that for all zk sufficiently close
to z∗,

‖H′(zk)−1‖ ≤ M1. (42)

Since H is strongly semismooth at z∗, for all zk sufficiently close to z∗,

‖H(zk) − H(z∗) − H′(zk)(zk − z∗)‖ = O(‖zk − z∗‖2). (43)

This together with (19) and (42) implies that for all zk sufficiently close to z∗,

‖ẑk − z∗‖ = ‖zk + Δz̄k − z∗‖
= ‖zk + H′(zk)−1[−H(zk) + γC

3
2
k h] − z∗‖

≤ ‖H′(zk)−1‖
[
‖H(zk) − H(z∗) − H′(zk)(zk − z∗)‖ + γC

3
2
k

]

= O(‖zk − z∗‖2) + O(C
3
2
k ). (44)

Since H is strongly semismooth at z∗, H is locally Lipschitz continuous near z∗. Thus,
for all z sufficiently close to z∗,

‖H(z)‖ = ‖H(z) − H(z∗)‖ = O(‖z − z∗‖). (45)
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For all k ≥ 1, since Ck < C0, by (18) and (25) we have

Ck = (Ck−1 + 1) f (zk)

f (zk) + 1
≤ C0 + 1

2
‖H(zk)‖2,

which together with (45) gives for all zk sufficiently close to z∗,

C
3
2
k = O(‖zk − z∗‖3). (46)

By (44) and (46), for all zk sufficiently close to z∗,

‖ẑk − z∗‖ = O(‖zk − z∗‖2). (47)

Thus, we have that ẑk is sufficiently close to z∗ when zk is sufficiently close to z∗.
Hence, by (45), (47) and Lemma 3, for all zk sufficiently close to z∗,

‖H(ẑk)‖ = O(‖ẑk − z∗‖) = O(‖zk − z∗‖2) = O(‖H(zk)‖2). (48)

It follows that for all zk sufficiently close to z∗,

‖H(ẑk)‖ ≤ λ‖H(zk)‖ = λmin{1, ‖H(zk)‖},

for any λ > 0. Hence, by Step 3 of ASNM, when zk is sufficiently close to z∗, Δẑk is
always computed in Step 4 of ASNM. Now, let us denote

JH(z∗) := conv

{
V |V = lim

z→z∗
ẑ→z∗

JH(z, ẑ), z, ẑ ∈ DH

}
,

where DH is the set of points at which H is differentiable. Since F is continuously
differentiable at z∗, we have ∂H(z∗) = JH(z∗). So, by our assumption, all V ∈ JH(z∗)
are nonsingular. Thus, there exists a constant M2 > 0 such that for all zk sufficiently
close to z∗,

‖JH(zk, ẑk)−1‖ ≤ M2. (49)

Thus, by (22), (23), (42), (46), (48) and (49), for all zk sufficiently close to z∗, we
have

‖Δẑk‖ ≤ max{M1, M2}(‖H(ẑk)‖ + γC
3
2
k ) = O(‖zk − z∗‖2). (50)

So, by (47) and (50), for all zk sufficiently close to z∗,

‖zk + Δz̄k + Δẑk − z∗‖
= ‖ẑk − z∗ + Δẑk‖ ≤ ‖ẑk − z∗‖ + ‖Δẑk‖ = O(‖zk − z∗‖2). (51)
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This implies that zk + Δz̄k + Δẑk is sufficiently close to z∗ when zk is sufficiently
close to z∗. Hence, by (18), (45), (51) and Lemma 3, for all zk sufficiently close to z∗,

f (zk + Δz̄k + Δẑk) = 1

2
‖H(zk + Δz̄k + Δẑk)‖2

= O(‖zk + Δz̄k + Δẑk − z∗‖2) = O(‖zk − z∗‖4)
= O(‖H(zk)‖4) = O( f (zk)2). (52)

So, for all zk sufficiently close to z∗,

f (zk + Δz̄k + Δẑk) + τ f (zk)2 ≤ f (zk) < Ck,

where τ ∈ (0, 1) is the parameter in line search (24) of ASNM. This shows that, for
all zk sufficiently close to z∗, unit step size αk = 1 will be always accepted in Step 5
of ASNM. Hence, for all zk sufficiently close to z∗, we have

zk+1 = zk + Δz̄k + Δẑk,

i.e., (39) holds. This together with (51) also shows lim
k→∞ zk = z∗.

In the following, we show the local cubic convergence rate of zk to z∗. By (47), we
have lim

k→∞ ẑk = z∗. Since H is strongly semismooth at z∗, for all sufficiently large k,

‖H(ẑk) − H(z∗) − H′(ẑk)(ẑk − z∗)‖ = O(‖ẑk − z∗‖2). (53)

In addition, by (19), (42), (45) and (46), for all sufficiently large k,

‖Δz̄k‖ = ‖H′(zk)−1[−H(zk) + γC
3
2
k h]‖

≤ M1[‖H(zk)‖ + γC
3
2
k ]

= O(‖zk − z∗‖). (54)

By (10), (11), (54) and the Lipschitz continuity of F ′, there exists a constant L̄ > 0
such that for all sufficiently large k,

‖H′(ẑk) − JH(zk, ẑk)‖ = ‖F ′(x̂ k, ŝk, ŷk) − F ′(xk, sk, yk)‖
≤ L̄‖(x̂ k, ŝk, ŷk) − (xk, sk, yk)‖
≤ L̄‖ẑk − zk‖ = L̄‖Δz̄k‖ = O(‖zk − z∗‖). (55)

We now consider how Δẑk is calculated according to the condition (21) in Step 4 of
ASNM. If the condition (21) holds, then

‖JH(zk, ẑk) − H′(zk)‖ = ‖ψ ′(μ̂k, x̂ k, ŝk) − ψ ′(μk, xk, sk)‖
≤ L‖(μ̂k, x̂ k, ŝk) − (μk, xk, sk)‖
≤ L‖ẑk − zk‖ = L‖Δz̄k‖ = O(‖zk − z∗‖),
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which together (22), (39), (46), (47), (53) and (55) gives

‖zk+1 − z∗‖ = ‖zk + Δz̄k + Δẑk − z∗‖
= ‖ẑk + Δẑk − z∗‖ = ‖ẑk + H′(zk)−1[−H(ẑk) + γC

3
2
k h] − z∗‖

≤ ‖H′(zk)−1‖
[
‖H(ẑk) − H′(zk)(ẑk − z∗)‖ + γC

3
2
k

]

≤ ‖H′(zk)−1‖
[
‖H(ẑk) − H(z∗) − H′(ẑk)(ẑk − z∗)‖

+‖(H′(ẑk) − JH(zk, ẑk))(ẑk − z∗)‖
+‖(JH(zk, ẑk) − H′(zk))(ẑk − z∗)‖ + γC

3
2
k

]

= O(‖ẑk − z∗‖2) + O(‖zk − z∗‖‖ẑk − z∗‖) + O(‖zk − z∗‖3)
= O(‖zk − z∗‖3);

otherwise, by (23), (39), (46), (47), (53) and (55) we have

‖zk+1 − z∗‖ = ‖zk + Δz̄k + Δẑk − z∗‖
= ‖ẑk + Δẑk − z∗‖ = ‖ẑk + JH(zk, ẑk)−1[−H(ẑk) + γC

3
2
k h] − z∗‖

≤ ‖JH(zk, ẑk)−1‖
[
‖H(ẑk) − JH(zk, ẑk)(ẑk − z∗)‖ + γC

3
2
k

]

≤ ‖JH(zk, ẑk)−1‖
[
‖H(ẑk) − H(z∗) − H′(ẑk)(ẑk − z∗)‖

+‖(H′(ẑk) − JH(zk, ẑk))(ẑk − z∗)‖ + γC
3
2
k

]

= O(‖ẑk − z∗‖2) + O(‖zk − z∗‖‖ẑk − z∗‖) + O(‖zk − z∗‖3)
= O(‖zk − z∗‖3).

This proves (40). Moreover, by (40), (45) and Lemma 3, for all sufficiently large k,

‖H(zk+1)‖ = O(‖zk+1 − z∗‖) = O(‖zk − z∗‖3) = O(‖H(zk)‖3).

We complete the proof. ��

To establish the local cubic convergence of ASNM, we need to assume that F ′ is
locally Lipschitz continuous and H is strongly semismooth at z∗. It is worth pointing
out that these assumptions are essential but by no means restrictive. For example,
for wLCP (1), F(x, s, y) = Px + Qs + Ry − a is linear and obviously Lipschitz
continuously differentiable. In addition, the smoothing functionψ for wLCP becomes

ψc(μ, a, b) = a + b −
√

(a − b)2 + 4c + 4μ2, ∀ (μ, a, b) ∈ R3, (56)
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where c ≥ 0 is a fixed constant. Then, the function H defined in (8) becomes

H(z) =
⎛

⎝
μ

Px + Qs + Ry − a
fl(μ, x, s)

⎞

⎠ , where fl(μ, x, s) =
⎛

⎜
⎝

ψw1(μ, x1, s1)
...

ψwn (μ, xn, sn)

⎞

⎟
⎠ (57)

and w = (w1, ..., wn)
T is the weight vector in wLCP. It can be verified that the

function ψc given in (56) is strongly semismooth on R3. So, H defined by (57) is
strongly semismooth since its each component function is strongly semismooth. As
another example, consider the KKT optimality conditions of liner programming over
symmetric cones K (e.g., [15, 18]), which is defined by

x ∈ K, s ∈ K, Ax = b, A∗y + s = c, x ◦ s = 0, (58)

where A is a linear operator and A∗ is its ajoint. Note that the system (58) is equivalent
to the CP (5) with

F(x, s, y) =
(

Ax − b
A∗y + s − c

)
.

Hence, F is again Lipschitz continuously differentiable. For CP (5), the smoothing
function ψ given in (6) is

ψ(μ, x, s) = x + s −
√

(x − s)2 + 4μ2e, ∀ (μ, x, s) ∈ R+ × V × V,

which is strongly semismooth at any (0, x, s) ∈ R ×V ×V by [30, Proposition 3.4].
Hence, its associated function H is also strongly semismooth at any z = (0, x, s, y) ∈
R × V × V × Rm .

6 Discussions on Solving the (Approximate) Newton Equations

In this section, we discuss an efficient practical way to solve the (approximate) Newton
equations (19), (22) and (23) by taking wLCP (1) as an example. The general wCP
(4) can be treated by the same way. For wLCP, the Jacobian of H(z) given in (57) at
any z ∈ R++ × Rn × Rn × Rm is

H′(z) =
⎡

⎣
1 0 0 0
0 P Q R

fl′
μ(μ, x, s) fl′

x (μ, x, s) fl′
s(μ, x, s) 0

⎤

⎦ , (59)
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in which

fl′
μ(μ, x, s) =

(
− 4μ

√
(x1 − s1)2 + 4w1 + 4μ2

, ...,− 4μ
√

(xn − sn)2 + 4wn + 4μ2

)T

,

fl′
x (μ, x, s) = I − D(μ, x, s) and fl′

s(μ, x, s) = I + D(μ, x, s),

where

D(μ, x, s) = diag
(

xi − si√
(xi − si )2 + 4wi + 4μ2

)
.

For any k ≥ 0, let Dk = D(μk, xk, sk). Then, by the structure ofH(z) andH′(z) in (57)
and (59), solving theNewton equation (19) is equivalent to settingΔμ̄k = −μk+γC

3
2
k

and computing (Δx̄ k,Δs̄k,Δȳk) satisfying

PΔx̄ k + QΔs̄k + RΔȳk = rk1
(I − Dk)Δx̄ k + (I + Dk)Δs̄k = rk2 , (60)

where rk1 = −(Pxk+Qsk+Ryk−a) and rk2 = −fl(μk, xk, sk)−fl′
μ(μk, xk, sk)Δμ̄k .

The linear system (60) can be further simplified by changing of variables. Let uk =
Δx̄ k + Δs̄k and vk = Δx̄ k − Δs̄k . Then, the equations in (60) become

P + Q

2
uk + P − Q

2
vk + RΔȳk = rk1

uk = Dkvk + rk2 ,

for which, by denoting P̂ = P+Q
2 and Q̂ = P−Q

2 , (vk,Δȳk) can be solved by

(P̂ Dk + Q̂)vk + RΔȳk = rk1 − P̂rk2 . (61)

Then, uk and (Δx̄ k,Δs̄k) can be finally obtained by back substitutions. Note that the
coefficient matrices of linear systems (60) and (61) are

[
P Q R

I − Dk I + Dk 0

]

(2n+m)×(2n+m)

and
[
P̂ Dk + Q̂ R

]
(n+m)×(n+m)

respectively. Hence, the linear system (61) is in a much smaller compact format than
the original linear system (60), which could significantly reduce the computational
cost when solving large-scale wLCPs.

By the same way, when solving the linear system (22), we can simply set Δμ̂k = 0
and solve

(P̂ Dk + Q̂)v̂k + RΔŷk = r̂ k1 − P̂r̂ k2 (62)
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to obtain v̂k andΔŷk , where r̂ k1 = −(Px̂k+Qŝk+Rŷk−a) and r̂ k2 = −fl(μ̂k, x̂ k, ŝk).

Then, we can set ûk = Dk v̂k + r̂ k2 and obtain Δx̂ k = ûk+v̂k
2 and Δŝk = ûk−v̂k

2 .
Moreover, noticing that the linear systems (61) and (62) have identical coefficient
matrices and different right hand sides. Hence, significant computational cost can be
saved when some direct methods are applied to solve the linear systems (61) and (62).
For instance, the LU factorization of the coefficient matrix only needs to be computed
once for solving these two linear systems.

Similarly, when solving the linear system (23), we set Δμ̂k = 0 and solve

(P̂ D̂k + Q̂)v̂k + RΔŷk = r̂ k1 − P̂r̂ k2 (63)

to obtain v̂k and Δŷk , where D̂k = D(μ̂k, x̂ k, ŝk). Then, we can set ûk = D̂k v̂k + r̂ k2
and obtain Δx̂ k = ûk+v̂k

2 and Δŝk = ûk−v̂k
2 . In this case, note that there is only a low

rank submatrix difference between the coefficient matrices of linear system (61) and
(63). This property could be also exploited in practice to reduce the computational
cost.

7 Numerical Results

Wewould like to perform some numerical experiments in this section. All experiments
are carried on a PC with CPU of Inter(R) Core(TM)i7-7700 CPU @ 3.60 GHz and
RAM of 8.00GB. The program codes are written in MATLAB and run in MATLAB
R2018a environment. To show the efficiency of ASNM, we would compare it with the
benchmark well-known Qi–Sun–Zhou smoothing Newton method [28], denoted by
QSZ-SNM. In all the experiments, the parameters in ASNM are set as δ = 0.5, μ0 =
10−4, τ = 10−7, λ = 1, L = 10. Moreover, we let C0 = f (z0) + 1 and take
γ = μ0

C3/2
0 +1

. We use min{‖H(zk)‖, ‖H(ẑk)‖} ≤ 10−8 as the stopping criterion for

ASNM. For QSZ-SNM, we take same parameters as those used in [28, Preliminary
numerical results] and use ‖H(zk)‖ ≤ 10−8 as the stopping criterion.

7.1 wLCP Over Nonnegative Orthant

In this subsection, we consider to solve the following wLCP:

x ≥ 0, s ≥ 0, Px + Qs + Ry = a, xs = w, (64)

where

P =
(

A
M

)
, Q =

(
0

−I

)
, R =

(
0

−AT

)
, a =

(
b

− f

)
, (65)

in whichM is an n×n symmetric positive semidefinite matrix, A ∈ Rm×n is a full row
rank matrix withm < n and f ∈ Rn and b ∈ Rm are given vectors. wLCP of the form
(64) with (65) arises from the optimality conditions of the Quadratic Programming
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Table 1 The value of ‖H(zk )‖ at
the k-th iteration for solving a
wLCP

ASNM QSZ-SNM

k = 1 6.1371e+00 5.7391e+00

k = 2 2.6077e−01 6.6797e−01

k = 3 2.7683e−04 2.6777e−02

k = 4 1.2603e−12 2.6674e−03

k = 5 0 3.1728e−07

k = 6 0 6.9176e−13

Table 2 Comparison of ASNM and QSZ-SNM for solving wLCPs

n ASNM QSZ-SNM

AIT ACPU AHK AIT ACPU AHK

1000 4.1 0.33 1.3237e−09 6.0 0.43 8.3745e−10

2000 4.2 1.70 7.0614e−10 7.0 2.55 1.7456e−12

3000 4.3 4.51 2.4453e−09 7.0 7.15 3.1857e−12

4000 4.3 9.77 3.5265e−09 7.0 15.34 4.8653e−12

5000 4.2 17.09 2.6718e−09 7.0 25.84 6.8262e−12

6000 4.3 27.85 2.7384e−09 7.0 44.82 8.9658e−12

7000 4.2 53.15 3.2102e−09 7.0 87.85 1.1353e−11

8000 4.3 108.95 4.0344e−09 7.0 229.14 1.3677e−11

and Weighted Centering problem [23, Theorem 2.1]. This wLCP is monotone [23]
and has been used in numerical experiments for smoothing Newton methods [32, 33,
40]. In the experiments, we generate a random matrix A ∈ Rm×n with full row rank
and set M = BT B/‖BT B‖ with B = rand(n, n). Then, we choose x̂ = rand(n, 1),
f = rand(n, 1) and set b = Ax̂ , ŝ = Mx̂ + f and w = x̂ ŝ.
As a typical example of observing local convergence behaviors of ASNMandQSZ-

SNM, we show the results of solving one test problem with n = 500 and m = 250,
x0 = s0 = (1, 0, ..., 0)T and y0 = (0, ..., 0)T as the starting point. Table 1 gives
the value of ‖H(zk)‖ at each iteration. We can clearly see that ASNM has local cubic
convergence rate and converges faster than QSZ-SNM, which usually maintains local
quadratic convergence rate.

Next, for each problem with different sizes n and m = n/2, we randomly generate
10 instances and test them by using the same starting points as before. Numerical
results are provided in Table2, where AIT and ACPU denote the average number of
iterations and the average CPU time in seconds, respectively, andAHK denotes the final
average value of ‖H(zk)‖. From Table2, we can see that ASNM always takes fewer
iterations and often uses much less CPU time than QSZ-SNM to reach the stopping
tolerance. Moreover, we could observe that the larger the problem size is the more
CPU time ASNM can save compared with QSZ-SNM. This is because ASNM has
local cubic convergence rate and the computational techniques discussed in Sect. 6
can significantly reduce the computational cost when the second approximate Newton
system need to be solved.
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7.2 wNCP Over Nonnegative Orthant

In this subsection, we consider to solve the following wNCP:

x ≥ 0, s ≥ 0, F(x, s, y) = 0, xs = w, (66)

where

F(x, s, y) =
(

Ax − b
∇ f (x) − s − AT y

)
, (67)

in which A ∈ Rm×n, b ∈ Rm and f : Rn → R is a twice continuously differen-
tiable function. This wNCP is a perturbed Karush–Kuhn–Tucker (KKT) system of the
nonlinear programming:

min f (x), s.t. Ax = b, x ≥ 0.

Note that if f (x) is linear, i.e., f (x) = cT x , then the wNCP (66) reduces to the special
wLCP (2).

In this experiment, we test the following nonlinear function:

f (x) = 1

2
xT Mx + (q + P(x))T x,

where M ∈ Rn×n is a positive semidefinite matrix, q ∈ Rn and P(x) =
(P1(x), ..., Pn(x)) : Rn → Rn is a twice continuously differentiable map. We ran-
domly generate a matrix A ∈ Rm×n with full row rank, choose x̂ = rand(n, 1) and set

b = Ax̂ . Moreover, we chooseM = n
4

NT N
‖NT N‖ with N = randn(n, n), q = rand(n, 1)

and take w = rand(n, 1). The nonlinear function P(x) is, respectively, set by

(a) Pi (x) = di · arctanxi , where di = 4 ∗ rand(1, 1), i = 1, ..., n;
(b) Pi (x) = x2i + sinxi + cosxi + 1, i = 1, ..., n;
(c) Pi (x) = ln(xi + 1) − xi

n
, i = 1, ..., n.

Then, for each problem with different sizes n and m = n/2, we generate 10
instances and test them by using the starting points x0 = s0 = (1, 0, ..., 0)T and
y0 = (0, ..., 0)T . Numerical results are given in Table 3, which again show that
ASNM is much more efficient than QSZ-SNM in both the number of iterations and
CPU time.

7.3 wCP Over the Second-order Cone

The second-order cone (SOC) in Rn(n ≥ 1) defined by

Ln := {(x1, x2:n) ∈ R × Rn−1 : x1 ≥ ‖x2:n‖}
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Table 3 Comparison of ASNM and QSZ-SNM for solving wNCPs

P(x) n ASNM QSZ-SNM

AIT ACPU AHK AIT ACPU AHK

(a) 1000 10.0 0.84 2.2785e−09 13.6 1.11 2.9914e−09

2000 11.0 4.65 1.9422e−09 15.3 5.93 2.9373e−09

3000 12.2 12.66 1.9482e−09 18.9 19.33 2.7376e−09

4000 12.2 26.41 2.7206e−09 19.2 42.26 2.5145e−09

5000 12.5 46.91 1.1588e−09 20.6 76.93 2.1689e−09

6000 13.0 79.72 5.4644e−10 21.9 138.53 2.3165e−09

(b) 1000 10.2 0.98 2.1380e−09 13.8 1.06 3.1705e−09

2000 11.0 4.48 2.5691e−09 15.6 5.80 1.8689e−09

3000 12.0 12.58 2.5474e−09 17.6 17.71 2.2413e−09

4000 12.3 27.25 1.0696e−09 19.5 41.30 1.6055e−09

5000 12.6 48.27 2.6266e−09 21.3 79.24 2.9997e−09

6000 13.2 82.93 1.1333e−09 22.0 133.50 6.6072e−10

(c) 2000 11.2 10.89 2.0117e−09 15.3 15.02 2.4610e−09

2500 11.4 20.25 3.1721e−09 16.4 28.27 3.7709e−09

3000 11.8 33.89 3.4694e−09 17.3 48.79 3.0284e−09

3500 12.1 51.29 1.7574e−09 17.8 76.55 2.0459e−09

4500 12.5 102.42 2.0450e−09 19.5 164.40 1.5862e−09

5000 12.7 141.12 7.2064e−10 20.5 235.72 2.0797e−09

is also called the Lorentz cone, where ‖·‖ denotes the Euclidean norm. In recent years,
optimization problems with second-order cone constraints have received considerable
attention because of its wide range of applications in many fields. One may see the
survey paper [2] and references therein.

We now consider to solve the wCP (66) over the SOC Ln (wCP-SOC), which finds
(x, s, y) ∈ Rn × Rn × Rm such that

x ∈ Ln, s ∈ Ln, F(x, s, y) = 0, x ◦ s = w, (68)

with

F(x, s, y) =
(

Ax − b
Mx + q − s − AT y

)
, (69)

where the Jordan product “ ◦ " is defined by x ◦ s = (xT s, x1s2:n + s1x2:n), w ∈ Ln,

A ∈ Rm×n, b ∈ Rm and q ∈ Rn are given vectors and M ∈ Rn×n is a given positive
semidefinite matrix. The system (68)–(69) often appears as a perturbed KKT system
of the convex quadratic optimization over the SOC Ln [38]:

min
1

2
xT Mx + qT x, s.t. Ax = b, x ∈ Ln .
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Table 4 Comparison of ASNM and QSZ-SNM for solving wCP-SOC

SP n ASNM QSZ-SNM

AIT ACPU AHK AIT ACPU AHK

(SP1) 1000 8.0 1.45 1.9697e−12 9.4 1.47 1.7276e−09

2000 8.0 7.98 1.2333e−09 10.6 9.43 1.5471e−09

3000 9.0 25.88 4.6535e−10 13.0 34.53 2.3388e−09

4000 9.0 60.40 9.6934e−10 14.1 86.46 2.5829e−09

5000 9.0 115.35 2.5780e−09 16.5 191.61 6.3682e−10

6000 10.0 215.48 1.1055e−10 19.1 381.84 1.2667e−10

(SP2) 1000 7.8 1.42 1.2917e−09 9.2 1.45 1.6058e−09

2000 8.1 7.99 1.4709e−09 10.8 9.65 2.2457e−09

3000 9.0 25.79 1.4007e−09 13.2 34.30 2.2457e−09

4000 9.0 61.48 5.8138e−11 14.2 88.10 1.1690e−09

5000 9.3 119.58 8.4791e−10 16.9 199.83 1.0470e−09

6000 10.0 209.91 1.1765e−10 19.2 379.28 1.3902e−10

In this experiment, we take M = n
4

NT N
‖NT N‖ with N = randn(n, n) and q =

rand(n, 1). Moreover, we take w = (w1, w
T
2:n)T ∈ Ln with w2:n = rand(n − 1, 1)

and w1 = ‖w2:n‖ + rand(1, 1). In addition, we generate a random matrix A ∈ Rm×n

with full row rank and set b = Ax̂ with x̂ ∈ Ln being generated by the same way
as w. We again generate 10 instances with different sizes n and m = n/2, and solve
them by using the following two starting points, respectively:

(SP1) x0 = s0 = (1, 0, ..., 0)T , y0 = (0, ..., 0)T ;
(SP2) x0 = rand(n, 1)/n, s0 = rand(n, 1)/n, y0 = rand(m, 1)/m,
where x0 and s0 in (SP1) are in strict interior of Ln while x0 and s0 in (SP2)

in general do not belong to Ln . Table 4 provides the numerical results of solving
the 10 instances for each case. These numerical results again confirm the superior
numerical performances of ASNM compared with QSZ-SNM. And we can see again
that ASNM saves more CPU time as the problem dimension increases. Furthermore,
the computational results show the flexibility of choosing the starting point of ASNM.
Unlike interior-point methods, strictly interior starting point in Ln is not required by
ASNM and the starting point will not affect the computational results significantly.

8 Conclusions

In this paper we propose an accelerated smoothing Newton method (ASNM) for
solving the general wCP (4) by reformulating it as equivalent system of nonlinear
equations. ASNM is designed to compute an additional approximate Newton step
when the iterates are close to the solution set of wCP. A Lipschitz condition on the
gradients of the smoothing function is used to determinewhich additional approximate
Newton step will be computed to accelerate the convergence rate. Since previous
Jacobian information is used, the cost of solving the additional approximate Newton

123



Journal of Optimization Theory and Applications

system is much reduced at most iterations. A second-order nonmonotone line search
technique is introduced in ASNM to ensure the global convergence. Under proper
nonsingularity and strong semismooth assumptions, ASNM is shown to have local
cubic convergence rate. Moreover, brief discussions are made on how to solve the
resulted approximate Newton systems efficiently. Our numerical experiments show
that ASNM significantly improves the computational efficiency compared with some
well-known benchmark smoothing Newton method for solving various wCPs arising
in mathematical programming.
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