
A DERIVATIVE-FREE GEOMETRIC ALGORITHM FOR
OPTIMIZATION ON A SPHERE ∗

YANNAN CHEN† , MIN XI‡ , AND HONGCHAO ZHANG§

Abstract. Optimization on a unit sphere finds crucial applications in science and engineering.
However, derivatives of the objective function may be difficult to compute or corrupted by noises, or
even not available in many applications. Hence, we propose a Derivative-Free Geometric Algorithm
(DFGA) which, to the best of our knowledge, is the first derivative-free algorithm that takes trust
region framework and explores the spherical geometry to solve the optimization problem with a
spherical constraint. Nice geometry of the spherical surface allows us to pursue the optimization
at each iteration in a local tangent space of the sphere. Particularly, by applying Householder and
Cayley transformations, DFGA builds a quadratic trust region model on the local tangent space such
that the local optimization can essentially be treated as an unconstrained optimization. Under mild
assumptions, we show that there exists a subsequence of the iterates generated by DFGA converging
to a stationary point of this spherical optimization. Furthermore, under the Lojasiewicz property,
we show that all the iterates generated by DFGA will converge with at least a linear or sublinear
convergence rate. Our numerical experiments on solving the spherical location problems, subspace
clustering and image segmentation problems resulted from hypergraph partitioning, indicate DFGA
is very robust and efficient for solving optimization on a sphere without using derivatives.

Key words. Derivative-free optimization, Spherical optimization, Geometry, Trust region
method, Lojasiewicz property, Global convergence, Convergence rate, Hypergraph partitioning

AMS subject classifications. 65K05, 90C30, 90C56

1. Introduction. In this paper, we consider the following spherical optimization
problem

(1.1) min f(x) s.t. x ∈ Sn−1,

where Sn−1 := {x ∈ Rn : ‖x‖ = 1} is a unit sphere under the Euclidean norm ‖ · ‖
and f : Sn−1 → R is continuously differentiable with Lipschitz continuous gradi-
ent. However, we assume that the derivatives of f are unavailable during algorithm
designment. The spherical optimization problem (1.1) has extensive applications in
science and engineering. For example, the classical Weber problem is to find the
best location on a three dimensional sphere which minimizes the weighted sum of the
distances to several destination points on the sphere [37, 55]. In geophysics, climate
modelling and global navigation, various nonlinear optimization problems on a sphere
need to be solved for dealing with massive signals on the surface of the earth [13, 18].
Finding the largest and smallest Z-eigenvalues of an even order symmetric tensor
[26, 48] is equivalent to calculate the maximum and minimum values of a homoge-
neous polynomial associated with a tensor on a unit sphere, respectively. The best
rank-one approximation of a symmetric tensor could be also formulated as a spheri-
cal optimization [58]. Other spherical optimization problems which have nonsmooth

∗ This research was supported by the National Natural Science Foundation of China under grants
11771405, 11901118, and 11571178, and by the USA National Science Foundation under grants
1522654 and 1819161.
†ynchen@scnu.edu.cn School of Mathematical Sciences, South China Normal University,

Guangzhou, China.
‡mxi@gdufs.edu.cn School of Mathematics and Statistics, Guangdong University of Foreign Stud-

ies, Guangzhou China; School of Mathematical Sciences, Jiangsu Key Laboratory for NSLSCS, Nan-
jing Normal University, Nanjing, China.
§hozhang@math.lsu.edu, http://www.math.lsu.edu/∼hozhang, Department of Mathematics,

Louisiana State University, Baton Rouge, LA 70803-4918. Phone (225) 578-1982. Fax (225) 578-4276.

1

2 Y. CHEN, M. XI AND H. ZHANG

objectives include the robust subspace detection [29], the sparse principal component
analysis (PCA) [2, 54], and the sparse blind deconvolution [34, 17] etc.. In addition,
for some practical applications, the data may come from simulations or experiments,
for which the analytic derivatives of the objective function are unavailable or pro-
hibitively expensive to compute. For example, the objective funcitons proposed in
[27, 39] depend on random variables whose distributions are unknown. In particular,
for studying precision medicine, it is proposed to maximize the hypervolume under
the manifold (HUM) [27], which can be interpreted as the probability of disease de-
tection. Other examples include [28, 49], where the evaluation of objective function
needs solution of differential equations, and therefore, it is expensive or impossible to
compute derivatives of the objective functions at each iteration. Hence, developing
derivative-free algorithms for solving (1.1), which only uses the function values of f ,
has great importance in both theory and applications.

Recently, derivative-free optimization (DFO) has become an important research
topic in nonlinear optimization since derivatives of the objective function may be
difficult to compute or corrupted by noises, or even not available in many real ap-
plications. Hence, DFO methods need to be developed to solve these optimization
problems without using derivatives. Currently, the DFO methods can be generally
divided into three classes. The first class of methods approximate derivatives by
finite-differences and then derivative-based methods can be applied using the approx-
imate derivatives [12, 14, 32]. For instance, Nocedal et al. [14] combines the classical
BFGS updating and an adaptive finite-difference technique for minimization without
derivatives. The second class of methods are direct search methods [38], which for
example include pattern search methods [33, 53], Nelder-Mead simplex method [43]
and mesh adaptive direct search methods [7]. This class of methods sample the objec-
tive functions according to a predetermined pattern strategy. Hence, the direct search
methods are usually very robust, but may require a large amount of function eval-
uations in some applications. The third class of methods are model based methods
[10, 41, 46, 59], which build local linear or quadratic models by function interpola-
tions at each iteration. This class of methods intrinsically use the smoothness of the
objective function. Hence, fast convergence can be often expected. One may refer to
monographs [8, 24] for more general theory and literature review on DFO methods.

Our Derivative-Free Geometric Algorithm (DFGA) developed in this paper be-
longs to the model based methods, which in the literature include UOBYQA [46],
NEWUOA [47], DFO [25], COBYLA [45], DFBOLS [57] and DFO-GN [16], etc.. In
particular, UOBYQA, NEWUOA and DFO are designed for solving unconstrained
optimization. UOBYQA and DFO construct local quadratic approximation models,
while NEWUOA uses more flexible models between linear and quadratic to approxi-
mate the objective function. Both DFBOLS and DFO-GN are derivative-free Guass-
Newton methods for solving nonlinear least squares optimization, while COBYLA
uses local linear approximations of the objective and constraint functions for solving
more general constrained optimization. However, to the best of our knowledge, DFGA
is the first derivative-free method which is particularly designed to solve the spherical
optimization (1.1) and explores the spherical geometry of the constraint. Note that
although the spherical constraint is nonconvex, it is a smooth manifold from geometry
point of view. At any given point on the sphere, there exists an (n− 1)-dimensional
tangent space of the sphere. Then, using Householder and Cayley transformations,
we can establish a bijective map (called a chart) between the unit sphere (except one
point) and Rn−1 through the tangent space. We will see that the computational costs
of the chart and its inverse are only O(n). Hence, this chart conveniently allows us to

A DERIVATIVE-FREE GEOMETRIC ALGORITHM 3

locally handle the spherical constraint as simply as Rn−1. For solving the spherical
optimization (1.1), our DFGA takes a trust region framework. At each iteration of
DFGA, function values at 2n − 1 points on the unit sphere are used to construct a
function interpolation model. In fact, through the chart, we can find the correspond-
ing 2n− 1 points in Rn−1 to build a quadratic model in Rn−1 to locally approximate
the objective function, which is then minimized inexactly in a trust region. Again
through the chart, the approximate minimizer of the trust region model would provide
a trial point on the sphere. Because of the bijection mapping by the chart, all the it-
erates generated by DFGA will be kept strictly feasible on the sphere, which is crucial
in many applications since violation of the spherical constraint may lead to nonsense
meanings in some applications. On the other hand, we do not resort to traditional
techniques for handling nonlinear constraints, such as penalty method, augmented
Lagrangian or filter methods. By exploring the spherical geometry of the sphere
constraint, our derivative-free trust region approach can be locally simply treated as
solving an unconstrained optimization. So, we call our algorithm a derivative-free
geometric algorithm.

The following convergence results are established for DFGA. Under the boundness
assumption on the Hessian of the local trust region model, we show that there at least
exists a subsequence of the iterates generated by DFGA converging to a stationary
point of the spherical optimization (1.1). Furthermore, when the objective function
satisfies the Lojasiewicz property, we show that the whole sequence of the iterates
generated by DFGA will converge with at least a linear or sublinear convergence
rate, which has not been discussed in the derivative-free optimization literature even
for the unconstrained case. To verify the efficiency of DFGA, we compare different
derivative-free optimization solvers using pattern search, finite difference and model
based strategies to solve the classical Weber problem, the spherical location problem,
the subspace clustering and image segmentation problems resulted from hypergraph
partitioning. Our preliminary numerical results indicate that DFGA is quite robust,
efficient and could be very useful for solving optimization on a sphere without using
derivatives.

The remainder of the paper is organized as follows. In Section 2, by exploring the
topological geometry, we introduce the Householder and Cayley transformations to
construct a chart, which establishes a map between a unit sphere (except one point)
and Rn−1. Our derivative-free geometric algorithm based on a trust region framework
is presented in Section 3. The global convergence and the convergence rate of DFGA
are analyzed in Section 4. Some preliminary numerical experiments are reported in
Section 5 to show the effectiveness of our algorithm. Finally, some conclusions are
drawn in the last section.

2. Geometry of unit sphere. In this section, we consider the geometry of the
unit sphere embedded in Rn under the Euclidean norm (2-norm):

Sn−1 = {x ∈ Rn : ‖x‖ = 1},

where ‖ · ‖ denotes 2-norm throughout the paper. Though Sn−1 is a nonconvex set,
from the geometry point of view it is a smooth manifold [4, 9]. Before going to the
concrete concept of manifold, let us recall the concept of a topological space.

Definition 2.1. A topological space is a set X together with a family of subsets
of X, called the open sets, required to satisfy the following conditions:

1) The empty set and X itself are open;

4 Y. CHEN, M. XI AND H. ZHANG

2) If U ,V ⊆ X are open, so is U ∩ V;
3) If the sets Uα ⊆ X are open, so is the union

⋃
Uα.

A function f : X → Y from one topological space to another is defined to be
continuous if, for any given open set U ⊆ Y, the inverse image f−1(U) ⊆ X is open.
Given a topological space X and an open set U ⊆ X, a chart is defined to be a
continuous function ϕ : U → Rd with a continuous inverse (the inverse being defined
on the set ϕ(U)).

Definition 2.2. A d-dimensional manifold is a topological spaceM equipped with
charts ϕα : Uα → Rd, where the collection of Uα are open sets covering M, such that
the transition function ϕα ◦ ϕ−1

β is smooth at where it is defined.

Generally speaking, a manifold is a topological space that locally resembles the
Euclidean space. The bridge locally connecting the manifold and the Euclidean space
is a chart. In the following, we construct a useful chart for the manifold Sn−1. For
extensive and general discussion of optimization on manifold, one may refer to [4].

2.1. Tangent space. For an arbitrary point x on the unit sphere Sn−1, the
normal space and tangent space of Sn−1 at x ∈ Sn−1 are defined as

(2.1) NxSn−1 = {αx : α ∈ R} and TxSn−1 = {y ∈ Rn : yTx = 0},

respectively. Hence, the normal space NxSn−1 is a straight line with dimension 1 and
the dimension of the tangent space TxSn−1 is n− 1.

To identify the tangent space, we study a bijection that maps TxSn−1 to Rn−1.
Let Q ∈ Rn×(n−1) be an orthonormal matrix such that

(2.2) QTQ = I and QTx = 0,

where I ∈ R(n−1)×(n−1) is the identify matrix. So, the columns of Q form a basis of
the tangent space TxSn−1. Then, for any y ∈ TxSn−1, there exists a unique z ∈ Rn−1

such that

(2.3) y = Qz ⇐⇒ z = QTy.

While y is restricted in the tangent space (i.e., yTx = 0), the vector z is free in Rn−1.
Hence, it will be much convenient to construct local interpolation models based on
the vector z for derivative-free optimization methods.

Note that the matrix Q in (2.2) is not unique. For computational efficiency, we
can use the Householder transformation to generate Q [19]. Given x ∈ Sn−1 and
x 6= e1, where e1 = (1, 0, . . . , 0)T , let

v = x− e1 and β =
2

vTv
.

Then, the Householder matrix Q̃ = I −βvvT is an orthogonal matrix that maps x to
e1, i.e., Q̃T Q̃ = I and Q̃x = e1. Clearly, the second to the last columns of Q̃ would
make up a matrix Q satisfying (2.2). Hence, given z ∈ Rn−1, to calculate y = Qz, we
can let

z̃ =

(
0
z

)
and compute y = Qz = Q̃z̃ = (I − βvvT)z̃ = z̃− (βvT z̃)v.

On the other hand, given y ∈ Rn, to calculate z = QTy, we can compute

z̃ = Q̃Ty = (I − βvvT)y = y − (βvTy)v and let z = z̃(2 : n).

A DERIVATIVE-FREE GEOMETRIC ALGORITHM 5

So, once x ∈ Sn−1 is given, it only requires about 3 operations to calculate v and β.
And the computation of y = Qz or z = QTy only needs about 4n operations.1 Hence,
the Householder transformation provides us a reliable and efficient way to compute
the translations between y ∈ TxSn−1 and z ∈ Rn−1.

2.2. Cayley transform. The Householder transformation constructed in the
previous subsection provides us a bijection between a tangent space and Rn−1. Now,
we build a bijection between the tangent space and a subset of the unit sphere using
Cayley transformation. Let W ∈ Rn×n be a skew-symmetric matrix and I be the
identity matrix in Rn×n. Then I + W is invertible. Cayley transformation produces
an orthogonal matrix

(2.4) O = (I +W)−1(I −W),

whose eigenvalues do not contain −1. The converse is also true, i.e., W = (I +
O)−1(I − O) is skew-symmetric if O is orthogonal and I + O is invertible. Hence,
Cayley transformation reveals a valuable relationship between orthogonal matrices
and skew-symmetric matrices.

Given the current point x ∈ Sn−1 and the search direction s ∈ TxSn−1, let

(2.5) W =
1

2
(xsT − sxT),

which is a skew-symmetric matrix. Then, the matrix O constructed in (2.4) is an
orthogonal matrix and hence, we have

(2.6) x+ = Ox ∈ Sn−1.

More specifically, we can explicitly obtain x+ by the following formula.

Lemma 2.3 ([36]). Let x ∈ Sn−1 and s ∈ TxSn−1. Suppose that O,W and x+

are defined by (2.4), (2.5) and (2.6), respectively. Then, we have

(2.7) x+ =
(4− ‖s‖2)x + 4s

4 + ‖s‖2
.

By (2.7), it is clear that the new point x+ is located in the plane spanned by the
vectors x and s. When the norm of s goes to zero, the new point x+ tends to x. And
when the norm of s becomes large, the x+ would tend to −x, which is the opposite
point of x on the unit sphere. Observe that there is no need to store the matrices
O and W , and the new point x+ can be easily computed by (2.7) using about 5n
operations. Indeed, we can define the following map:

(2.8)

Cayx : TxSn−1 → Sn−1\{−x}

s 7→ (4− ‖s‖2)x + 4s

4 + ‖s‖2
.

The following lemma gives the inverse of Cayx.

1Since v = x− e1, it only needs 1 subtraction for computing v. Since vT v = ‖x‖2 − 2x1 + 1 =
2(1− x1), we have β = 1/(1− x1). Hence, it requires 2 operations to calculate β. Then, it costs 2n
operations to compute βvT z̃ or βvT y. Thereafter, we perform n multiplications and n subtractions
to calculate z̃− (βvT z̃)v or y − (βvT y)v.

6 Y. CHEN, M. XI AND H. ZHANG

Lemma 2.4. Let x ∈ Sn−1. The map (2.8) is a bijection and

(2.9)

Cay−1
x : Sn−1\{−x} → TxSn−1

x+ 7→ 2(I − xxT)x+

1 + xT+x
.

Proof. For a given x+ ∈ Sn−1\{−x}, we will find a unique s ∈ TxSn−1 such that
x+ = Cayx(s). From (2.7), we know

(2.10) 4s = (4 + ‖s‖2)x+ − (4− ‖s‖2)x.

By taking norms of both sides of the above equation, it yields that

16‖s‖2 = (4 + ‖s‖2)2 + (4− ‖s‖2)2 − 2(4 + ‖s‖2)(4− ‖s‖2)xT+x,

which gives

2(4− ‖s‖2)
(
(1 + xT+x)‖s‖2 − 4(1− xT+x)

)
= 0.

Note that 1 + xT+x 6= 0 since x+ ∈ Sn−1\{−x}. Hence, we have

‖s‖2 = 4 or ‖s‖2 = 4(1− xT+x)/(1 + xT+x).

If ‖s‖2 = 4, we have by (2.10) that 2x+ = s ∈ TxSn−1 and therefore, xT+x = 0.
Hence, we always have

‖s‖2 =
4(1− xT+x)

1 + xT+x
,

which together with (2.10) gives

s =
2(I − xxT)x+

1 + xT+x
.

Clearly, s ∈ TxSn−1 since I − xxT is a projection matrix onto the tangent space
TxSn−1.

Now, we are ready to construct our required chart explicitly.

Theorem 2.5. Let x ∈ Sn−1. The map

(2.11)
ϕx : Sn−1\{−x} → Rn−1

x+ 7→ QTCay−1
x (x+)

is a chart, whose inverse is

(2.12)
ϕ−1
x : Rn−1 → Sn−1\{−x}

z 7→ Cayx(Qz),

where Q ∈ Rn×(n−1) is any matrix satisfying (2.2).

A DERIVATIVE-FREE GEOMETRIC ALGORITHM 7

Fig. 1. An illustration of the chart ϕx.

Proof. Consider the local geometry around x ∈ Sn−1 as illustrated in Figure 1.
For any point x+ ∈ Sn−1\{−x}, we have Cay−1

x (x+) ∈ TxSn−1 by Lemma 2.4. Then,
by (2.3), we obtain QTCay−1

x (x+) ∈ Rn−1. In a word, we say that the chart ϕx acts

x+ ∈ Sn−1\{−x} 7→ Cay−1
x (x+) ∈ TxSn−1 7→ QTCay−1

x (x+) ∈ Rn−1.

Conversely and similarly, the inverse ϕ−1
x of the chart acts

z ∈ Rn−1 7→ Qz ∈ TxSn−1 7→ Cayx(Qz) ∈ Sn−1\{−x}.

Finally, by the definitions of Cayx and Cay−1
x in (2.8) and (2.9), it is clear that both

ϕx and ϕ−1
x are continuous map on their domain. The proof is complete.

Note that the computational costs of Cayx and Cay−1
x are all about 5n operations.

Hence, computing the chart or its inverse acting on a vector in Theorem 2.5 only takes
about 9n operations.

3. A derivative-free geometric algorithm. The geometric algorithm pro-
posed in this section is a feasible trust region method. Given an initial point on the
unit sphere Sn−1, we establish a local quadratic model of the objective function in
a trust region by function value interpolations. Then, we find an approximate mini-
mizer of the model in this trust region, which is a candidate of the next iterate on the
sphere. This candidate will be either accepted or further improved in the framework
of trust region methods. During this procedure, the chart introduced in the previ-
ous section enables us to locally handle sphere constrained optimization simply as an
unconstrained optimization.

3.1. Interpolation. For unconstrained optimization without derivatives, it is
well-studied to construct a linear or quadratic model by function value interpolations
[21, 22]. In this subsection, we would generalize the minimum Frobenius norm model
used in derivative-free methods for unconstrained optimization to our case where it
has a sphere constraint.

Let x ∈ Sn−1 be the current iteration point. Since the local chart ϕx : Sn−1\{−x}
→ Rn−1 is bijective by Theorem 2.5, we can map every point z ∈ Rn−1 to ϕ−1

x (z) on
the sphere and then evaluate the function value f(ϕ−1

x (z)). That is to say, we can
define a local surrogate function

(3.1)
f̂x : Rn−1 → R

z 7→ (f ◦ ϕ−1
x)(z),

8 Y. CHEN, M. XI AND H. ZHANG

which would capture the contour profile of the objective function around x. Note that
f̂x(0) = f(x). Now, suppose that we have a set of p (n ≤ p ≤ 1

2n(n + 1)) points on
the unit sphere

x1,x2, . . . ,xp ∈ Sn−1\{−x}

with known function values f i = f(xi) for i = 1, 2, . . . , p. Using the chart ϕx, we let

zi = ϕx(xi) ∈ Rn−1, i = 1, 2, . . . , p.

Then, by the definition of local surrogate function (3.1), we know

f̂x(zi) = f i, i = 1, 2, . . . , p.

Hence, we obtain a set of p points Z := {z1, z2, . . . , zp} ⊂ Rn−1 with their function

values f̂x(zi), i = 1, . . . , p.
Let Pdn−1 be the space of multivariate polynomials defined on Rn−1 with degree

less than or equal to d. Then, the set of 1
2n(n+ 1) monomials

φ(z) =
{
φi, i = 1, . . . , 1

2n(n+ 1)
}

:=
{

1, z1, . . . , zn−1,
1
2z

2
1 , z1z2, . . . ,

1
2z

2
n−1

}
form a natural basis of P2

n−1. We are going to construct a quadratic model

(3.2) m(z) :=
1

2
zTHz + gT z + c = αTφ(z)

of f̂x satisfying the interpolation linear system

(3.3) M(φ,Z)α = f̂x(Z),

where H ∈ S(n−1)×(n−1), g ∈ Rn−1, and c ∈ R are the model unknowns need to be
determined. In addition, S(n−1)×(n−1) denotes the set of (n− 1)× (n− 1) symmetric
matrices, α ∈ Rn(n+1)/2 assembles {c,g, H} according to the order of the monomial
bases in φ(z),

M(φ,Z) =


φ1(z1) φ2(z1) · · · φn(n+1)/2(z1)
φ1(z2) φ2(z2) · · · φn(n+1)/2(z2)

...
...

. . .
...

φ1(zp) φ2(zp) · · · φn(n+1)/2(zp)

 and f̂x(Z) =


f̂x(z1)

f̂x(z2)
...

f̂x(zp)

 .

When n ≤ p < 1
2n(n+ 1), there are more unknowns than the number of equations in

the linear system (3.3). Thus, to construct model (3.2), we would like to require the
minimum Frobenius norm on its Hessian matrix H (see [24]). Let

φL(z) := {1, z1, . . . , zn−1} and φQ(z) :=
{

1
2z

2
1 , z1z2, . . . ,

1
2z

2
n−1

}
be the linear and quadratic parts of the basis φ(z), respectively, and α be also parti-
tioned into αL and αQ accordingly. Then, the unknown α is determined by solving
the following quadratic optimization problem

(3.4)
min

α∈Rn(n+1)/2

1

2
‖αQ‖2

s.t. M(φQ,Z)αQ +M(φL,Z)αL = f̂x(Z).

A DERIVATIVE-FREE GEOMETRIC ALGORITHM 9

The optimization problem (3.4) has one unique solution if the following matrix is
nonsingular

(3.5) F (φ,Z) :=

(
M(φQ,Z)M(φQ,Z)T M(φL,Z)

M(φL,Z)T 0

)
.

If the matrix (3.5) is nonsingular, we say that the interpolation set Z is poised in the
minimum Frobenius norm sense. Now, we give the definition of Λ-poisedness.

Definition 3.1 ([24]). Let Λ > 0 and B(∆) := {z ∈ Rn−1 : ‖z‖ ≤ ∆} ⊂ Rn−1.
Then, a poised set Z = {z1, . . . , zp} is said to be Λ-poised in B(∆) (in the minimum
Frobenius norm sense) if and only if, for any z ∈ B(∆), there exists a solution λ(z) ∈
Rp of

(3.6)
min ‖M(φQ,Z)Tλ(z)− φQ(z)‖2

s.t. M(φL,Z)Tλ(z) = φL(z)

such that

‖λ(z)‖∞ ≤ Λ.

Note that the optimization problem (3.6) has a unique solution when the matrix
F (φ,Z) in (3.5) is nonsingular, i.e., the set Z is poised (in the minimum Frobenius
norm sense). In fact, the solution λ(z) of (3.6) is just the Lagrange polynomial for
the set Z with minimum Frobenius norm of the Hessian [24].

Suppose that we are given any set Z ⊂ B(∆) with n ≤ |Z| ≤ 1
2n(n + 1). Here,

| · | means the cardinality of a set. We can apply a finite number of substitutions of
the points in Z, in fact, at most |Z| − 1 points, such that the new resultant set is Λ-
poised in B(∆) for a polynomial space P, with dimension |Z| and P1

n−1 ⊆ P ⊆ P2
n−1

[51, 57, 56]. Since the selection of interpolation points and their poisedness are beyond
the main scope of this paper, we refer the reader to [21, 22, 24]. Once the interpolation
set Z is Λ-poised in B(∆), the interpolating polynomial obtained from (3.4) will be
at least a fully linear model, as stated in the following lemma [57].

Lemma 3.2. Given any ∆ > 0 and Λ-poised set Z ⊂ B(∆) with n ≤ |Z| ≤
1
2n(n+1). Let the interpolating model (3.2) be obtained from (3.4). If f̂x : Rn−1 → R
is continuously differentiable and ∇f̂x is Lipschitz continuous with Lipschitz constant
L in an open set containing B(∆), then, for any d ∈ B(∆), we have

‖∇f̂x(d)−∇m(d)‖ ≤ κ̂eg(‖H‖+ L)∆,

|f̂x(d)−m(d)| ≤ κ̂ef (‖H‖+ L)∆2,

where κ̂eg and κ̂ef are constants depending only on n and Λ.

3.2. A trust region framework. Our trust region method for solving spherical
optimization (1.1) is motivated and designed to have a similar spirit of the derivative-
free trust region methods for unconstrained optimization [11, 23, 24, 31]. When
derivatives are available, Absil et al. [1] designed the trust region method for Rie-
mannian manifold that includes the spherical surface as a special case. At the current
iteration point xk ∈ Sn−1, we choose a set of interpolating points and construct a
local quadratic model

mk(d) =
1

2
dTHkd + gTk d + ck,

10 Y. CHEN, M. XI AND H. ZHANG

Algorithm 3.1 A Derivative-Free Geometric Algorithm (DFGA) for spherical optimization

1: Step 0: Initialization.
Set positive parameters Λ, 0 < η < 1 < η1, 0 < τ0 � τ , γ1 < 1 < γ2, and
% < ∆̃0 ≤ ∆max. Sample a set of p = 2n− 1 points X0 = {x1,x2, . . . ,xp} ⊂ Sn−1

uniformly and evaluate function values therein f(X0). Choose the best point
x0 ∈ X0 such that f(x0) = min1≤i≤p f(xi). Set k ← 0.

2: Step 1: Construct interpolation model.
Compute Zk = {zi = ϕxk(xi) : xi ∈ Xk} ⊂ Rn−1. Applying the minimum

Frobenius norm model for Zk and f̂xk(Zk) = f(Xk), we have a quadratic model:

(3.7) mk(d) =
1

2
dTHkd + gTk d + ck

and then set

(3.8) ∆k = min{∆̃k, τ‖gk‖}.

If ∆k ≤ %, we ensure the Λ-poisedness of Zk. For this purpose, we possibly choose
a new ∆k ∈ (0, ∆̃k], adjust the interpolation set Zk, and update Hk and gk in the
model mk accordingly such that

(3.9) ∆k = min{max{τk‖gk‖, ∆̃k}, τ‖gk‖},

and Zk is Λ-poised in B(∆k).
3: Step 2: Compute a trial point.

Solve the trust region subproblem (3.12) inexactly to obtain dk satisfying (3.13),
and then generate the feasible trial point

x+
k = ϕ−1

xk
(dk).

4: Step 3: Update the iterate and the trust region radius.
Evaluate f(x+

k) and compute

(3.10) ρk =
f(x+

k)− f(xk)

mk(dk)−mk(0)
.

If ρk ≥ η, accept the trial point xk+1 = x+
k , let τk+1 = τk and set

∆̃k+1 ∈ [∆k,min{γ2∆k,∆max}];

Otherwise, set xk+1 = xk, ∆̃k+1 = γ1∆k, and let

(3.11) τk+1 =

{
τk/η1 if ∆k > ∆̃k,

τk otherwise.

Let Xk+1 = (Xk \ {x̃k}) ∪ {x+
k }, where x̃k = arg max{f(x) : x ∈ Xk}.

5: Step 4: Set k ← k + 1 and goto Step 1.

using the method discussed in the previous subsection. Then, the following trust
region subproblem

(3.12) min
d∈Rn−1

mk(d) s.t. ‖d‖ ≤ ∆k,

A DERIVATIVE-FREE GEOMETRIC ALGORITHM 11

is solved inexactly to obtain a trial step dk, where ∆k is a proper trust region radius
adaptively adjusted by DFGA. Next, we compute the trial point

x+
k = ϕ−1

xk
(dk) ∈ Sn−1

and evaluate its function value f(x+
k). In fact, f(x+

k) = f̂xk(dk) and f(xk) = f̂xk(0).
By comparing the actual function value reduction f(xk) − f(x+

k) and the predicted
function value reduction mk(0)−mk(dk), DFGA decides whether to accept the trial
point as the next iterative point or not. The trust region radius may be enlarged if
sufficient function value reduction is achieved, which also indicates the interpolation
model is sufficiently accurate; otherwise, the trust region radius will be reduced. And
when the trust region radius is sufficiently small, we would make sure the interpolation
point set is Λ-poised such that the interpolation model will be at least fully linear.
In addition, for both theoretical and practical efficiency reason, we prefer to keep the
trust region radius be proportional to the norm of the model gradient in DFGA. This
updating process is repeated until the sequence of iterative points converges or some
stopping tolerances are satisfied. In practice, the trust region based derivative-free
optimization algorithms often stop when the trust region radius is sufficiently small
or the total number of function evaluations reaches a certain preset limit (the com-
putational budget). The detail description of our derivative-free geometric algorithm
is stated in Algorithm 3.1. Notice that usually only one point is replaced in the in-
terpolation set Xk in an iteration of DFGA. This will only lead to a rank-2 change
on the matrix M(φQ,Z)M(φQ,Z)T in (3.5). Taking advantage of this property will
significantly reduce the computational cost of solving the minimum Frobenius model
(3.4) at each iteration.

Now, let us establish some important properties of the trial step dk, which are
crucial for our later convergence analysis. Let dCk be the Cauchy point of the trust-
region subproblem (3.12) (see the definition in [44, 52].) As standard trust region
method [20], we only need to solve the subproblem (3.12) inexactly, that is to find a
trial step dk satisfying

(3.13) mk(0)−mk(dk) ≥ c1
(
mk(0)−mk(dCk)

)
> 0,

where c1 ∈ (0, 1] is a constant. Then, the trial step dk has the following properties.

Lemma 3.3. Assume that dk is an approximate solution of the trust-region sub-
problem (3.12) satisfying (3.13) and ∆k ≤ τ‖gk‖ for a constant τ > 0. Then, we
have

(3.14) mk(0)−mk(dk) ≥ c1
2
‖gk‖min

{
‖gk‖
‖Hk‖

,∆k

}
.

In addition, if ‖Hk‖ ≤M , where M > 0 is a constant, we have

(3.15) mk(0)−mk(dk) ≥ c2‖gk‖‖dk‖

and

(3.16) ‖dk‖ ≥ c3 min {∆k, ‖gk‖} ,

where c2 and c3 are two positive constants.

12 Y. CHEN, M. XI AND H. ZHANG

Proof. First, (3.14) is a well-known consequence of condition (3.13) [20]. Now,
we establish (3.14) and (3.15). Since dCk is the Cauchy point of the trust region
subproblem (3.12), we know

(3.17) dCk =


− ‖gk‖2

gTkHkgk
gk if ∆kg

T
kHkgk ≥ ‖gk‖3,

− ∆k

‖gk‖
gk otherwise.

Then, it follows from (3.17) directly that

(3.18) mk(0)−mk(dCk) ≥ 1

2
‖gk‖‖dCk ‖

and

(3.19) ‖dCk ‖ ≥ min

{
‖gk‖3

gTkHkgk
,∆k

}
≥ min

{
‖gk‖
‖Hk‖

,∆k

}
.

(In fact, we can see (3.14) follows from (3.13), (3.19) and (3.18).) By (3.19) and
assumptions ‖Hk‖ ≤M and ∆k ≤ τ‖gk‖ with M > 0 and τ > 0, we have

‖dCk ‖ ≥ min

{
∆k

τM
,∆k

}
≥ min

{
1

τM
, 1

}
∆k,

which together with (3.13) and (3.18) gives

mk(0)−mk(dk)

‖dk‖
≥
c1
(
mk(0)−mk(dCk)

)
∆k

≥ c1
2

min

{
1

τM
, 1

}
‖gk‖.

This gives (3.15) with c2 := c1
2 min

{
1
τM , 1

}
.

On the other hand, by (3.13) and (3.18), we have

1

2
‖Hk‖‖dk‖2 +‖gk‖‖dk‖ ≥ mk(0)−mk(dk) ≥ c1

(
mk(0)−mk(dCk)

)
≥ c1

2
‖gk‖‖dCk ‖,

which together with ‖dk‖ > 0 implies

‖dk‖ ≥
−‖gk‖+

√
‖gk‖2 + c1‖Hk‖‖gk‖‖dCk ‖
‖Hk‖

.

Simplifying the above inequality, we have

‖dk‖ ≥
c1‖gk‖‖dCk ‖√

‖gk‖2 + c1‖Hk‖‖gk‖‖dCk ‖+ ‖gk‖
≥ c1√

1 + c1‖Hk‖‖dck‖/‖gk‖+ 1
‖dCk ‖.

This inequality together with ‖Hk‖ ≤M , ‖dck‖ ≤ ∆k and ∆k ≤ τ‖gk‖ gives

‖dk‖ ≥
c1√

1 + c1‖Hk‖‖dck‖/‖gk‖+ 1
‖dCk ‖ ≥

c1√
1 + c1τM + 1

‖dCk ‖.

Recalling (3.19), we get the validity of (3.16) with c3 := c1√
1+c1τM+1

min{ 1
M , 1}.

A DERIVATIVE-FREE GEOMETRIC ALGORITHM 13

4. Convergence analysis. In this section, we first study the global conver-
gence of DFGA. In fact, according to the overall structure of Algorithm 3.1, global
convergence of DFGA can be established following a similar approach of the trust
region derivative-free algorithms for unconstrained optimization [23, 24]. However,
due to the local Householder and Cayley mappings to handle the sphere constraint
and a particular mechanism of maintaining the trust region radius be proportional
to the norm of model gradient, proper considerations and adjustments are needed
throughout the global convergence proof. Then, under the Lojasiewicz property, we
further strengthen the global convergence result and establish the linear or sublinear
convergence rate of DFGA for which, to the best of our knowledge, no similar results
has been established in the derivative-free optimization literature. Overall, we need
the following assumption.

Assumption 4.1. There exists a constant M such that ‖Hk‖ ≤M for all k.

Note that the minimum Frobenius norm model obtained from (3.4) keeps ‖Hk‖ as
small as possible. Hence, the choice of minimum Frobenius norm model by DFGA also
has practical convergence importance. Because the unit sphere Sn−1 is compact and
the function f is continuous on Sn−1, there exists a lower bound fmin on the function
values such that f(x) ≥ fmin for all x ∈ Sn−1. For any given point x ∈ Sn−1, we first

establish the following lemma on the gradient of the surrogate function f̂x.

Lemma 4.2. Let x ∈ Sn−1 and ∇f(x) be the gradient of f at x. Then, the

gradient of the function f̂x defined in (3.1) reads as

(4.1) ∇f̂x(z) =

(
4QT

4 + ‖z‖2
− 16zxT + 8zzTQT

(4 + ‖z‖2)2

)
∇f(Cayx(Qz)).

Proof. Because of (f ◦ ϕ−1
x)(z) = f(Cayx(Qz)), it yields that

∇f̂x(z) = QT (∇Cayx(Qz))
T

(∇f(Cayx(Qz))) .

By the map (2.8) and QTQ = I, we get

∇Cayx(s) =
4I

4 + ‖s‖2
− 16xsT + 8ssT

(4 + ‖s‖2)2

and (4.1) then follows straightforwardly.

Since f is Lipschitz continuously differentiable on Sn−1, it follows from Lemma 4.2
that ∇f̂xk is Lipschitz continuous in B(∆max + 1) with Lipschitz constant, say L > 0,
independent of xk. Hence, when the interpolation set Zk is Λ-poised in B(∆k), by
Lemma 3.2 we get

‖∇f̂xk(d)−∇mk(d)‖ ≤ κeg∆k,(4.2)

|f̂xk(d)−mk(d)| ≤ κef∆2
k,(4.3)

for all d ∈ B(∆k), where κeg := κ̂eg(M + L) and κef := κ̂ef (M + L). In this sense,
we say the interpolation model mk is at least fully linear . The following lemma gives
a relation between ∇f̂xk(0) and ∇mk(0) when the interpolation set Zk is Λ-poised.

Lemma 4.3. If the interpolation set Zk is Λ-poised in B(∆k), then we have

‖∇f̂xk(0)‖ ≤ (1 + κegτ)‖gk‖.

14 Y. CHEN, M. XI AND H. ZHANG

Proof. Since the interpolation set Zk is Λ-poised in B(∆k), by (4.2) and gk =
∇mk(0), we know

(4.4) ‖∇f̂xk(0)− gk‖ ≤ κeg∆k.

On the other hand, from Step 1 of DFGA, we see ∆k ≤ τ‖gk‖. Thus, it yields that

‖∇f̂xk(0)‖ ≤ ‖gk‖+ ‖∇f̂xk(0)− gk‖ ≤ ‖gk‖+ κeg∆k ≤ (1 + κegτ)‖gk‖.

The proof is completed.

Next, we show that when ∆k is sufficiently small and the model is at least fully
linear, the trial point x+

k will be accepted and hence, the tentative trust region radius

∆̃k+1 at next iteration can not be smaller than ∆k. The following Lemma plays
a similar role as [23, Lemma 5.2] or [24, Lemma 10.6] for showing convergence of
derivative-free algorithm for unconstrained optimization.

Lemma 4.4. Suppose Assumption 4.1 holds and the interpolation set Zk is Λ-
poised in B(∆k). If

(4.5) ∆k ≤
1

κeg + c4
‖∇f̂xk(0)‖ or ∆k ≤

1

c4
‖gk‖,

where

c−1
4 := min

{
1

M
,

(1− η)c1
4κef

, τ

}
,

we have ρk ≥ η and therefore

∆̃k+1 ≥ ∆k.

Proof. Since the interpolation set Zk is Λ-poised in B(∆k), we know (4.2) and
(4.4) hold. Hence, by (4.4) and (4.5), we have

(4.6) ‖gk‖ ≥ ‖∇f̂xk(0)‖ − ‖∇f̂xk(0)− gk‖ ≥ ‖∇f̂xk(0)‖ − κeg∆k ≥ c4∆k,

which gives

(4.7) ∆k ≤ c−1
4 ‖gk‖ = min

{
1

M
,

(1− η)c1
4κef

, τ

}
‖gk‖.

By (3.14) and (4.7), we get

|mk(0)−mk(dk)| ≥ c1
2
‖gk‖min

{
‖gk‖
M

,∆k

}
=
c1
2

∆k‖gk‖.

Then, by (4.3) and (4.7), we derive

|ρk − 1| = |f̂xk(0)− f̂xk(dk)−mk(0) +mk(dk)|
|mk(0)−mk(dk)|

≤ 2κef∆2
k

(1/2)c1∆k‖gk‖
=

4κef
c1

∆k

‖gk‖
≤ 1− η.

Hence, we obtain ρk ≥ η. Finally, by Step 3 of DFGA, we verify this lemma.

A DERIVATIVE-FREE GEOMETRIC ALGORITHM 15

Now we show that the scalar τk in DFGA can only be reduced in a finite number
of iterations, and hence is bounded below. This implies the trust region radius in
DFGA will be proportional to the norm of model gradient ‖gk‖, which in fact has
both theoretical and practical importance in derivative-free optimization.

Lemma 4.5. Under Assumption 4.1, for all k, we have

(4.8) τk ≥ min{τ0, 1/(c4η1)} := c5,

where the constant c4 is given in Lemma 4.4.

Proof. By the rules of updating ∆k in DFGA, i.e., (3.8) and (3.9), we claim that

∆k > ∆̃k only if the interpolation set Zk is Λ-poised in B(∆k) and ∆k = τk‖gk‖.
So, if ∆k > ∆̃k and τk < 1/c4, we have ∆k = τk‖gk‖ < 1

c4
‖gk‖ and hence, we have

ρk ≥ η by Lemma 4.4. In addition, it follows from (3.11) that τk is reduced by a

factor η1 > 1 only when ρk < η and ∆k > ∆̃k. By considering the above two facts,
we deduce (4.8) holds.

The following lemma reveals a fundamental property for establishing the global
convergence of trust region methods. Similar techniques were first proposed in [42]
and later were also used in [31].

Lemma 4.6. Under Assumption 4.1, we have

(4.9)

∞∑
k=0

∆2
k < +∞.

Proof. We first consider the set of successful iterations, that is

K := {k : ρk ≥ η} .

Then, for all k ∈ K, by Assumption 4.1 and (3.14), we have

f(xk)− f(xk+1) = f̂xk(0)− f̂xk(dk)

≥ η(mk(0)−mk(dk)) ≥ ηc1
2
‖gk‖min

{
‖gk‖
‖Hk‖

,∆k

}
≥ ηc1

2τ
min

{
1

τM
, 1

}
∆2
k := c6∆2

k.

This inequality means

∆2
k ≤

f(xk)− f(xk+1)

c6

for all k ∈ K. Summarizing all k ∈ K, we establish

(4.10)
∑
k∈K

∆2
k ≤

∑
k∈K

f(xk)− f(xk+1)

c6
≤ 1

c6
(f(x0)− fmin).

Second, we consider the set of unsuccessful iterations, that is

K̄ := N \ K = {k : ρk < η} ,

16 Y. CHEN, M. XI AND H. ZHANG

where N = {0, 1, 2, . . .} is the set of natural numbers. By Lemma 4.5, τk is bounded
below. This together with the rule (3.11) for updating τk imply that the set

K̂ := K̄ ∩ {k : ∆k > ∆̃k}

is a finite set. More precisely, we can deduce |K̂| ≤ max{logη1(τ0c4) + 1, 0}, where |K̂|
means the cardinality of the set K̂. Hence, there exists a k̄ such that

(4.11) ∆k ≤ ∆̃k, if k ∈ K̄ and k ≥ k̄.

For convenience, we denote K = {k1, k2, . . . } with k1 < k2 < So, by (4.11), for
any ki ∈ K such that ki+1 ≥ ki + 2 and ki ≥ k̄, we have

(4.12) ` ∈ K̄ and ∆` ≤ ∆̃`,

for all ` = ki + 1, . . . , ki+1 − 1. By DFGA, we clearly have ∆̃ki+1 ≤ γ2∆ki and

∆̃`+1 = γ1∆` for all ` = ki + 2, . . . , ki+1 − 1. Hence, it follows from (4.12) that

(4.13)

ki+1−1∑
`=ki+1

∆2
` ≤

∆2
ki+1

1− γ2
1

≤ γ2
2

1− γ2
1

∆2
ki .

Finally, by Lemmas 4.4 and 4.5, we have |K| =∞. Let

kI = min{k ∈ K : k ≥ k̄} <∞.

Then, summing the squares of ∆k for k ≥ kI , it follows from (4.10) and (4.13) that

∞∑
k=kI

∆2
k =

∑
k∈K,k≥kI

∆2
k +

∑
k∈K̄,k≥kI

∆2
k

=
∑

ki∈K,ki≥kI

∆2
ki +

ki+1−1∑
`=ki+1

∆2
`


≤

∑
ki∈K,ki≥kI

(
∆2
ki +

γ2
2

1− γ2
1

∆2
ki

)

=
1 + γ2

2 − γ2
1

1− γ2
1

∑
ki∈K,ki≥kI

∆2
ki

≤ 1 + γ2
2 − γ2

1

(1− γ2
1)c6

(f(x0)− fmin) ,

which implies (4.9) holds. The proof is completed.

By Lemma 4.6, we can directly get the following corollary.

Corollary 4.7. Under Assumption 4.1, we have limk→∞∆k = 0.

Now we can establish the following lemma which immediately implies the global
convergence of DFGA.

Lemma 4.8. Under Assumption 4.1, we have

lim inf
k→∞

‖∇f̂xk(0)‖ = 0.

A DERIVATIVE-FREE GEOMETRIC ALGORITHM 17

Proof. We prove by contradiction. Assume there exists a constant ε > 0 such
that

‖∇f̂xk(0)‖ ≥ ε.

From Corollary 4.7, we see ∆k → 0 as k → ∞. So, ∆k ≤ % for k sufficiently large.
Hence, by Step 1 of DFGA, the model function mk is at least fully linear when k is
sufficiently large. In the following proof, we assume k is sufficiently large that ∆k ≤ %
and hence mk is at least fully linear.

First, by Lemma 4.3, we get ‖gk‖ ≥ (1 + κegτ)−1ε. So, when ∆k ≤ τε
γ2(1+κegτ) ,

we know

∆̃k+1 ≤ γ2∆k ≤
τε

1 + κegτ
≤ τ‖gk+1‖

and hence ∆k+1 ≥ ∆̃k+1 by Step 1 of DFGA. Furthermore, we have by Lemma 4.4 that

∆̃k+1 ≥ ∆k whenever ∆k ≤ (κeg + c4)−1ε. Combining the above two observations,
we have ∆k+1 ≥ ∆k whenever

∆k ≤ min

{
%,min

{
1

κeg + c4
,

τ

γ2(1 + κegτ)

}
ε

}
.

This, however, contradicts with ∆k → 0 as k →∞.

We recall that the projection of gradient ∇f onto TxkSn−1 is indeed

(I − xkx
T
k)∇f(xk) = QkQ

T
k∇f(xk) = Qk∇f̂xk(0),

where columns of Qk ∈ Rn×(n−1) form a basis of TxkSn−1 and the last equality holds
by Lemma 4.2. By Lemma 4.8, we immediately get the following global convergence
theorem on DFGA.

Theorem 4.9. Under Assumption 4.1, we have

lim inf
k→∞

‖(I − xkx
T
k)∇f(xk)‖ = 0.

We say x∗ is a stationary point (also a KKT point) of the spherical optimization
(1.1) if x∗ ∈ Sn−1 and (I − x∗x

T
∗)∇f(x∗) = 0. Since Sn−1 is a compact set and

xk ∈ Sn−1 for all k, Theorem 4.9 implies there exists at least a subsequence of the
iterates {xk} converging to a stationary point of the spherical optimization (1.1).

4.1. Convergence based on Lojasiewicz property. Lojasiewicz property is
a kind of regularization property, which holds for a broad class of functions, such as
polynomial, semi-algebraic and analytic functions [19, 40]. Strong iterate convergence
of trust region methods under analytic cost functions was first studied in [3] and [6].
In this subsection, we prove that the total sequence of the iterates generated by
DFGA converges and establish its convergence rate under the Lojasiewicz property,
respectively.

Definition 4.10 (Lojasiewicz property). Let x∗ be a stationary point of the
spherical optimization (1.1). We say that the Lojasiewicz property holds at x∗, if there
exist θ ∈ [1/2, 1), µ > 0, and a neighborhood U(x∗) such that for all x ∈ U(x∗)∩Sn−1,

(4.14) |f(x)− f(x∗)|θ ≤ µ‖(I − xxT)∇f(x)‖ = µ‖∇f̂x(0)‖.

18 Y. CHEN, M. XI AND H. ZHANG

Based on the Lojasiewicz property, we have the following key lemma.

Lemma 4.11. Suppose Assumption 4.1 holds and the Lojasiewicz property holds
at a stationary point x∗ of the spherical optimization (1.1). Let x0 ∈ Sn−1 be the
initial point of DFGA that is close to x∗ in the sense that x0 ∈ B(x∗, r) := {x ∈ Rn :
‖x− x∗‖ < r} ⊂ U(x∗), where

(4.15) r > ‖x0 − x∗‖+
µ(1 + κegτ)

c2η(1− θ)
|f(x0)− f(x∗)|1−θ.

If ∆k ≤ % for all k, then we have

(4.16) xk ∈ B(x∗, r)

for all k and

(4.17)

∞∑
k=0

‖xk+1 − xk‖ ≤
µ(1 + κegτ)

c2η(1− θ)
|f(x0)− f(x∗)|1−θ.

Proof. We show (4.16) by induction. Obviously, we have x0 ∈ B(x∗, r). Assume
x0,x1, . . . ,xk ∈ B(x∗, r). We show in the following proof that xk+1 ∈ B(x∗, r).
Clearly, if ρk < η, we have xk+1 = xk ∈ B(x∗, r). Hence, we only need to consider
the case ρk ≥ η.

Consider the following function:

(4.18) ζ(t) :=
µ

1− θ
|t− f(x∗)|1−θ,

which is nonnegative and concave for all t > f(x∗). Then, we have

ζ(f(xk))− ζ(f(xk+1)) ≥ ζ ′(f(xk)) (f(xk)− f(xk+1))

=
µ

|f(xk)− f(x∗)|θ
(f(xk)− f(xk+1))

≥ 1

‖∇f̂xk(0)‖
(f(xk)− f(xk+1)) ,(4.19)

where the last inequality holds by Lojasiewicz property (4.14) at xk.
From (3.15) and ρk ≥ η, we obtain

f(xk)− f(xk+1) ≥ η (mk(0)−mk(dk)) ≥ ηc2‖gk‖‖dk‖.

In addition, since ρk ≥ η, we know xk+1 = x+
k = ϕ−1

xk
(dk) = Cayxk

(Qkdk) and

(4.20) xk+1 − xk =
(4− ‖Qkdk‖2)xk + 4Qkdk

4 + ‖Qkdk‖2
− xk =

−2‖Qkdk‖2xk + 4Qkdk
4 + ‖Qkdk‖2

,

which gives
(4.21)

‖xk+1 − xk‖2 =
4‖Qkdk‖4 + 16‖Qkdk‖2

(4 + ‖Qkdk‖2)2
=

4‖Qkdk‖2

4 + ‖Qkdk‖2
≤ ‖Qkdk‖2 = ‖dk‖2.

Hence, we have ‖dk‖ ≥ ‖xk+1 − xk‖. By Lemma 4.3, we immediately get ‖gk‖ ≥
(1 + κegτ)−1‖∇f̂xk(0)‖. So, it follows from (4.19) that

(4.22) ζ(f(xk))− ζ(f(xk+1)) ≥ c2η

1 + κegτ
‖dk‖ ≥

c2η

1 + κegτ
‖xk+1 − xk‖.

A DERIVATIVE-FREE GEOMETRIC ALGORITHM 19

Therefore, by (4.15), we have

‖xk+1 − x∗‖ ≤
k∑
`=0

‖x`+1 − x`‖+ ‖x0 − x∗‖

≤ 1 + κegτ

c2η

k∑
`=0

(ζ(f(x`))− ζ(f(x`+1))) + ‖x0 − x∗‖

≤ 1 + κegτ

c2η
ζ(f(x0)) + ‖x0 − x∗‖ < r.

Hence, xk+1 ∈ B(x∗, r). So, by induction the whole sequence {xk} ⊂ B(x∗, r). Fur-
thermore, by (4.22), we have

∞∑
`=0

‖x`+1 − x`‖ ≤
1 + κegτ

c2η

∞∑
`=0

ζ(f(x`))− ζ(f(x`+1))

=
1 + κegτ

c2η
ζ(f(x0)),

which is just (4.17) by the definition of function ζ(·) in (4.18).

Under the Lojasiewicz property, we can in fact show the convergence of the whole
sequence of iterates generated by DFGA.

Theorem 4.12. Suppose that Assumption 4.1 holds and there exists a subse-
quence of the iterates {xk} generated by DFGA converging to a stationary point x∗ of
the spherical optimization (1.1), where the Lojasiewicz property holds. Then, we have

(4.23)

∞∑
k=0

‖xk+1 − xk‖ < +∞,

which implies

(4.24) lim
k→∞

xk = x∗.

Proof. Suppose there exists a subsequence {xki} converging to a stationary point
x∗ where the Lojasiewicz property holds. So, there exists an iterate xk0 ∈ B(x∗, r) ⊂
U(x∗), where

r > ‖xk0 − x∗‖+
µ(1 + κegτ)

c2η(1− θ)
|f(xk0)− f(x∗)|1−θ,

and U(x∗) is a neighborhood of x∗ where the the Lojasiewicz property holds. And
also by Corollary 4.7, we can assume that k0 is sufficiently large such that ∆k ≤ % for
all k ≥ k0. Then, it follows from Lemma 4.11 that

∑∞
`=k0
‖x`+1 − x`‖ < +∞, which

implies (4.23). By (4.23), the iterates {xk} generated by DFGA form a convergent
Cauchy sequence. So, (4.24) holds.

By Theorem 4.9, there always exists a subsequence of iterates generated DFGA
converging to a stationary point x∗. Hence, if the Lojasiewicz property holds at all
the stationary points of the spherical optimization (1.1), it will follow directly from
Theorem 4.12 that the whole sequence of iterates generated by DFGA converges to a
stationary point of the spherical optimization (1.1). Since ∇f is Lipschitz continuous

20 Y. CHEN, M. XI AND H. ZHANG

on the unit sphere Sn−1, under the conditions of Theorem 4.12, the conclusion of
Theorem 4.9 can be strengthened to

lim
k→∞

‖(I − xkx
T
k)∇f(xk)‖ = 0.

Now, we would like to discuss the convergence rate of {xk} under the Lojasiewicz
property. We start with the following lemma.

Lemma 4.13. Under Assumption 4.1, there exists a constant ς > 0 such that

(4.25) ‖xk − xk+1‖ ≥ ς‖∇f̂xk(0)‖,

for all k sufficiently large such that ∆k ≤ % and xk+1 6= xk.

Proof. By Corollary 4.7, we can assume that k is sufficiently large such that
∆k ≤ % and xk+1 6= xk. Then, it follows from (4.21) and ‖dk‖ ≤ ∆k ≤ % that

(4.26) ‖xk+1 − xk‖ =
2‖dk‖√

4 + ‖dk‖2
≥ 2‖dk‖

2 + ‖dk‖
≥ 2‖dk‖

2 + %
.

By Lemma 4.5, we have τk ≥ c5, where c5 is a positive constant. So, by (3.9), we get
∆k ≥ c5‖gk‖. Then, by Lemma 4.3, (3.16) and (4.26), we obtain

‖xk+1 − xk‖ ≥
2‖dk‖
2 + %

≥ 2c3
2 + %

min{∆k, ‖gk‖}

≥ 2c3
2 + %

min{c5, 1}‖gk‖

≥ 2c3 min{c5, 1}
(2 + %)(1 + κegτ)

‖f̂xk(0)‖ =: ς‖∇f̂xk(0)‖.

The proof is completed.

The following theorem shows the convergence rate of DFGA. We only need to
consider the successful iterations where xk+1 6= xk.

Theorem 4.14. Suppose that Assumption 4.1 holds and all the iterates {xk} gen-
erated by DFGA are successful and converge to a stationary point x∗, where the
 Lojasiewicz property holds. Then, we have the following convergence rate according
to the parameter θ in (4.14):

• If θ = 1
2 , there exist γ > 0 and ρ ∈ (0, 1) such that

(4.27) ‖xk − x∗‖ ≤ γρk.

That is, the iterates {xk} converge to x∗ with an R-linear rate.
• If θ ∈ (1

2 , 1), there exists a γ > 0 such that

(4.28) ‖xk − x∗‖ ≤ γk−
1−θ
2θ−1 .

That is, the iterates {xk} converge to x∗ with an R-sublinear rate.

Proof. First, by Lemma 4.11 and Corollary 4.7, without loss of generality, we can
simply assume x0 ∈ B(x∗, r) ⊂ U(x∗), where x0 ∈ Sn−1 satisfies (4.15) and ∆k ≤ %
for all k.

A DERIVATIVE-FREE GEOMETRIC ALGORITHM 21

Now, denote δk =
∑∞
i=k ‖xi − xi+1‖ ≥ ‖xk − x∗‖. Then, by Lemma 4.11, (4.14)

and (4.25), we have

δk =

∞∑
i=k

‖xi − xi+1‖

≤ µ(1 + κegτ)

c2η(1− θ)
|f(xk)− f(x∗)|1−θ =

µ(1 + κegτ)

c2η(1− θ)
(
|f(xk)− f(x∗)|θ

) 1−θ
θ

≤ µ(1 + κegτ)

c2η(1− θ)

(
µ‖∇f̂xk(0)‖

) 1−θ
θ ≤ µ(1 + κegτ)

c2η(1− θ)
(
µς−1‖xk − xk+1‖

) 1−θ
θ

=
µ

1
θ (1 + κegτ)

c2η(1− θ)ς 1−θ
θ

(δk − δk+1)
1−θ
θ = c7 (δk − δk+1)

1−θ
θ ,(4.29)

where c7 := (µ
1
θ (1 + κegτ))/(c2η(1− θ)ς 1−θ

θ) is a positive constant.
First, consider the case that θ = 1

2 . We have from the inequality (4.29) that

δk ≤ c7(δk − δk+1),

which implies

δk+1 ≤
c7 − 1

c7
δk.

Hence, noticing ‖xk − x∗‖ ≤ δk, we have (4.27) holds with γ = δ0 and ρ = c7−1
c7

.

Now, consider the case that θ ∈ (1
2 , 1). Let h(s) = s−

θ
1−θ . Obviously, h(s) is

monotonely decreasing for s > 0. Then, the inequality (4.29) could be rewritten as

c
− θ

1−θ
7 ≤ h(δk)(δk − δk+1) =

∫ δk

δk+1

h(δk) ds

≤
∫ δk

δk+1

h(s) ds = − 1− θ
2θ − 1

(δ
− 2θ−1

1−θ
k − δ−

2θ−1
1−θ

k+1).

Let ν = − 2θ−1
1−θ < 0 since θ ∈ (1

2 , 1). Then, we get

δνk+1 − δνk ≥ −νc
− θ

1−θ
7 := c8 > 0,

which gives

δk ≤ (δν0 + c8k)
1
ν ≤ (c8k)

1
ν .

Hence, (4.28) holds with γ = c
1
ν
8 .

5. Numerical experiments. In this section, we apply DFGA to solve several
well-known optimization problems with a sphere constraint. Our DFGA is imple-
mented in MATLAB R2018b with parameters

η = 0.05, η1 = 2, τ0 = 0.0001, τ = 10, γ1 = 0.25, γ2 = 2, % = 0.1, ∆̃0 = 1,∆max = 10.

The algorithm terminates if ∆k is sufficiently small and the function values do not
decrease sufficiently after five successive iterates, that is

∆k ≤ 10−6 ·
√
n and

|f(xk)− f(xk−4)|
1 + |f(xk)|

≤ 10−10 · n.

22 Y. CHEN, M. XI AND H. ZHANG

Table 1
The classical Weber problem with Euclidean distance.

Solver Func ConsE #F Time Func ConsE #F Time

θ = 30◦ θ = 40◦

PatternS 3.0000 4.3e-9 71808 8.59 2.5357 2.4e-7 262833 33.55
COBYLA 3.0000 6.9e-13 273 0.02 2.5357 4.0e-14 108 0.01
Fmincon 3.0000 8.9e-16 126 0.03 2.5357 2.9e-15 47 0.03
DFGA 3.0000 1.3e-15 51 0.01 2.5357 0.00 48 0.01

θ = 50◦ θ = 60◦

PatternS 2.0521 1.5e-7 114045 14.86 1.5529 1.1e-7 79082 10.05
COBYLA 2.0521 8.2e-13 87 0.01 1.5529 8.6e-13 91 0.01
Fmincon 2.0521 6.7e-16 42 0.01 1.5529 2.2e-16 52 0.01
DFGA 2.0521 4.4e-16 46 0.01 1.5529 0.00 30 0.00

θ = 70◦ θ = 80◦

PatternS 1.0419 1.9e-9 21372 2.85 0.5229 3.3e-9 16637 2.17
COBYLA 1.0419 6.9e-13 93 0.01 0.5229 2.5e-13 112 0.01
Fmincon 1.0419 8.9e-16 52 0.01 0.5229 2.2e-16 54 0.01
DFGA 1.0419 4.4e-16 45 0.01 0.5229 3.3e-16 34 0.01

We will also stop the algorithm if the number of iterations exceeds 1000. In DFGA, the
trust region subproblem (3.12) is solved inexactly by a truncated conjugate gradient
method [44, 52], which guarantees the condition (3.13) holds. All codes are run on a
Linux computer with 2.2GHz CPU and 64GB memory and we compare the following
four numerical algorithms.

• PatternS: The pattern search method implemented as MATLAB built-in func-
tion “patternsearch”;

• Fmincon: MATLAB built-in function “fmincon” with the choice of approxi-
mating gradients by finite difference method;

• COBYLA : a well-known model based derivative-free optimization software
for solving optimization with general constraints [45, 50];

• DFGA: Algorithm 3.1 of this paper written in MATLAB.2

5.1. The classical Weber problem. Given N destinations ai ∈ S2 and their
associated positive weights wi, i = 1, . . . , N , the classical Weber problem [37] on a
unit sphere S2 is to find a source point x ∈ S2 that minimizes

f(x) =

N∑
i=1

wid(x,ai),

where the metric d(·, ·) could be the Euclidean distance or geodesic distance, i.e.,

dEuc(x,y) = ‖x− y‖ or dgeo(x,y) = 2 arcsin
‖x− y‖

2
,

respectively. Following the setting in [37], we use all weights wi = 1 and the following

2 Note that in later comparisons, CPU time of DFGA could be much less if it is written in C or
Fortran, while both PatternS and Fmincon are built-in functions of MATLAB which are essentially
written in C, and COBYLA is written in Fortran.

A DERIVATIVE-FREE GEOMETRIC ALGORITHM 23

Table 2
The classical Weber problem with a geodesic distance.

Solver Func ConsE #F Time Func ConsE #F Time

θ = 30◦ θ = 40◦

PatternS 3.1416 9.7e-8 196752 25.24 2.6180 4.9e-7 131739 17.26
COBYLA 3.1416 1.4e-13 103 0.01 2.6180 4.5e-13 92 0.01
Fmincon 3.1416 6.7e-16 42 0.01 2.6180 3.6e-15 42 0.01
DFGA 3.1416 2.2e-16 33 0.01 2.6180 2.2e-16 38 0.01

θ = 50◦ θ = 60◦

PatternS 2.0944 9.9e-8 81794 10.54 1.5708 3.2e-7 49258 6.41
COBYLA 2.0944 8.7e-13 85 0.02 1.5708 4.7e-13 102 0.01
Fmincon 2.0944 1.3e-15 42 0.01 1.5708 2.2e-16 50 0.01
DFGA 2.0944 0.00 40 0.01 1.5708 2.2e-16 36 0.01

θ = 70◦ θ = 80◦

PatternS 1.0472 6.9e-8 41984 5.35 0.5236 3.5e-9 12448 1.70
COBYLA 1.0472 4.5e-13 90 0.01 0.5236 1.3e-12 74 0.01
Fmincon 1.0472 2.0e-15 52 0.01 0.5236 4.4e-16 53 0.01
DFGA 1.0472 3.3e-16 48 0.01 0.5236 0.00 52 0.01

three destinations:

a1 = (cos θ, 0, sin θ)T , a2 =
(
− 1

2 cos θ,
√

3
2 cos θ, sin θ

)T
,

a3 =
(
− 1

2 cos θ,−
√

3
2 cos θ, sin θ

)T
.

We consider the Weber problem on a unit sphere using the Euclidean distance and
six different latitudes θ ∈ {30◦, 40◦, 50◦, 60◦, 70◦, 80◦}. So, we have 6 test problems
and all of them have the same solution x∗ = (0, 0, 1)T , which is the north pole of
S2. For each test, we run all the comparison algorithms using the same initial point

x0 =
(

1
2 ,

1
2 ,
√

2
2

)T
. The numerical results using Euclidean and geodesic distances

are shown in Tables 1 and 2, respectively, where “Func” is the final function value,
“ConsE” denotes the final constraint violation, “#F” is the total number of function
evaluations, and “Time” gives the used CPU time in seconds. All solvers solves the
test problems successfully. Clearly, COBYLA, Fmincon, and DFGA perform much
better than the pattern search method PatternS. However, DFGA almost always uses
the least number of function evaluations and CPU time. Furthermore, although both
DFGA and COBYLA are model based methods, by particularly taking care of the
spherical constraint, DFGA only takes about 50% number of function evaluations
used by COBYLA. Since PatternS performs significantly worse than other methods,
we only compare COBYLA, Fmincon and DFGA in later numerical experiments.

5.2. Spherical location problem. In this numerical experiment, we consider
to solve the more general n-dimensional spherical location problem proposed in [30].
In this problem, the pole xpse := (0, . . . , 0, 1)T ∈ Sn−1 is regarded as a pseudo-center.
We then randomly generate N points in Rn under normal distributions N (xpse, I)
and project these points onto Sn−1 to obtain a set A := {a1,a2, . . . ,aN} ⊂ Sn−1.
Our goal is to find a center of the set A on Sn−1 by solving the following spherical

24 Y. CHEN, M. XI AND H. ZHANG

Table 3
Numerical results on the location problems.

N Solver Func ConsE #F Time Func ConsE #F Time
n = 10 n = 40

50 COBYLA 1.1136 1.9e-13 461 0.05 1.2593 4.2e-13 4452 1.69
Fmincon 1.1136 0.00 334 0.04 1.2593 0.00 2044 0.26
DFGA 1.1136 5.5e-16 133 0.05 1.2593 8.9e-16 438 0.51

500 COBYLA 1.1399 1.4e-12 477 0.14 1.2922 1.1e-13 5070 3.01
Fmincon 1.1399 4.4e-15 381 0.12 1.2922 0.00 2145 0.73
DFGA 1.1399 2.7e-15 166 0.12 1.2922 1.9e-15 470 0.65

5000 COBYLA 1.1604 1.7e-13 459 1.01 1.2943 7.0e-13 5287 13.96
Fmincon 1.1604 8.9e-16 442 0.99 1.2943 0.00 2235 5.35
DFGA 1.1604 2.4e-15 178 0.53 1.2943 7.1e-15 495 1.93

n = 70 n = 100
50 COBYLA 1.2594 1.2e-13 8693 12.02 1.2819 5.1e-14 14085 51.84

Fmincon 1.2594 0.00 3023 0.32 1.2819 8.9e-15 3007 0.29
DFGA 1.2594 1.0e-14 666 1.46 1.2819 6.0e-15 836 4.12

500 COBYLA 1.3157 5.0e-13 12075 19.41 1.3273 6.5e-13 19084 75.16
Fmincon 1.3157 0.00 3031 1.03 1.3274 1.9e-10 3028 1.04
DFGA 1.3157 8.9e-16 869 2.34 1.3274 4.0e-15 1015 4.99

5000 COBYLA 1.3240 4.8e-13 11804 44.66 1.3379 2.0e-13 22328 139.80
Fmincon 1.3240 1.9e-13 3057 7.77 1.3380 6.5e-10 3027 8.18
DFGA 1.3240 1.3e-15 802 3.20 1.3379 8.0e-15 1352 7.92

optimization problem

min f(x) =
1

N

N∑
i=1

‖x− ai‖ s.t. x ∈ Sn−1.

We solve this problem with dimensions n varying from 10 to 100 and the number
of points N in set A varying from 50 to 5000 as shown in Table 3. In total, we have
12 test problems. For each problem, we run COBYLA, Fmincom and DFGA using a
same starting point on the sphere Sn−1. The numerical results are shown in Table 3.
Again all the software achieve about the same final function values. However, for some
problems Fmincon or COBYLA could not maintain the constraint error as small as
that given by DFGA, which may be critical in some real applications. Compared with
COBYLA and Fmincon, we can see that DFGA saves about 90% and 70% function
evaluations. In addition, we see that the CPU time of DFGA increases when either
n and N increases. However, when the dimension n is fixed, DFGA only uses about
the same amount of function evaluations as the number of fixed points N increases.
This is a very desirable property for efficient derivative-free optimization algorithm.

5.3. Subspace clustering. Subspace clustering is a crucial problem in pattern
analysis and machine learning [15, 19]. For instance, there are 50 points in a plane
roughly located on two crossing circles as shown in Figure 2 (a), where the larger
circle has center (4, 4)T with radius 3 and the smaller one has center (7, 3)T with
radius 2. Suppose both the centers and the radii of these two circles are unknown.
The subspace clustering problem is to estimate them from positions of these 50 points.
One approach for solving this subspace clustering problem is to first partition the 50
points into two sets: one set of points are estimated on the larger circle and the other
set of points are estimated on the smaller circle. Then, we fit each set of points by
a circle to obtain the center and radius we want to find. Hence, the partition step is
crucial in the overall approach.

A DERIVATIVE-FREE GEOMETRIC ALGORITHM 25

(a) Points for clustering two circles (b) Estimated vs ground truth

Fig. 2. Fifty points for clustering two circles (a) and Estimated circles vs the ground truth (b).

The spectral method based on a weighted hypergraph G [19] is quite effective for
this partition. In this method, the 50 points first form a vertex set V = {1, 2, . . . , 50}.
Since positions of the 50 points are known, we can fit a circle by every four points (say
i, j, k, ` ∈ V) using the linear least squares method. Suppose (xi, yi), (xj , yj), (xk, yk),
(x`, y`) are the coordinates of these four points i, j, k, `, respectively. Then, the center
(x, y) and radius R of this circle can be estimated by solving the least squares model
with fitting error

r = min
α
‖Aα− b‖,

where

A =


2xi 2yi 1
2xj 2yj 1
2xk 2yk 1
2x` 2y` 1

 , α =

 x
y

R2 − x2 − y2

 , b =


(xi)2 + (yi)2

(xj)2 + (yj)2

(xk)2 + (yk)2

(x`)2 + (y`)2

 .

By this way, we can connect an edge E := {i, j, k, `} with weight w = exp(−r). Then,
a medium scale random hypergraph can be generated by the following way. First,
we generate a complete graph which has

(
50
2

)
= 1225 edges and each edge contains

2 vertices. Second, for each edge of the graph, randomly choose other two different
vertices from V and add these two vertices to the graph edge. Hence, we get 1225
edges and each of them contains 4 vertices. Repeating the above process in total 120
times, we can obtain 147, 000 edges and each of them contains 4 vertices. So, we
have constructed a random weighted hypergraph G = (V,E,w), where E = {Ep : p =
1, 2, . . . , 147000} is the set of edges and w = (wp) ∈ R147000

+ is the weight vector with
component being the weight of each edge Ep. Moreover, G is a 4-uniform connected
hypergraph.

Next, we turn to construct the Laplacian tensor of the weighted hypergraph G =
(V,E,w). For each i ∈ V, the degree of the vertex i is defined as

di =
∑

Ep∈E, i∈Ep

wp.

Let ei ∈ R50 be the i-th column of the identity matrix. For the vertex i in the Ep,

26 Y. CHEN, M. XI AND H. ZHANG

we define

upi :=
3

4 4
√
di

ei −
∑

j∈Ep, j 6=i

1

4 4
√
dj

ej .

Then, the Laplacian tensor of G = (V,E,w) is represented as

(5.1) L(G) :=
∑
Ep∈E

wp ∑
i∈Ep

upi ◦ upi ◦ upi ◦ upi

 ,

where “◦” stands for the outer product of vectors and u ◦ u ◦ u ◦ u is indeed a fourth
order rank-one tensor. The smallest Z-eigenvalue of L(G) is 0 and the associated

Z-eigenvector is z0 = d̃/‖d̃‖ where d̃ ∈ R50
+ with d̃i = 4

√
di [35]. The Z-eigenvector z1

corresponding to the second smallest Z-eigenvalue of L(G) is called the Fiedler vector,
which is very useful for clustering. In fact, the Fiedler vector satisfies zT1 z1 = 1 and
zT1 z0 = 0. Consider the subspace z⊥0 that is perpendicular to z0. Let Q ∈ R50×49 be
an orthonormal basis of z⊥0 . We can represent the Fiedler vector as z1 = Qx with
xTx = 1. Hence, to find the Fiedler vector, we can apply DFGA to solve the following
spherical optimization problem

(5.2) min f(x) = 〈L(G), (Qx) ◦ (Qx) ◦ (Qx) ◦ (Qx)〉 s.t. x ∈ S49,

where 〈L, z ◦ z ◦ z ◦ z〉 =
∑
i,j,k,` Lijk`zizjzkz` is the inner product of tensors. In fact,

the objective function can be explicitly written as

f(x) =
∑
Ep∈E

wp ∑
i∈Ep

3eTi Qx

4 4
√
di
−

∑
j∈Ep, j 6=i

eTj Qx

4 4
√
dj

4
 .

Now, we employ DFGA, COBYLA, and Fmincon to solve the spherical optimization
problem (5.2) using a same starting point. We can see from the numerical results
given in Table 4 that DFGA uses much less number of function evaluations than
both COBYLA and Fmincon, but achieves the minimum final function value and the
smallest constraint evaluation.

Table 4
Numerical results on subspace clustering.

Solver Func ConsE #F Time
COBYLA 0.06228 3.22e-13 4283 9.49
Fmincon 0.06275 3.55e-7 3036 4.55
DFGA 0.05618 1.55e-15 672 2.10

With the solution x∗ of (5.2) returned by DFGA, we can compute the Fiedler
vector z1 = Qx∗. Then, z1 will naturally partition vertices V into two sets as {i ∈ V :
(z1)i ≥ 0} and {i ∈ V : (z1)i < 0}. After fitting the positions of vertices in each set,
we get two circles shown in Figure 2 (b). For comparison, the ground truth circles
are also shown in Figure 2 (b).

Whereafter, to examine the performance of DFGA for solving a large dimensional
problem, we increase the number of points roughly around the two circles from 50 to

A DERIVATIVE-FREE GEOMETRIC ALGORITHM 27

(a) Points for clustering two circles (b) Estimated vs ground truth

Fig. 3. One thousand points for clustering two circles (a) and Estimated circles vs the ground
truth (b).

1000. Figure 3 (a) depicts the positions of these points. By a similar approach as
before, we construct a 4-uniform hypergraph with 1, 000 vertices and 2, 997, 000 edges.
The associated Laplacian tensor L(G) and the corresponding spherical optimization
problem would still have format (5.1) and (5.2), respectively. But the constraint in
(5.2) turns to be x ∈ S999. To solve this larger dimensional problem, DFGA costs
5, 164 function evaluations to find an approximate solution x∗, while both FMINCON
and COBYLA can not solve the problem. The estimated circles and the ground truth
circles are illustrated in Figure 3 (b).

5.4. Image segmentation. The spectral hypergraph method described for the
subspace clustering problem in the previous subsection could also be applied for im-
age segmentation. Suppose we want to separate the main object (the note book)
and background in a given image in Figure 4(a). We can first employ the SLIC
superpixel approach [5] to produce a set of 42 superpixels; See Figure 4(b). Using
these superpixels and a similar approach in the last subsection, we can construct a
weighted hypergraph G = (V,E,w), where these superpixels constitute the vertex set
V = {1, 2, . . . , 42} and the set E has 77, 490 edges. For each edge Ep ∈ E, the weight
wp is proportional to the similarity of color distributions of superpixels colorp and is
inversely proportional to the distance among superpixels distp. Here, we only briefly
discuss on how to compute colorp and distp. One can refer to [19] for the details on
how to compute the weight wp. Consider the image in the HSV color space, where
HSV stands for hue, saturation and value, respectively. Hue is divided into twelve
intervals. Saturation and value are each divided into four intervals. Hence, the whole
HSV color space is divided into 192 areas. Then, we count the HSV color distribution
hsvi ∈ R192

+ in these areas for i = 1, . . . , 42. The similarity of color distributions of
the superpixels in an edge Ep = {i, j, k, `} is defined as

colorp =
hsvTi (hsvj ∗ hsvk ∗ hsv`)

‖hsvi‖4‖hsvj‖4‖hsvk‖4‖hsv`‖4
,

where ∗ is the component-wise Hadamard product.3 For calculating distp, we first
find the center centi of each superpixel, i = 1, . . . , 42, and then the star distance

3 We have hsvT
i (hsvj ∗ hsvk ∗ hsv`) =

∑192
p=1(hsvi)p(hsvj)p(hsvk)p(hsv`)p.

28 Y. CHEN, M. XI AND H. ZHANG

(a) Original image (b) Superpixels

(c) Notes (d) Background

Fig. 4. Segment an image of a notes and a pen.

among superpixels in an edge Ep is set by

distp =
∑
i∈Ep

(centi − centp)
4,

where centp = 1
4 (centi + centj + centk + cent`). With these colorp and distp, we

can compute the weight wp, and therefore, construct the 4-uniform hypergraph G =
(V,E,w).

Table 5
Numerical results on image segmentation.

Solver Func ConsE #F time
COBYLA 0.000552 3.67e-13 3124 3.93
Fmincon 0.000552 9.16e-12 3003 2.43
DFGA 0.000553 3.44e-15 507 0.97

According to this hypergraph G, we can again generate its Laplacian tensor L(G)
given in (5.1) and establish the following optimization model

min f(x) = 〈L(G), (Qx) ◦ (Qx) ◦ (Qx) ◦ (Qx)〉 s.t. x ∈ S41,

using the same approach introduced in the last subsection. We can see from the nu-
merical results given in Table 5 that DFGA again takes much less number of function
evaluations than COBYLA and Fmincon to solve this resulted optimization. Finally,

A DERIVATIVE-FREE GEOMETRIC ALGORITHM 29

the signs of the resulting Fiedler vector will again provide a segmentation: one is
the note book image shown in Figure 4(c) and the other is the background shown in
Figure 4(d).

6. Conclusions. In this paper, we propose a derivative-free geometric algorithm
to solve the spherically constrained optimization problem (1.1). This DFGA combines
the function interpolation techniques used in derivative-free optimization and the lo-
cal spherical geometry on a sphere in a trust region framework. Using the chart, a
map defined from the sphere to Rn−1, we are able to keep all the iterates being strictly
feasible on the sphere, which is crucial in many applications, and locally minimize the
objective function as an unconstrained optimization. We have shown that there at
least exists a subsequence generated by DFGA converging to a stationary point of
the spherical optimization problem (1.1). Furthermore, under the Lojasiewicz prop-
erty, we have shown the convergence of all the iterates generated by DFGA with at
least a linear or sublinear convergence rate. Our numerical experiments on comparing
different derivative-free optimization solvers indicate DFGA is quite robust, efficient
and could be very useful for solving practical spherical constrained optimization prob-
lems, for which the explicit calculations of the derivatives of the objective function
are difficult or even impossible.

Acknowledgments. The authors are grateful to the associate editor and two
anonymous referees for their comments which helped us to improve our manuscript
essentially.

REFERENCES

[1] P. A. Absil, C. G. Baker, and K. A. Gallivan, Trust-region methods on Riemannian man-
ifolds, Found. Comput. Math., 7 (2007), pp. 303–330.

[2] P. A. Absil and S. Hosseini, A collection of nonsmooth Riemannian optimization problems,
In: Hosseini S., Mordukhovich B., Uschmajew A. (eds) Nonsmooth Optimization and Its
Applications. International Series of Numerical Mathematics, vol 170. Birkhäuser, Cham.
(2019), pp. 1–15.

[3] P. A. Absil, R. Mahony, and B. Andrews, Convergence of the iterates of descent methods
for analytic cost functions, SIAM J. OPTIM., 16 (2005), pp. 531–547.

[4] P. A. Absil, R. Mahony, and R. Sepulchre, Optimization Algorithms on Matrix Manifolds,
Princeton University Press, Princeton, 2008.

[5] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk, SLIC superpixels
compared to state-of-the-art superpixel methods, IEEE Trans. Pattern Anal. Mach. Intell.,
34 (2012), pp. 2274–2282.

[6] H. Attouch and J. Bolte, On the convergence of the proximal algorithm for nonsmooth
functions involving analytic features, Math. program., 116 (2009), pp. 5–16.

[7] C. Audet and J. E. Dennis Jr., Mesh adaptive direct search algorithms for constrained opti-
mization, SIAM J. Optim., 17 (2006), pp. 188–217.

[8] C. Audet and W. Hare, Derivative-Free and Blackbox Optimization, Springer, Berlin, 2017.
[9] J. Baez and J. P. Muniain, Gauge Fields, Knots and Gravity, World Scientific, Singapore,

1994.
[10] A. S. Bandeira, K. Scheinberg, and L. N. Vicente, Computation of sparse low degree inter-

polating polynomials and their application to derivative-free optimization, Math. program.,
134 (2012), pp. 223–257.

[11] A. S. Bandeira, K. Scheinberg, and L. N. Vicente, Convergence of trust-region methods
based on probabilistic models, SIAM J. Optim., 24 (2014), pp. 1238–1264.

[12] R. R. Barton, Computing forward difference derivatives in engineering optimization, Eng.
Optimiz., 20 (1992), pp. 205–224.

[13] T. Bendory, S. Dekel, and A. Feuer, Super-resolution on the sphere using convex optimiza-
tion, IEEE Trans. Signal Process. 63 (2015), pp. 2253–2262.

[14] A. S. Berahas, R. H. Byrd, and J. Nocedal, Derivative-free optimization of noisy functions
via quasi-Newton methods, SIAM J. Optim., 29 (2019), pp. 965–993.

30 Y. CHEN, M. XI AND H. ZHANG

[15] S. R. Bulò and M. Pelillo, A game-theoretic approach to hypergraph clustering, IEEE Trans.
Pattern Anal. Mach. Intell., 35 (2013), pp. 1312–1327.

[16] C. Cartis and L. Roberts, A derivative-free Gauss-Newton method, Math. Program. Com-
put., 11 (2019), pp. 631–674.

[17] S. Chen, S. Ma, A. So, and T. Zhang, Proximal gradient method for nonsmooth optimization
over the Stiefel manifold, SIAM J. Optim., 30 (2020), pp. 210–239.

[18] X. Chen and R. Womersley, Spherical designs and nonconvex minimization for recovery of
sparse signals on the sphere, SIAM J. Imaging Sci., 11 (2018), pp. 1390–1415.

[19] Y. Chen, L. Qi, and X. Zhang, The Fiedler vector of a Laplacian tensor for hypergraph
partitioning, SIAM J. Sci. Comput., 39 (2017), pp. A2508–A2537.

[20] A. R. Conn, N. I. M. Gould, and Ph. L. Toint, Trust-Region Methods, MPS-SIAM Series
on Optimization, SIAM, Philadelphia, 2000.

[21] A. R. Conn, K. Scheinberg, and L. N. Vicente, Geometry of interpolation sets in derivative
free optimization, Math. Program., 111 (2008), pp. 141–172.

[22] A. R. Conn, K. Scheinberg, and L. N. Vicente, Geometry of sample sets in derivative-free
optimization: polynomial regression and underdetermined interpolation, IMA J. Numer.
Anal., 28 (2008), pp. 721–748.

[23] A. R. Conn, K. Scheinberg, and L. N. Vicente, Global convergence of general derivative-
free trust-region algorithms to first- and second-order critical points, SIAM J. Optim., 20
(2009), pp. 387–415.

[24] A. R. Conn, K. Scheinberg, and L. N. Vicente, Introduction to Derivative-Free Optimization
SIAM, Philadelphia, 2009.

[25] A. R. Conn and Ph. L. Toint, An algorithm using quadratic interpolation for unconstrained
derivative-free optimization, in Nonlinear Optimization and Application, G. D. Pillo and
F. Giannessi (eds.), Plenium Publishing, New York, 1996, pp. 27–47.

[26] C. F. Cui, Y. H. Dai, and J. Nie, All real eigenvalues of symmetric tensors, SIAM J. Matrix
Anal. Appl., 35 (2014), pp. 1582–1601.

[27] P. Das, D. De, R. Maiti, B. Chakraborty, C. B. Peterson, Estimating the optimal linear
combination of biomarkers using spherically constrained optimization, arXiv:1909.04024,
(2019).

[28] M. Farsi, M. Asemani, and M. R. Rahimpour, Mathematical modeling and optimization of
multi-stage spherical reactor configurations for large scale dimethyl ether production, Fuel
Process. Technol., 126 (2014), pp. 207–214.

[29] M. Fornasier, H. Huang, L. Pareschi, and P. Sünnen, Consensus-based optimization on
the sphere II: convergence to global minimizers and machine learning, arXiv:2001.11988v3,
(2020).

[30] S. Görner and C. Kanzow, On Newton’s method for the Fermat–Weber location problem, J.
Optim. Theory Appl., 170 (2016), pp. 107–118.

[31] S. Gratton, C. W. Royer, L. N. Vicente, and Z. Zhang, Complexity and global rates
of trust-region methods based on probabilistic models, IMA J. Numer. Anal., 38 (2018),
pp 1579–1597.

[32] A. Griewank, Computational differentiation and optimization, in Mathematical Programming:
State of the Art, J. R. Birge and K. G. Murty (eds.), The University of Michigan, Ann
Arbor, MI, 1994, pp. 102–131.

[33] R. Hooke and T. A. Jeeves, Direct search solution of numerical and statistical problems, J.
ACM, 8 (1961), pp. 212–229.

[34] J. Hu, X. Liu, Z. Wen, and Y. Yuan, A brief introduction to manifold optimization, Journal
of the Operations Research Society of China, 8 (2020), pp. 199–248.

[35] S. Hu and L. Qi, Algebraic connectivity of an even uniform hypergraph, J. Comb. Optim., 24
(2012), pp. 564–579.

[36] B. Jiang and Y. Dai, A framework of constraint preserving update schemes for optimization
on Stiefel manifold, Math. Program. A, 153 (2015), pp. 535–575.

[37] I. N. Katz and L. Cooper, Optimal location on a sphere, Comput. Math. Appl., 6 (1980),
pp. 175–196.

[38] T. G. Kolda, R. M. Lewis, and V. Torczon, Optimization by direct search: new perspectives
on some classical and modern methods, SIAM Rev., 45 (2003), pp. 385–482.

[39] C. Liu, A. Liu, and S. Halabi, A min–max combination of biomarkers to improve diagnostic
accuracy, Statist. Med., 30 (2011), pp. 2005–2014.

[40] S. Lojasiewicz, Une propriété topologique des sous-ensembles analytiques réels, in Les

Équations aux Dérivées Partielles, Éditions du centre National de la Recherche Scientifique,
Paris, 1963, pp. 87–89.

[41] M. Marazzi and J. Nocedal, Wedge trust region methods for derivative free optimization,

A DERIVATIVE-FREE GEOMETRIC ALGORITHM 31

Math. Program. A, 91 (2002), pp. 289–305.
[42] J. J. Moré, Recent developments in algorithms and software for trust region methods, In:

Bachem A., Korte B., Grötschel M. (eds) Mathematical Programming The State of the
Art. Springer, Berlin, Heidelberg. (1983), pp. 258–287.

[43] J. A. Nelder and R. Mead, A simplex method for function minimization, Comput. J., 7
(1965), pp. 308–313.

[44] J. Nocedal and S. J. Wright, Numerical Optimization, Springer, Science & Business Media,
2006.

[45] M. J. D. Powell, A direct search optimization method that models the objective and constraint
functions by linear interpolation, in Advances in Optimization and Numerical Analysis, S.
Gomez and J. P. Hennart (eds.), Kluwer, Dordrecht 1994, pp. 51–67.

[46] M. J. D. Powell, UOBYQA: unconstrained optimization by quadratic approximation, Math.
Program., 92 (2002), pp. 555–582.

[47] M. J. D. Powell, The NEWUOA software for unconstrained optimization without derivatives,
in Large-Scale Nonlinear Optimization, P. G. Di, M. Roma (eds), Springer, Boston, MA,
2006.

[48] L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symb. Comput., 40 (2005), pp. 1302–
1324.

[49] M. R. Rahimpour, D. Iranshahi, and A. M. Bahmanpour, Dynamic optimization of a multi-
stage spherical, radial flow reactor for the naphtha reforming process in the presence of
catalyst deactivation using differential evolution (DE) method, Int. J. Hydrogen Energy,
35 (2010), pp. 7498–7511.

[50] T. M. Ragonneau and Z. Zhang, PDFO: Powell’s derivative-free optimization solvers, Avail-
able at http://zhangzk.net/software.html, (2020).

[51] P. R. Sampaio and Ph. L. Toint, A derivative-free trust-funnel method for equality-
constrained nonlinear optimization, Comput. Optim. Appl., 61 (2015), pp. 25–49.

[52] W. Sun and Y. X. Yuan, Optimization Theory and Methods: Nonlinear Programming,
Springer, Science & Business Media, 2006.

[53] V. Torczon, On the convergence of pattern search algorithms, SIAM J. Optim., 7 (1997), pp.
1–25.

[54] N. Xiao, X. Liu, and Y. Yuan, Exact penalty function for L2,1 norm minimization over the
Stiefel manifold, SIAM J. Optim., (2020) (under review).

[55] K. Yamaguchi, Borda winner in facility location problems on sphere, Soc. Choice Welf., 46
(2016), pp. 893–898.

[56] H. Zhang and A. R. Conn, On the local convergence of a derivative-free algorithm for least-
squares minimization, Comput. Optim. Appl., 51 (2012), pp. 481–507.

[57] H. Zhang, A. R. Conn, and K. Scheinberg, A derivative-free algorithm for least-squares
minimization, SIAM J. Optim., 20 (2010), pp. 3555–3576.

[58] X. Zhang, C. Ling, and L. Qi, The best rank-1 approximation of a symmetric tensor and
related spherical optimization problems, SIAM J. Matrix Anal. Appl., 33 (2012), pp. 806–
821.

[59] Z. Zhang, Sobolev seminorm of quadratic functions with applications to derivative-free opti-
mization, Math. Program., 146 (2014), pp. 77–96.

	Introduction
	Geometry of unit sphere
	Tangent space
	Cayley transform

	A derivative-free geometric algorithm
	Interpolation
	A trust region framework

	Convergence analysis
	Convergence based on Łojasiewicz property

	Numerical experiments
	The classical Weber problem
	Spherical location problem
	Subspace clustering
	Image segmentation

	Conclusions
	References

