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Abstract
The Barzilai–Borwein (BB) gradient method is efficient for solving large-scale 
unconstrained problems to modest accuracy due to its ingenious stepsize which 
generally yields nonmonotone behavior. In this paper, we propose a new stepsize 
to accelerate the BB method by requiring finite termination for minimizing the two-
dimensional strongly convex quadratic function. Based on this new stepsize, we 
develop an efficient gradient method for quadratic optimization which adaptively 
takes the nonmonotone BB stepsizes and certain monotone stepsizes. Two variants 
using retard stepsizes associated with the new stepsize are also presented. Numerical 
experiments show that our strategies of properly inserting monotone gradient steps 
into the nonmonotone BB method could significantly improve its performance and 
our new methods are competitive with the most successful gradient descent methods 
developed in the recent literature.
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1 Introduction

Gradient descent methods have been widely used for solving smooth unconstrained 
nonlinear optimization

by generating a sequence of iterates

where f ∶ ℝ
n
→ ℝ is continuously differentiable, gk = ∇f (xk) and 𝛼k > 0 is the step-

size along the negative gradient direction. Different gradient descent methods would 
have different rules for determining the stepsize �k . The classic steepest descent 
(SD) method proposed by Cauchy [3] determines its stepsize by the so-called exact 
line search

Although the SD method locally has the most function value reduction along the 
negative gradient direction, it often performs poorly in practice. Theoretically, when 
f is a strongly convex quadratic function, i.e.

where b ∈ ℝ
n and A ∈ ℝ

n×n is symmetric and positive definite, the SD method con-
verges Q-linearly [1] and will asymptotically perform zigzag between two orthogo-
nal directions [17, 23].

In 1988, Barzilai and Borwein [2] proposed the following two novel stepsizes that 
significantly improve the performance of gradient descent methods:

where sk−1 = xk − xk−1 and yk−1 = gk − gk−1 . Clearly, when sT
k−1

yk−1 > 0 , one has 
�BB1
k

≥ �BB2
k

 . Hence, �BB1
k

 is often called the long BB stepsize while �BB2
k

 is called 
the short BB stepsize. When the objective function is quadratic (4), the stepsize �BB1

k
 

will be exactly the steepest descent stepsize but with one step retard, while �BB2
k

 will 
be just the retard stepsize of minimal gradient (MG) method [9], that is

It is proved that the Barzilai–Borwein (BB) method converges R-superlinearly for 
minimizing two-dimensional strongly convex quadratic functions [2]. Moreover, 
for the general n-dimensional case, the BB method is globally convergent [27] and 
the rate is R-linear [8]. Although the BB method does not decrease the objective 

(1)min
x∈ℝn

f (x)

(2)xk+1 = xk − �kgk,

(3)�SD
k

= argmin
�∈ℝ

f (xk − �gk).

(4)f (x) =
1

2
xTAx − bTx,

(5)�BB1
k

=
sT
k−1

sk−1

sT
k−1

yk−1
and �BB2

k
=

sT
k−1

yk−1

yT
k−1

yk−1
,

�BB1
k

=
gT
k−1

gk−1

gT
k−1

Agk−1
= �SD

k−1
and �BB2

k
=

gT
k−1

Agk−1

gT
k−1

A2gk−1
= �MG

k−1
.
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function value monotonically, extensive numerical experiments show that it per-
forms much better than the SD method [14, 28, 34]. And it is commonly accepted 
that when a loose accuracy is required, BB-type methods could be even competitive 
with nonlinear conjugate gradient (CG) methods for solving smooth unconstrained 
optimization [14, 28]. Furthermore, by combining with gradient projection tech-
niques, BB-type methods have a great advantage of easy extension to solve a wide 
class of constrained optimization, for example the bound or simplex constrained 
optimization [5]. Hence, BB-type methods enjoy many important applications, such 
as image restoration [31], signal processing [26], eigenvalue problems [25], nonneg-
ative matrix factorization [24], sparse reconstruction [32], machine learning [29], 
etc.

Recently, Yuan [33, 34] proposed a gradient descent method which combines a 
new stepsize

in the SD method so that the new method enjoys finite termination when minimizing 
a two-dimensional strongly convex quadratic function. Based on this new stepsize 
�Y
k
 , Dai and Yuan [10] further developed the DY method, which alternately employs 

�SD
k

 and �Y
k
 stepsizes as follows:

It is easy to see that �Y
k
≤ �SD

k
 . Hence, the DY method (7) is a monotone method. 

Moreover, it is shown that the DY method (7) performs even better than the non-
monotone BB method [10].

The property of nonmonotonically reducing objective function values is an intrin-
sic feature that causes the efficiency of the BB method. However, it is also pointed 
out by Fletcher [15] that retaining monotonicity is important for a gradient method, 
especially for minimizing general objective functions. On the other hand, although 
the monotone DY method performs well, using �SD

k
 and �Y

k
 in a nonmonotone fash-

ion may yield better performance, see [11] for example. Moreover, it is usually dif-
ficult to compute the exact monotone stepsize �SD

k
 in general optimization. Hence, in 

this paper, motivated by the great success of the BB method and the previous con-
siderations, we want to further improve and accelerate the nonmonotone BB method 
by incorporating some monotone steps. For a more general and uniform analysis, we 
consider to accelerate the class of gradient descent methods (2) for quadratic func-
tion (4) using the following stepsize:

(6)
�Y
k
=

2

1

�SD
k−1

+
1

�SD
k

+

��
1

�SD
k−1

−
1

�SD
k

�2

+
4‖gk‖2

(�SD
k−1

‖gk−1‖)2

,

(7)𝛼DY
k

=

{
𝛼SD
k
, if mod(k, 4) < 2;

𝛼Y
k
, otherwise.

(8)�k(� (A)) =
gT
k−1

� (A)gk−1

gT
k−1

� (A)Agk−1
,
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where � (⋅) is a real analytic function on [�1, �n] that can be expressed by a Laurent 
series

such that 0 <
∑∞

k=−∞
ckz

k < +∞ for all z ∈ [�1, �n] . Here, �1 and �n are the smallest 
and largest eigenvalues of A, respectively. Clearly, the class of gradient methods (8) 
are generally nonmonotone and the two BB stepsizes �BB1

k
 and �BB2

k
 can be obtained 

by setting � (A) = I and � (A) = A in (8), respectively.
More particularly, we will derive a new stepsize, say �̃�k(𝛹 (A)) , which together 

with the stepsize �k(� (A)) in (8) can give the minimizer of a two-dimensional con-
vex quadratic function in no more than 5 iterations. To the best of our knowledge, 
this is the first nonmonotone gradient method with finite termination property. We 
will see that �̃�k(I) ≤ 𝛼SD

k
 and �̃�k(A) ≤ 𝛼MG

k
 . Hence, this finite termination property 

is essentially obtained by inserting monotone steps into the generally nonmonotone 
class (8). In fact, we show that this finite termination property can be maintained 
even when the algorithm uses different function � ’s during its iteration. Based on 
this observation, to achieve good numerical performance, we propose an adaptive 
nonmonotone gradient method (ANGM), which adaptively takes some nonmono-
tone steps involving the long and short BB stepsizes (5), and some monotone steps 
using �̃�k(A) . Moreover, we propose two variants of ANGM, called ANGR1 and 
ANGR2, using certain retard stepsizes. Our numerical experiments show that the 
proposed methods significantly accelerate the BB method and perform much bet-
ter on minimizing quadratic function (4) than the most successful gradient descent 
methods developed in the recent literature, such as the DY [10], ABBmin2 [18] and 
SDC methods [11]. In addition, our proposed methods are competitive with the CG 
method [16] for solving some quadratic optimization whose Hessian has a large con-
dition number and the required accuracy is low.

The paper is organized as follows. In Sect. 2, we derive the new stepsize �̃�k(𝛹 (A)) 
by requiring finite termination on minimizing the two-dimensional strongly convex 
quadratic function. In Sect. 3, we develop the ANGM, ANGR1 and ANGR2 meth-
ods for quadratic optimization. Our numerical experiments are presented in Sect. 4. 
We finally draw some conclusion remarks in Sect. 5.

2  Derivation of new stepsize

In this section, we derive a new monotone stepsize by applying the class of non-
monotone gradient methods (8) to minimize the quadratic function (4). This new 
stepsize is motivated by requiring finite termination for minimizing the two-dimen-
sional strongly convex quadratic function. Such an idea was originally proposed by 
Yuan [33] to accelerate the SD method. However, new techniques need to be devel-
oped for accelerating the class (8) since the key orthogonal property of successive 
two gradients generated by the SD method no longer holds for the class (8).

� (z) =

∞∑
k=−∞

ckz
k, ck ∈ ℝ,
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Notice that the class (8) is invariant under translations and rotations when mini-
mizing quadratics. Hence, without loss of generality, we may simply assume that the 
matrix A is diagonal, i.e.

where 0 < 𝜆1 ≤ … ≤ 𝜆n.

2.1  Motivation

Let us investigate the behavior of the class (8) with � (A) = I (i.e. the BB1 method). 
Particularly, we applied it to the non-random quadratic minimization problem in 
[11], which has the form (4) with a diagonal matrix A given by

and b being the null vector. Here, ncond = log10 � and 𝜅 > 0 is the condition num-
ber of A. We set n = 10 , � = 103 and used (10, 10,… , 10)T as the initial point. The 
iteration was stopped once the gradient norm is reduced by a factor of 10−6 . Denote 
the i-th component of gk by g(i)

k
 and the indices of the components of gk with the 

first two largest magnitudes by i1 and i2 , respectively. Then, the percentage of the 
magnitudes of the first two largest components to that of the whole gradient can be 
computed by

This � (gk) is plotted in Fig.  1 (left), where we can see that � (gk) ≥ 0.8 holds 
for more than half of the iterations (145 out of 224 total iterations). Hence, 
roughly speaking, the searches of the BB1 method are often dominated in some 

(9)A = diag{�1,… , �n},

(10)Ajj = 10
ncond

n−1
(n−j)

, j = 1,… , n,

� (gk) =
�g(i1)

k
� + �g(i2)

k
�

∑n

i=1
�g(i)

k
� .
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Fig. 1  Problem (10) with n = 10 : history of � (gk) (left) and the index i
1
 (right) generated by the BB1 

method
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two-dimensional subspaces. The history of index i1 against the iteration number 
is also plotted in Fig. 1 (right), where we can see that |g(i1)

k
| corresponds more fre-

quently to the largest eigenvalues �10 or �9 . Since

and 1∕�n ≤ �k ≤ 1∕�1 , the history of i1 in Fig. 1 (right) in fact indicates that, most 
stepsizes generated by the BB1 method are often much larger than 1∕�10 or 1∕�9 . 
As a result, the BB1 method may need many iterations to reduce the corresponding 
components of the gradients g(9)

k
 or g(10)

k
.

In [23], we showed that a family of gradient methods including SD and MG will 
asymptotically reduce their searches in a two-dimensional subspace and could be 
accelerated by exploiting certain orthogonal properties in this two-dimensional sub-
space. In a similar spirit, we could also accelerate the convergence of the class of 
gradient methods (8) in a lower dimensional subspace if certain orthogonal proper-
ties hold.

Suppose that, for a given k > 0 , there exists a qk satisfying

Since this qk is also invariant under translations and rotations, for later analysis we 
may still assume A in (12) is diagonal as in (9). The following lemma shows a gen-
eralized orthogonal property for qk and gk+1 , which is a key property for deriving our 
new stepsize in the next subsection.

Lemma 1 (Orthogonal property) Suppose that the sequence {gk} is obtained by 
applying the gradient method (2) with the stepsize (8) to minimize the quadratic 
function (4) and qk satisfies (12). Then,

Proof By (2), (8) and (12) we get

This completes the proof.   ◻

2.2  A new stepsize

In this subsection, we derive a new stepsize based on the iterations of the class of 
gradient methods (8). We show that combining the new stepsize with the class (8), 
we can achieve finite termination for minimizing two-dimensional strongly convex 
quadratic functions.

(11)g
(j)

k+1
= (1 − �k�j)g

(j)

k
, j = 1,… , n.

(12)(I − �k−1A)qk = gk−1.

(13)qT
k
� (A)gk+1 = 0.

qT
k
� (A)gk+1 = qT

k
� (A)(I − �kA)(I − �k−1A)gk−1

= gT
k−1

� (A)(I − �kA)gk−1

= gT
k−1

� (A)gk−1 − �kg
T
k−1

� (A)Agk−1 = 0.
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By Lemma 1, we have that gT
k
� (A)qk−1 = 0 for k > 0 . Now, suppose both 

� r(A)qk−1 and � 1−r(A)gk are nonzero vectors, where r ∈ ℝ . Let us consider to 
minimize the function f in a two-dimensional subspace spanned by � r(A)qk−1

‖� r(A)qk−1‖ and 
� 1−r(A)gk

‖� 1−r(A)gk‖ , and let

where

and

Denote the components of Hk by H(ij)

k
 , i, j = 1, 2 and notice that BkB

T
k
= I by 

gT
k
� (A)qk−1 = 0 . Then, we have the following finite termination theorem.

Theorem  1 (Finite termination) Suppose that the gradient method (2) is applied 
to minimize the two-dimensional quadratic function (4) with �k given by (8) for all 
k ≠ k0 and uses the stepsize

at the k0-th iteration where k0 ≥ 2 . Then, the method will find the minimizer in at 
most k0 + 3 iterations.

Proof Let us suppose xk is not the minimizer for all k = 1,… , k0 + 2 . We then show 
k0 + 3 must be the minimizer, i.e. gk0+3 = 0 . For notation convenience, in the follow-
ing proof of this theorem, let us simply use k to denote k0.

First, we show that using the stepsize (17) at the k-th iteration implies

where �k,Bk and Hk are given by (15) and (16). In fact, �̃�k given by (17) satisfies the 
following quadratic equation:

(14)
�(t, l) ∶= f

�
xk + t

� r(A)qk−1

‖� r(A)qk−1‖ + l
� 1−r(A)gk

‖� 1−r(A)gk‖
�

= f (xk) + �T
k

�
t

l

�
+

1

2

�
t

l

�T

Hk

�
t

l

�
,

(15)�k = Bkgk =

⎛
⎜⎜⎝

gT
k
� r(A)qk−1

‖� r(A)qk−1‖
gT
k
� 1−r(A)gk

‖� 1−r(A)gk‖

⎞
⎟⎟⎠
with Bk =

�
� r(A)qk−1

‖� r(A)qk−1‖ ,
� 1−r(A)gk

‖� 1−r(A)gk‖
�T

(16)Hk = BkAB
T
k
=

⎛⎜⎜⎝

qT
k−1

� 2r(A)Aqk−1

‖� r(A)qk−1‖2
qT
k−1

� (A)Agk

‖� r(A)qk−1‖‖� 1−r(A)gk‖
qT
k−1

� (A)Agk

‖� r(A)qk−1‖‖� 1−r(A)gk‖
gT
k
� 2(1−r)(A)Agk

‖� 1−r(A)gk‖2

⎞⎟⎟⎠
.

(17)
�̃�k0 =

2

(H
(11)

k0
+ H

(22)

k0
) +

√
(H

(11)

k0
− H

(22)

k0
)2 + 4(H

(12)

k0
)2

(18)gk+1 is parallel to − BT
k
H−1

k
𝜗k + �̃�kgk,
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where 𝛥 = det(Hk) = det(A) > 0 . Let

where �(i)
k

 are components of �k , i = 1, 2 . Then, multiplying � to (19), we have

which is exactly

The above identity (21) implies the vector

is parallel to

which written in a matrix format just means

Since n = 2 , we have BkB
T
k
= BT

k
Bk = I . Then, it follows from gk = BT

k
�k , �k = Bkgk , 

Hk = BkAB
T
k
 and gk+1 = gk − �̃�kAgk that gk+1 = BT

k
𝜗k + BT

k
Hk(−�̃�k𝜗k) . So, we have 

from (22) that (18) holds. Therefore, (17) implies (18) holds.
Now, it follows from (15) and H−1

k
= BkA

−1BT
k
 that

Hence, (18) implies gk+1 is parallel to A−1gk+1 . So, if �̃�k given by (17) is used at the 
k-th iteration, then gk+1 is parallel to A−1gk+1 . Since xk+1 is not the minimizer, we 
have gk+1 ≠ 0 . Then, gk+1 is an eigenvector of A, i.e. Agk+1 = �gk+1 for some 𝜆 > 0 . 
Since xk+2 is not the minimizer, we have gk+2 ≠ 0 and the algorithm will not stop at 
the k + 2-th iteration. By (8), we have �k+2 =

gT
k+1

� (A)gk+1

gT
k+1

� (A)Agk+1
= 1∕� . Thus, we get 

gk+3 = (1 − �k+2�)gk+2 = 0 , which implies xk+3 must be the minimizer. We complete 
the proof.   ◻

Notice that by setting k0 = 2 in the above Theorem 1, the new gradient method in 
Theorem 1 will find the exact minimizer in at most 5 iterations when minimizing a 
two-dimensional strongly convex quadratic function. In fact, since � = �1�2 and 

(19)�̃�2
k
𝛥 − �̃�k(H

(11)

k
+ H

(22)

k
) + 1 = 0,

� = (H
(12)

k
�
(1)

k
+ H

(22)

k
�
(2)

k
)�

(1)

k
− (H

(11)

k
�
(1)

k
+ H

(12)

k
�
(2)

k
)�

(2)

k
,

(20)�̃�2
k
𝛥𝛩 − �̃�k(H

(11)

k
+ H

(22)

k
)𝛩 + 𝛩 = 0,

(21)
(H

(22)

k
𝜗
(1)

k
− H

(12)

k
𝜗
(2)

k
− �̃�k𝛥𝜗

(1)

k
)[𝜗

(2)

k
− �̃�k(H

(12)

k
𝜗
(1)

k
+ H

(22)

k
𝜗
(2)

k
)]

= (H
(11)

k
𝜗
(2)

k
− H

(12)

k
𝜗
(1)

k
− �̃�k𝛥𝜗

(2)

k
)[𝜗

(1)

k
− �̃�k(H

(11)

k
𝜗
(1)

k
+ H

(12)

k
𝜗
(2)

k
)].

(
𝜗
(1)

k
− �̃�k(H

(11)

k
𝜗
(1)

k
+ H

(12)

k
𝜗
(2)

k
)

𝜗
(2)

k
− �̃�k(H

(12)

k
𝜗
(1)

k
+ H

(22)

k
𝜗
(2)

k
)

)

(
H

(22)

k
𝜗
(1)

k
− H

(12)

k
𝜗
(2)

k
− �̃�k𝛥𝜗

(1)

k

H
(11)

k
𝜗
(2)

k
− H

(12)

k
𝜗
(1)

k
− �̃�k𝛥𝜗

(2)

k

)
,

(22)𝜗k + Hk(−�̃�k𝜗k) is parallel to H−1
k
𝜗k − �̃�k𝜗k.

−BT
k
H−1

k
𝜗k + �̃�kgk = −A−1gk + �̃�kgk = −A−1(gk − �̃�kAgk) = −A−1gk+1.
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H
(11)

k
+ H

(22)

k
= �1 + �2 , the equation (19) has two positive roots 1∕�1 and 1∕�2 , and 

�̃�k0 = 1∕𝜆2 . This observation allows us to use the stepsize �̃�k0 with some retards as 
stated in the following corollary.

Corollary 1 Suppose that a gradient method is applied to the two-dimensional 
quadratic function (4) with 𝛼k0+m = �̃�k0 for k0 ≥ 2 and some positive integer m, and 
�k given by (8) for all k ≠ k0 + m . Then, the method stops in at most k0 + m + 3 
iterations.

By setting � (A) = I , � (A) = A and r = 1∕2 in (16), and setting k0 = k in (17), we 
can derive the following two stepsizes:

and

respectively, where

From (23) and (24), we have

Hence, both �̃�BB1
k

 and �̃�BB2
k

 are short monotone stepsizes for reducing the value and 
gradient norm of the objective function, respectively. It follows from Theorem 1 that 
by inserting the monotone steps with �̃�BB1

k
 and �̃�BB2

k
 into the BB1 and BB2 methods, 

respectively, the class of gradient methods (8) will have finite termination for mini-
mizing two-dimensional strongly convex quadratic functions.

To numerically verify this finite termination property, we applied the class (8) with 
� (A) = I (i.e. the BB1 method) and �̃�BB1

2
 given by (23) to minimize the two-dimen-

sional quadratic function (4) with

We run the algorithm for five iterations using ten random starting points. The aver-
age values of ‖g5‖ and f (x5) are presented in Table 1. We also run the BB1 method 
for a comparison purpose. We can observe that for different values of � , the values of 
‖g5‖ and f (x5) obtained by the BB1 method with �̃�BB1

2
 given by (23) are numerically 

(23)
�̃�BB1
k

=
2

qT
k−1

Aqk−1

‖qk−1‖2 +
1

𝛼SD
k

+

��
qT
k−1

Aqk−1

‖qk−1‖2 −
1

𝛼SD
k

�2

+
4(qT

k−1
Agk)

2

‖qk−1‖2‖gk‖2

(24)
�̃�BB2
k

=
2

1

�̂�k−1
+

1

𝛼MG
k

+

√(
1

�̂�k−1
−

1

𝛼MG
k

)2

+ 𝛤k

,

(25)�̂�k =
qT
k
Aqk

qT
k
A2qk

and 𝛤k =
4(qT

k−1
A2gk)

2

qT
k−1

Aqk−1 ⋅ g
T
k
Agk

.

(26)�̃�BB1
k

≤ min

�
𝛼SD
k
,
‖qk−1‖2
qT
k−1

Aqk−1

�
and �̃�BB2

k
≤ min{𝛼MG

k
, �̂�k−1}.

(27)A = diag{1, �} and b = 0.
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very close to zero. However, even for the case � = 10 , ‖g5‖ and f (x5) obtained by the 
pure BB1 method are far away from zero. These numerical results coincide with our 
analysis and show that the nonmonotone class (8) can be significantly accelerated by 
incorporating proper monotone steps.

3  New method

In this section, based on the above analysis, we propose an adaptive nonmonotone 
gradient method (ANGM) and its two variants, ANGR1 and ANGR2.

As mentioned in Sect. 2.1, the stepsizes �BB1
k

 generated by the BB1 method may 
be far away from the reciprocals of the largest eigenvalues of the Hessian A. In other 
words, the stepsize �BB1

k
 may be too large to effectively decrease the components 

of gk corresponding to the first several largest eigenvalues, which, by (11), can be 
greatly reduced when small stepsizes are employed. In addition, it has been observed 
by many works in the recent literature that gradient methods using long and short 
stepsizes adaptively generally perform much better than those using only one type of 
stepsizes, for example see [9, 11, 12, 21–23]. So, we would like to develop gradient 
methods that combines the two nonmonotone BB stepsizes with the short monotone 
stepsize given by (17).

We first extend the orthogonal property developed in Lemma 1 and the finite ter-
mination result given in Theorem 1.

Lemma 2 (Generalized orthogonal property) Suppose that the gradient method (2) 
with stepsizes in the form of (8) is applied to minimize the quadratic function (4). In 
particular, at the k − 1-th and k-th iteration, two stepsizes �k−1(� (A)) and �k(�1(A)) 
are used, respectively, where � and �1 may be two different analytic functions used 
in (8). If qk ∈ ℝ

n satisfies

then we have

Proof Notice that by (2), we have

(28)(I − �k−1(� (A))A)qk = gk−1,

(29)qT
k
�1(A)gk+1 = 0.

Table 1  Average results on 
problem (27) with different 
condition numbers

� BB1 BB1 with �̃�BB1
2

 given by 
(23)

‖g
5
‖ f (x

5
) ‖g

5
‖ f (x

5
)

10 6.6873e+00 4.8701e+00 1.1457e−16 5.8735e−31
100 8.6772e+01 1.9969e+02 2.1916e−16 2.8047e−30
1000 2.0925e+02 9.7075e+01 3.4053e−19 2.3730e−29
10000 1.7943e+02 9.6935e+00 5.1688e−19 6.7870e−28
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Then, the proof is essential the same as those in the proof of Lemma 1.   ◻

Based on Lemma 2 and using the same arguments as those in the proof of Theo-
rem 1, we can obtain the following finite termination result even different function � ’s 
are used in (8) to obtain the stepsizes.

Theorem 2 (Generalized finite termination) Suppose that the gradient method (2) is 
applied to minimize the two-dimensional quadratic function (4) with �k given by (8) 
for all k ≠ k0 and k ≠ k0 − 1 , and uses the stepsizes �k−1(�1(A)) and �k(�1(A)) at the 
k − 1-th and k-th iteration, respectively, where k0 ≥ 2 . Then, the method will find the 
minimizer in at most k0 + 3 iterations.

Theorem 2 allows us to incorporate the nonmonotone BB stepsizes �BB1
k

 and �BB2
k

 , 
and the short monotone stepsize �̃�BB2

k
 in one gradient method. Alternate or adaptive 

scheme has been employed for choosing long and short stepsizes in BB-type methods 
[5, 35]. Recent studies show that adaptive strategies are more preferred than the alter-
nate scheme [6, 35]. Hence, we would like to develop adaptive strategies to choose 
proper stepsizes for our new gradient methods. In particular, our adaptive nonmonotone 
gradient method (ANGM) takes the long BB stepsize �BB1

k
 when �BB2

k
∕�BB1

k
≥ �1 for 

some �1 ∈ (0, 1) . Otherwise, a short stepsize �BB2
k

 or �̃�BB2
k

 will be taken depending on 
the ratio ‖gk−1‖∕‖gk‖ . Notice that �BB2

k
 minimizes the gradient in the sense that

When ‖gk−1‖∕‖gk‖ > 𝜏2 for some 𝜏2 > 1 , i.e. the gradient norm decreases, the previ-
ous stepsize �k−1 is often a reasonable approximation of �BB2

k
= �MG

k−1
 . By our numeri-

cal experiments, when the BB method is applied the searches are often dominated 
in some two-dimensional subspaces. Theorem 2 indicates that the gradient method 
would have finite termination for minimizing two-dimensional convex quadratic 
functions when the new stepsize �̃�BB2

k
 is applied after some BB2 steps. Hence, our 

ANGM would employ the new monotone stepsize �̃�BB2
k

 when ‖gk−1‖ ≥ �2‖gk‖ ; 
otherwise, certain BB2 steps should be taken. In practice, we find that when 
‖gk−1‖ < 𝜏2‖gk‖ , ANGM often has good performance by taking the stepsize 
min{�BB2

k
, �BB2

k−1
} . To summarize, our ANGM applies the following adaptive strate-

gies for choosing stepsizes:

Notice that the calculation of �̃�BB2
k

 needs to compute �MG
k

 which is not easy to obtain 
when the objective function is non-quadratic. Instead, the calculation of �̃�BB2

k−1
 will 

just require �BB2
k

 , which is readily available even for general objective functions. 

gk = gk−1 − �k−1(� (A))Agk−1 and gk+1 = gk − �k(�1(A))Agk.

�BB2
k

= �MG
k−1

= argmin
�∈ℝ

‖gk−1 − �Agk−1‖.

(30)𝛼k =

⎧⎪⎨⎪⎩

min{𝛼BB2
k

, 𝛼BB2
k−1

}, if 𝛼BB2
k

< 𝜏1𝛼
BB1
k

and ‖gk−1‖ < 𝜏2‖gk‖;
�̃�BB2
k

, if 𝛼BB2
k

< 𝜏1𝛼
BB1
k

and ‖gk−1‖ ≥ 𝜏2‖gk‖;
𝛼BB1
k

, otherwise.



 Y. Huang et al.

1 3

Moreover, it is found in recent research that gradient methods using retard stepsizes 
can often lead better performances [19]. Hence, in the first variant of ANGM, we 
simply replace �̃�BB2

k
 in (30) by �̃�BB2

k−1
 , i.e. the stepsizes are chosen as

We call the gradient method using stepsize (31) ANGR1. On the other hand, since 
the calculation of �̃�BB2

k−1
 also needs �̂�k−2 and �k−1 and by (26),

to simplify ANGR1, we may further replace �̃�BB2
k−1

 in (31) by its upper bound in (32). 
As a result, we have the second variant of ANGM, which chooses stepsizes as

We call the gradient method using stepsize (33) ANGR2.
Before presenting our algorithms, we briefly describe how to compute the new step-

size �̃�BB2
k

 without additional matrix-vector products. Since �̃�BB2
k

 involves �̂�k−1 , �k , and 
�MG
k

 , we investigate their computation cost one by one. By (12) we have that

which together with (25) gives

and

Recall that Agk is necessary for updating gk . If Agk is kept in memory, by (34), (35) 
and the definition of �MG

k
 , we know that �̃�BB2

k
 can be computed without additional 

matrix-vector products when qk−1 is available.
However, computing qk exactly from (12) may be as difficult as minimizing the 

quadratic function. Notice that the qk satisfying (12) also satisfies the secant equation

(31)𝛼k =

⎧
⎪⎨⎪⎩

min{𝛼BB2
k

, 𝛼BB2
k−1

}, if 𝛼BB2
k

< 𝜏1𝛼
BB1
k

and ‖gk−1‖ < 𝜏2‖gk‖;
�̃�BB2
k−1

, if 𝛼BB2
k

< 𝜏1𝛼
BB1
k

and ‖gk−1‖ ≥ 𝜏2‖gk‖;
𝛼BB1
k

, otherwise.

(32)�̃�BB2
k−1

≤ min{𝛼BB2
k

, �̂�k−2},

(33)𝛼k =

⎧
⎪⎨⎪⎩

min{𝛼BB2
k

, 𝛼BB2
k−1

}, if 𝛼BB2
k

< 𝜏1𝛼
BB1
k

and ‖gk−1‖ < 𝜏2‖gk‖;
min{𝛼BB2

k
, �̂�k−2}, if 𝛼BB2

k
< 𝜏1𝛼

BB1
k

and ‖gk−1‖ ≥ 𝜏2‖gk‖;
𝛼BB1
k

, otherwise.

Aqk =
1

�k−1
(qk − gk−1),

(34)�̂�k−1 =
qT
k−1

Aqk−1

qT
k−1

A2qk−1
=

𝛼k−2q
T
k−1

(qk−1 − gk−2)

(qk−1 − gk−2)
T (qk−1 − gk−2)

(35)�k =
4(qT

k−1
A2gk)

2

qT
k−1

Aqk−1 ⋅ g
T
k
Agk

=
4((qk−1 − gk−2)

TAgk)
2

�k−2q
T
k−1

(qk−1 − gk−2) ⋅ g
T
k
Agk

.

(36)qT
k
gk = ‖gk−1‖2.
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Hence, we may find an approximation of qk by requiring the above secant condition 
holds. One efficient way to find such a qk satisfying the secant equation (36) is to 
simply treat the Hessian A as the diagonal matrix (9) and derive qk from (12), that is 
when g(i)

k
≠ 0,

We can just let q(i)
k
= 0 , if g(i)

k
= 0 . To summarize, the approximated qk can be com-

puted by

(37)q
(i)

k
=

g
(i)

k−1

1 − �k−1�i
=

(g
(i)

k−1
)2

g
(i)

k

, i = 1,… , n.

(38)q
(i)

k
=

⎧⎪⎨⎪⎩

(g
(i)

k−1
)2

g
(i)

k

, if g
(i)

k
≠ 0;

0, if g
(i)

k
= 0.
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As we will see in Sect. 4, this simple way of calculating qk leads to a very efficient 
algorithm.

Now we formally present our ANGM method in Algorithm  1 and ANGR1 
method in Algorithm  2, respectively. The ANGR2 method can be obtained by 
replacing lines 14 and 15 in Algorithm 2 as

Clearly, a step of ANGM requires one matrix-vector product and three inner prod-
ucts when 

√
𝜌c < 𝜏2

√
𝜌n ; otherwise, three more inner products are required. Five 

length-n vectors and the vector q are required. The computational cost and memory 
cost for a step of ANGR1 is the same as ANGM since it requires gk−2 while gk+1 is 
not necessary. Compared to ANGR1, a step of ANGR2 requires one fewer inner 
product when 

√
𝜌c < 𝜏2

√
𝜌n due to the absence of � .

Remark 1 We notice that a BB step requires one matrix-vector product, two inner 
products, and three length-n vectors while a CG step requires one more length-n 
vector. Although the memory cost and computational cost of our methods are 
slightly higher than those for BB and CG, we will see in next section that the cost is 
deserved especially when the condition number of the Hessian is large.

�̂� = 𝛼k−2𝛽∕𝛾 , 𝛼k+1 = min{𝛼BB2
k+1

, �̂�}.
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In terms of global convergence for minimizing the quadratic function (4), by (26), 
we can easily show the R-linear global convergence of ANGM since it satisfies the 
property in [4]. Similarly, R-linear convergence of ANGR1 and ANGR2 can be also 
established. See the proof of Theorem 3 in [6] for example.

For a simple illustration of numerical behavior of ANGR1, we again applied 
ANGR1 with �1 = 0.85 and �2 = 1.3 to solve problem (10) with n = 10 . Figure 2 
shows the largest component |g(i1)

k
| of the gradient generated by the BB1 and ANGR1 

methods against the iteration number, where circle means the ANGR1 method takes 
�̃�BB2
k−1

 at that iteration. It can be seen that, at those circle iterations, |g(i1)
k

| generated by 
the BB1 method often increases significantly with a much larger value. On the other 
hand, |g(i1)

k
| generated by the ANGR1 method is often reduced and kept small after a 

circle iteration (i.e. after �̃�BB2
k−1

 is applied). A detail correspondence of i1 and �j is pre-
sented in Table 2, where nj is the total number of i′

1
s for which i1 = j , j = 1,… , 10 . 

We can see from the last three columns in Table 2 that ANGR1 is more efficient 
than BB1 for decreasing those components of gk corresponding to large eigenval-
ues. Hence, the undesired behavior of BB1 discussed in the motivation Sect. 2.1 is 
greatly eliminated by ANGR1.

4  Numerical results

In this section, we present numerical comparisons of ANGM, ANGR1 and 
ANGR2 with the BB1 [2], DY [10], ABBmin2 [18], SDC [11] and CG (Algo-
rithm  11.3.3 in [20]) methods on quadratic optimization. All the methods were 

0 50 100 150 200 250
k

10-4

10-2

100

102

104

106

|g
(i

1)
k

|

BB1
ANGR1

Fig. 2  Problem (10) with n = 10 : history of |g(i1)
k

| generated by the BB1 and ANGR1 methods

Table 2  The correspondence 
of i

1
 and �

j
 by the BB1 and 

ANGR1 methods

nj 1 2 3 4 5 6 7 8 9 10

BB1 40 5 6 4 6 2 10 21 42 87
ANGR1 51 4 22 18 16 4 1 8 12 17
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implemented in MATLAB (v.9.0-R2016a) and run on a laptop with an Intel Core 
i7, 2.9 GHz processor and 8 GB of RAM running Windows 10 system.

We first solve some randomly generated quadratic problems in the form (see 
[33])

where x∗ is randomly generated with components between −10 and 10, 
V = diag{v1,… , vn} is a diagonal matrix with v1 = 1 and vn = � , and vj , 
j = 2,… , n − 1 , are generated by the rand function between 1 and �.

We have tested five sets of problems (39) with n = 1000 using different spec-
tral distributions of the Hessian listed in Table  3. The algorithm was stopped 
once the number of iteration exceeds 20,000 or the gradient norm was reduced 
by a factor of � , which was set to 10−6, 10−9 and 10−12 , respectively. Five different 
condition numbers � = 102, 103, 104, 105, 106 were tested. For each value of � or 
� , 10 instances of the problem were randomly generated and the average results 
obtained by the starting point x0 = (0,… , 0)T are presented.

For the ABBmin2 method, � was set to 0.9 as suggested in [18]. The param-
eter pair (h,  s) of the SDC method was set to (8,  6) which is more efficient 
than other choices for this test. For ANGM, ANGR1 and ANGR2, we chose �1 
from {0.1, 0.2,… , 0.9} such that the methods achieve the best performance for 
�2 = {1, 1.02, 1.1, 1.2} . In particular, the pair (�1, �2) was to (0.1, 1), (0.1, 1) and 
(0.3, 1) for ANGM, ANGR1 and ANGR2, respectively. The qk was calculated by 
(38) for our methods.

The average number of iterations for the compared methods are presented 
in Table  4. We see that, our three methods are much better than BB1, DY and 
SDC especially for high accuracy or a large condition number. As compared 
with ABBmin2, similar picture emerges regard to the second to last prob-
lem sets though ABBmin2 wins for the first problem set. Moreover, for a small 
condition number, our three methods are competitive with CG when low accu-
racy is required. For the case � = 10−6 , our ANGR1 and ANGR2 methods are 

(39)min
x∈ℝn

f (x) = (x − x∗)TV(x − x∗),

Table 3  Distributions of v
j Problem Spectrum

1 {v
2
,… , v

n−1} ⊂ (1, 𝜅)

2 {v
2
,… , v

n∕5} ⊂ (1, 100)

{v
n∕5+1,… , v

n−1} ⊂ (
𝜅

2
, 𝜅)

3 {v
2
,… , v

n∕2} ⊂ (1, 100)

{v
n∕2+1,… , v

n−1} ⊂ (
𝜅

2
, 𝜅)

4 {v
2
,… , v

4n∕5} ⊂ (1, 100)

{v
4n∕5+1,… , v

n−1} ⊂ (
𝜅

2
, 𝜅)

5 {v
2
,… , v

n∕5} ⊂ (1, 100)

{v
n∕5+1,… , v

4n∕5} ⊂ (100,
𝜅

2
)

{v
4n∕5+1,… , v

n−1} ⊂ (
𝜅

2
, 𝜅)
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Table 4  The average number of iterations for the ANGM, ANGR1, ANGR2, BB1, DY, SDC, CG and 
ABBmin2 methods on problems in Table 3

� � BB1 DY SDC CG ABBmin2 ANGM ANGR1 ANGR2

Problem set 1
10

2
10

−6 70.4 69.8 64.7 53.6 62.8 64.3 65.5 67.5

10
−9 111.3 112.0 103.6 86.9 99.8 102.2 104.1 101.1

10
−12 149.0 147.2 144.2 118.2 135.9 143.1 142.4 141.8

10
3

10
−6 182.7 154.8 147.5 109.9 139.4 156.9 158.9 145.6

10
−9 333.7 277.3 286.8 163.4 237.4 292.3 305.0 259.3

10
−12 460.8 406.6 400.8 203.8 328.2 428.5 434.2 375.3

10
4

10
−6 329.1 295.1 295.9 160.3 276.5 303.5 303.7 298.9

10
−9 912.6 741.4 779.0 203.5 430.2 584.6 619.8 525.5

10
−12 1420.2 1168.2 1178.0 237.2 604.7 885.1 889.2 723.9

10
5

10
−6 214.7 192.8 174.6 162.2 195.9 197.7 203.8 182.8

10
−9 2196.7 1961.1 2024.0 211.7 489.3 641.1 632.0 681.3

10
−12 4039.0 3393.8 3625.8 243.5 651.2 949.4 916.3 864.8

10
6

10
−6 204.9 174.8 170.5 111.5 143.8 152.2 175.2 167.4

10
−9 6390.7 5805.9 3286.2 220.5 501.6 711.5 765.1 696.8

10
−12 11861.8 14022.9 6550.7 250.9 581.8 962.6 886.3 945.6

Problem set 2
10

2
10

−6 67.6 62.6 64.6 44.7 57.1 65.9 64.3 59.4

10
−9 111.0 103.2 101.2 65.5 87.5 97.4 97.9 98.6

10
−12 151.8 142.1 135.6 82.5 125.1 136.0 136.7 139.0

10
3

10
−6 156.3 163.3 144.8 96.1 137.0 152.7 144.0 135.0

10
−9 305.1 325.2 265.9 155.0 240.4 279.4 273.3 257.0

10
−12 422.4 461.7 370.2 197.4 338.2 397.9 406.2 359.9

10
4

10
−6 256.1 239.7 226.4 113.9 235.6 238.6 192.3 173.8

10
−9 625.8 573.7 524.9 223.5 506.7 473.7 442.5 386.6

10
−12 915.7 871.5 788.5 302.9 719.8 739.5 664.4 563.4

10
5

10
−6 359.1 316.2 193.1 89.8 340.3 171.4 128.2 111.3

10
−9 1419.7 1246.3 840.0 253.5 983.4 691.5 469.6 432.8

10
−12 2266.9 2244.5 1395.1 383.4 1636.2 1114.8 778.9 749.2

10
6

10
−6 319.4 317.8 94.0 47.3 269.2 106.2 70.4 62.7

10
−9 2777.4 2352.3 946.0 255.7 2014.5 971.6 450.7 566.2

10
−12 5110.1 4762.1 1770.1 415.1 3976.3 1744.5 907.8 1064.2

Problem set 3
10

2
10

−6 69.1 62.5 67.6 50.8 61.1 62.5 64.6 64.0

10
−9 113.4 101.4 104.0 79.9 95.1 100.6 101.3 99.2

10
−12 149.7 141.8 141.4 105.7 134.0 138.8 138.0 138.7

10
3

10
−6 162.3 169.5 160.9 109.2 148.9 159.9 161.2 149.6

10
−9 302.9 323.4 286.7 188.9 261.9 282.4 293.7 266.0

10
−12 427.1 472.1 401.2 257.8 372.6 396.8 410.3 379.6
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Table 4  (continued)

� � BB1 DY SDC CG ABBmin2 ANGM ANGR1 ANGR2

10
4

10
−6 284.4 266.0 252.6 128.2 264.8 248.5 240.6 193.7

10
−9 650.1 619.8 526.1 259.3 540.6 507.5 460.5 396.9

10
−12 961.9 937.0 796.9 367.6 823.5 767.0 704.2 584.5

10
5

10
−6 416.5 412.7 268.1 103.9 471.8 225.1 168.4 153.6

10
−9 1350.5 1451.3 970.8 283.7 1178.7 767.8 508.2 475.3

10
−12 2269.4 2300.2 1523.1 437.0 1824.8 1211.0 784.2 783.6

10
6

10
−6 491.7 339.9 125.7 61.1 460.6 159.3 91.2 87.0

10
−9 3134.5 2695.6 1036.5 279.1 2607.6 927.5 527.3 624.0

10
−12 5677.6 4968.0 2045.3 476.7 4294.6 1842.8 963.8 1041.8

Problem set 4
10

2
10

−6 70.0 62.6 63.4 52.7 62.4 63.7 65.1 66.0

10
−9 113.4 107.7 105.8 84.8 98.4 101.8 104.2 102.1

10
−12 159.3 141.7 144.1 115.1 138.0 139.5 143.4 141.4

10
3

10
−6 177.0 190.9 161.4 116.4 157.8 171.1 165.1 166.9

10
−9 319.7 344.2 292.9 195.3 271.8 303.9 294.6 277.1

10
−12 450.2 484.3 425.9 266.6 377.9 418.3 416.5 394.1

10
4

10
−6 330.5 317.9 265.1 141.8 290.9 269.2 254.0 229.4

10
−9 707.4 626.2 546.9 267.5 567.9 571.8 513.3 416.1

10
−12 1068.8 931.4 853.3 380.1 842.2 828.1 739.0 605.6

10
5

10
−6 542.8 504.9 326.7 123.2 517.7 252.5 187.1 187.7

10
−9 1585.8 1429.6 966.8 286.5 1168.7 800.7 529.5 512.8

10
−12 2321.1 2372.0 1632.1 444.9 1849.5 1254.8 837.0 817.0

10
6

10
−6 649.2 490.3 173.9 76.3 694.5 191.7 110.0 105.3

10
−9 3683.3 2610.5 1084.0 282.8 2806.0 1015.3 529.4 648.0

10
−12 5992.1 4551.9 1973.8 484.5 4599.9 1873.4 916.3 1165.5

Problem set 5
10

2
10

−6 69.8 65.6 63.7 44.9 55.8 61.9 61.9 60.4

10
−9 106.4 102.5 101.1 65.6 93.7 100.7 99.1 97.0

10
−12 147.2 144.3 137.8 82.1 127.1 139.4 136.4 131.1

10
3

10
−6 196.8 176.7 165.2 129.0 158.3 173.4 173.9 163.8

10
−9 326.4 299.4 283.6 207.6 263.5 297.1 311.2 272.6

10
−12 456.9 424.5 408.3 270.2 379.4 439.5 437.4 397.0

10
4

10
−6 494.4 388.8 388.5 327.8 397.8 403.3 394.2 388.1

10
−9 1015.1 869.8 897.3 577.5 762.8 845.7 831.6 810.6

10
−12 1517.6 1356.0 1391.1 752.2 1153.0 1208.4 1260.5 1184.8

10
5

10
−6 713.2 660.4 664.1 508.8 881.7 677.5 690.8 646.7

10
−9 2786.6 2302.7 2459.6 1081.4 2149.0 2101.1 2171.8 1990.0

10
−12 5020.2 4050.1 4051.9 1486.1 3324.6 3312.7 3272.4 3128.1
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comparable to CG even if the condition number is 106 . However, CG clearly out-
performs other methods for � ≤ 10−9.

Next we compared the above methods on a two-point boundary value problem 
[9, 19] which can be transferred as a linear system Ax = b by the finite difference 
method. In particular, the matrix A = (aij) is given by

where h = 11∕n . Clearly, the condition number � increases as n becomes large. The 
vector b is defined as b = Ax∗ where x∗ is a randomly generated as the former test.

We set (h, s) = (30, 2) for the SDC method in this test. For ANGM, ANGR1 and 
ANGR2, the pair (�1, �2) was to (0.2,  1.02). Other setting are the same as above. 
Table 5 presents the number of iterations for the compared methods to meet different 
accuracy requirements for n = 500, 1000, 2000, 3000 , 5000 using the starting point 
x0 = e where e is the vector of all ones. It can be seen that, the compared meth-
ods are often better than CG when � = 10−6 though CG is the winner for the case 
� = 10−9 . In addition, for each n, our three methods outperform BB1, DY, SDC and 
ABBmin2 especially when the accuracy is high.

To confirm the previous results obtained for our new methods on quadratics with 
large condition numbers under relative low accuracy, we tested the above methods 
on some quadratics with the matrix A chosen from the University of Florida Sparse 
Matrix Collection [30] and b = Ae . Table 6 lists the names, dimensions, numbers of 
nonzero entries and condition numbers of 20 tested matrices, where “–” means the 
condition number for the matrix is not given by the collection.

The null vector was employed as the starting point. We stopped the iteration of 
the compared methods once ‖gk‖ ≤ 10−6‖g0‖ . We chose parameters for our methods 
in the same way as the above random problems, and set the pair (�1, �2) to (0.1, 1.1), 
(0.1, 1.02) and (0.1, 1.02) for ANGM, ANGR1 and ANGR2, respectively. Other set-
tings are the same as the above two-point boundary value problems.

We present the number of iterations required by each method in Table  7. It is 
observed that for most of the test problems our three methods perform better than 
the BB1, DY, SDC and ABBmin2 methods in terms of number of iterations. As 
compared with the CG method, our three methods provide competitive results. For 
LFAT5000, “–” is filled for the CG method since it takes more than 50000 iterations 
to satisfy the stopping condition. A possible reason for this phenomenon is that the 

(40)aij =

⎧
⎪⎨⎪⎩

2

h2
, if i = j;

−
1

h2
, if i = j ± 1;

0, otherwise,

Table 4  (continued)

� � BB1 DY SDC CG ABBmin2 ANGM ANGR1 ANGR2

10
6

10
−6 1369.7 901.6 910.1 456.7 1409.0 820.7 891.7 781.2

10
−9 8078.3 7186.9 6280.7 1570.7 6521.2 4501.7 4365.2 4491.8

10
−12 16607.0 14221.9 11014.9 2465.7 10518.4 8257.9 8243.3 8213.9
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Table 5  The number of iterations for the ANGM, ANGR1, ANGR2, BB1, DY, SDC, CG and ABBmin2 
methods on the two-point boundary value problem

n � BB1 DY SDC CG ABBmin2 ANGM ANGR1 ANGR2

500 10
−3 29 25 36 28 33 48 32 28

10
−6 758 559 799 500 1033 713 609 603

10
−9 3410 2484 4033 501 1672 1763 2158 1682

1000 10
−3 30 25 36 29 26 30 30 30

10
−6 663 555 761 819 1049 606 508 534

10
−9 6346 4423 6887 1001 3278 2942 2622 3092

2000 10
−3 36 27 38 31 29 50 28 28

10
−6 578 607 635 1500 558 526 424 503

10
−9 14102 19640 7359 2001 6136 4567 4599 4050

3000 10
−3 30 25 36 30 26 42 30 30

10
−6 671 579 543 2160 665 518 522 434

10
−9 12104 17109 14977 3001 8125 9153 9768 8210

5000 10
−3 29 25 36 30 26 32 30 30

10
−6 580 503 613 1370 663 429 443 552

10
−9 29211 13667 15217 5001 14674 10107 9912 10158

Table 6  Matrices from the 
University of Florida sparse 
matrix collection

Matrices n Nonzeros Condition number

LFAT5000 19994 79966 5.132558 × 10
17

bcsstk14 1806 63454 1.192324 × 10
10

bcsstk15 3948 117816 6.538185 × 10
9

bcsstk16 4884 290378 4.943183 × 10
9

bcsstk17 10974 428650 1.296064 × 10
10

bcsstk18 11948 149090 3.459995 × 10
11

bundle1 10581 770811 1.004238 × 10
3

cbuckle 13681 676515 3.299134 × 10
7

cvxbqp1 50000 349968 –
ex15 6867 98671 8.612330 × 10

12

gyro 17361 1021159 1.095832 × 10
9

m_t1 97578 9753570 –
s3dkq4m2 90449 4427725 1.896133 × 10

11

s3dkt3m2 90449 3686223 3.625322 × 10
11

s3rmq4m1 5489 262943 1.765559 × 10
10

s3rmt3m1 5489 217669 2.481977 × 10
10

CurlCurl_3 1219574 13544618 –
atmosmodl 1489752 10319760 –
atmosmodm 1489752 10319760 –
Offshore 259789 4242673 –
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conjugacy property of directions generated by CG is lost during the iteration process 
because rounding error may lead to inexact line search which is key to the conjugacy 
property, see [7] for example.

To further investigate the performance of the compared methods, we present the 
CPU time in seconds costed by each method to meet the given accuracy in Table 8. 
We again observe that our ANGM method is comparable to CG and faster than other 
methods while ANGR1 and ANGR2 are faster than BB1, DY, SDC, and ABBmin2. 
This can clearly be seen in the performance profiles (see [13]) on the CPU time 
metric plotted in Fig. 3 where the vertical axis shows the percentage of problems the 
method solves within factor � of the metric used by the most effective method in this 
comparison.

5  Conclusions

We have developed techniques to accelerate the Barzilai–Borwein (BB) method 
motivated from finite termination for minimizing two-dimensional strongly convex 
quadratic functions. More precisely, by exploiting certain orthogonal properties of 
the gradients, we derive a new monotone stepsize that can be combined with BB 

Table 7  The number of iterations for the ANGM, ANGR1, ANGR2, BB1, DY, SDC, CG and ABBmin2 
methods on quadratics with A given in Table 6

For each problem, the best results among the compared methods are marked in bold

problem BB1 DY SDC CG ABBmin2 ANGM ANGR1 ANGR2

LFAT5000 16665 27443 14559 – 19854 9032 11288 8575
bcsstk14 2429 3183 3135 3096 3440 2251 2325 2924
bcsstk15 6429 4664 4095 4531 6911 3892 4649 3315
bcsstk16 536 350 417 229 397 479 369 402
bcsstk17 11494 12688 10879 9437 20365 9536 9554 9339
bcsstk18 3826 5180 5247 9593 5964 3498 3584 3822
bundle1 392 297 323 129 201 210 266 222
cbuckle 6894 7364 7905 1820 5254 4651 4392 4276
cvxbqp1 250 259 304 369 312 317 290 266
ex15 4100 4222 2911 972 2296 2459 3000 2037
gyro 10377 10175 11495 10554 11695 9427 11030 8119
m_t1 1925 1648 1535 9265 1785 1327 1689 1642
s3dkq4m2 9464 14136 7519 10747 11385 5839 6771 7826
s3dkt3m2 10397 30195 24040 15461 14188 9741 8235 9120
s3rmq4m1 10950 8603 7201 3125 6531 4742 7076 5630
s3rmt3m1 14894 21703 11041 4483 5644 4513 6561 5988
CurlCurl_3 5240 4008 3937 3922 6315 3724 2949 3326
atmosmodl 359 262 353 531 352 262 304 272
atmosmodm 220 219 257 3323 244 168 176 168
offshore 4775 4520 3871 18724 5881 2825 4205 2932
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Table 8  The CPU time in seconds for the ANGM, ANGR1, ANGR2, BB1, DY, SDC, CG and ABBmin2 
methods on quadratics with A given in Table 6

For each problem, the best results among the compared methods are marked in bold

Problem BB1 DY SDC CG ABBmin2 ANGM ANGR1 ANGR2

LFAT5000 3.10 5.39 2.74 – 7.11 1.70 2.28 1.70
bcsstk14 0.17 0.21 0.22 0.22 0.47 0.22 0.18 0.22
bcsstk15 1.22 0.88 0.74 0.95 3.05 0.54 0.90 0.87
bcsstk16 0.24 0.15 0.18 0.11 0.55 0.22 0.25 0.23
bcsstk17 8.65 9.61 8.73 6.76 25.70 7.81 7.54 15.50
bcsstk18 1.35 1.69 1.94 3.45 4.93 1.29 1.30 1.37
bundle1 0.62 0.42 0.54 0.20 0.58 0.31 0.39 0.42
cbuckle 8.45 8.91 9.31 2.02 10.63 7.81 6.07 5.80
cvxbqp1 0.20 0.20 0.28 0.32 0.48 0.24 0.26 0.22
ex15 0.62 0.53 0.46 0.15 0.71 0.38 0.43 0.29
gyro 16.61 16.20 17.91 17.80 40.56 14.51 16.94 13.29
m_t1 29.87 27.45 24.92 129.62 46.87 17.66 22.72 22.72
s3dkq4m2 58.21 88.86 46.48 68.61 145.63 36.04 42.36 48.73
s3dkt3m2 55.50 159.72 126.64 83.41 144.76 52.06 44.09 48.79
s3rmq4m1 3.73 2.97 2.43 1.28 4.57 1.58 2.53 2.00
s3rmt3m1 3.91 5.74 2.88 1.21 2.95 1.23 1.77 1.68
CurlCurl_3 148.35 112.16 111.82 116.79 348.05 118.67 94.97 107.43
atmosmodl 9.58 6.84 9.36 14.91 13.07 7.92 9.38 8.37
atmosmodm 5.74 5.70 6.72 91.76 9.04 5.01 5.28 5.13
offshore 49.38 45.52 39.30 194.48 115.36 30.10 45.72 33.21

1 1.5 2 2.5 3 ρ
0

0.2

0.4

0.6

0.8

1

BB1
DY
SDC
CG
ABBmin2
ANGM
ANGR1
ANGR2

Fig. 3  Performance profiles of the compared methods on quadratics with A given in Table 6, CPU time 
metric
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stepsizes to significantly improve their performance on quadratic optimization. By 
adaptively using this new stepsize and the two BB stepsizes, we develop a new gra-
dient method called ANGM and its two variants ANGR1 and ANGR2. Our numeri-
cal experiments show that the newly developed methods are competitive with some 
very successful gradient methods developed in the recent literature and are compa-
rable to the conjugate gradient method for solving quadratic optimization under low 
accuracy requirement especially when the condition number of the Hessian is large.
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