
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. OPTIM. © 2022 Society for Industrial and Applied Mathematics
Vol. 32, No. 3, pp. 1584--1613

GOLDEN RATIO PRIMAL-DUAL ALGORITHM WITH
LINESEARCH\ast 
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Abstract. The golden ratio primal-dual algorithm (GRPDA) is a new variant of the classical
Arrow--Hurwicz method for solving structured convex optimization problems, in which the objective
function consists of the sum of two closed proper convex functions, one of which involves a composi-
tion with a linear transform. The same as the Arrow--Hurwicz method and the popular primal-dual
algorithm (PDA) of Chambolle and Pock, GRPDA is full-splitting in the sense that it does not rely
on solving any subproblems or linear system of equations iteratively. Compared with PDA, an im-
portant feature of GRPDA is that it permits larger primal and dual stepsizes. However, the stepsize
condition of GRPDA requires that the spectral norm of the linear transform is known, which can be
difficult to obtain in some applications. Furthermore, constant stepsizes are usually overconservative
in practice. In this paper, we propose a linesearch strategy for GRPDA, which not only does not
require the spectral norm of the linear transform but also allows adaptive and potentially much
larger stepsizes. Within each linesearch step, only the dual variable needs to be updated, and it is
thus quite cheap and does not require any extra matrix-vector multiplications for many special yet
important applications such as a regularized least-squares problem. Global iterate convergence and
\scrO (1/N) ergodic convergence rate results, measured by the function value gap and constraint viola-
tions of an equivalent optimization problem, are established, where N denotes the iteration counter.
When one of the component functions is strongly convex, faster \scrO (1/N2) ergodic convergence rate
results, quantified by the same measures, are established by adaptively choosing some algorithmic
parameters. Moreover, when the subdifferential operators of the component functions are strongly
metric subregular, a condition that is much weaker than strong convexity, we show that the iterates
converge R-linearly to the unique solution. Numerical experiments on matrix game and LASSO
problems illustrate the effectiveness of the proposed linesearch strategy.

Key words. saddle point problem, golden ratio primal-dual algorithm, linesearch, acceleration,
ergodic sublinear convergence, linear convergence
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1. Introduction. Let \BbbR p and \BbbR q be finite-dimensional Euclidean spaces, each
endowed with an inner product and the induced norm denoted by \langle \cdot , \cdot \rangle and \| \cdot \| =\sqrt{} 
\langle \cdot , \cdot \rangle , respectively. Let f : \BbbR p \rightarrow ( - \infty ,+\infty ] and g : \BbbR q \rightarrow ( - \infty ,+\infty ] be extended

real-valued closed proper convex functions, and let K \in \BbbR p\times q be a linear transform
from \BbbR q to \BbbR p. Denote the Legendre--Fenchel conjugate of f by f\ast , i.e., f\ast (y) =
supx\in \BbbR p\{ \langle y, x\rangle  - f(x)\} , y \in \BbbR p. In this paper, we focus on the following saddle point
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GOLDEN RATIO PRIMAL-DUAL ALGORITHM WITH LINESEARCH 1585

problem with a bilinear coupling term:

minxmaxy\{ g(x) + \langle Kx, y\rangle  - f\ast (y) | x \in \BbbR q, y \in \BbbR p\} .(1)

Since the biconjugate of f is itself, i.e., (f\ast )\ast = f (see [29]), problem (1) reduces to
the following primal minimization problem:

minx\{ g(x) + f(Kx) | x \in \BbbR q\} .(2)

On the other hand, by swapping the ``min"" and the ``max"" and using the definition of
conjugate function, problem (1) can be transformed to the following dual maximiza-
tion problem:

maxy\{  - f\ast (y) - g\ast ( - K\top y) | y \in \BbbR p\} ,(3)

where K\top denotes the matrix transpose or adjoint operator of K. Under regularity
conditions, e.g., Assumption 2.1 given below, strong duality holds between (2) and
(3).

Problems (1)--(3) naturally arise from abundant interesting applications, including
signal and image processing, machine learning, statistics, mechanics and economics,
and so on; see, e.g., [4, 5, 7, 17, 36] and the references therein. To solve (1)--(3)
simultaneously, popular choices include the well-known alternating direction method
of multipliers (ADMM) [14, 15], the primal-dual algorithm (PDA) of Chambolle and
Pock [7, 19, 28], and their accelerated and generalized variants [24, 26]. The focus
of this paper is primal-dual type full-splitting algorithms.1 We emphasize that the
literature on numerical algorithms for solving (1)--(3) has become fairly vast and
a thorough overview is not only impossible but also far beyond the focus of this
work. Instead, we review only some primal-dual type algorithms that are most closely
related to this work. For a thorough treatment of various primal-dual type full-
splitting algorithms, we refer interested readers to the recent monograph [30, Chapter
3]. Before going into details, we define our notation.

1.1. Notation. As already mentioned above, the transpose operation of a matrix
or a vector is denoted by superscript ``\top ."" The spectral norm of K is denoted by L,
i.e., L := \| K\| = sup\{ \| Kx\| : \| x\| = 1, x \in \BbbR q\} . Let h be any extended real-
valued closed proper convex function defined on a finite-dimensional Euclidean space
\BbbR m. The effective domain of h is denoted by dom(h) := \{ x \in \BbbR m : h(x) < +\infty \} ,
and the subdifferential of h at x \in \BbbR m is denoted by \partial h(x) := \{ \xi \in \BbbR m : h(y) \geq 
h(x) + \langle \xi , y  - x\rangle for all y \in \BbbR m\} . Furthermore, for \lambda > 0, the proximal operator of
\lambda h is given by

Prox\lambda h(x) := arg min
y\in \BbbR m

\Bigl\{ 
h(y) +

1

2\lambda 
\| y  - x\| 2

\Bigr\} 
, x \in \BbbR m,

which is uniquely well defined everywhere. The relative interior of C is denoted by

ri(C). Finally, throughout this paper, we denote the golden ratio by \phi , i.e., \phi =
\surd 
5+1
2 ,

which is a key parameter in golden ratio type algorithms. Other notation will be
specified in the context.

1An algorithm for solving (1)--(3) is said to be full-splitting if it does not rely on solving any
subproblems or linear system of equations iteratively and the main computations per iteration are
matrix-vector multiplications and the evaluations of proximal operators.
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1586 XIAO-KAI CHANG, JUNFENG YANG, AND HONGCHAO ZHANG

1.2. Related works. A main feature of primal-dual algorithms is that problems
(1)--(3) are solved simultaneously by alternatingly updating the primal and the dual
variables. Among others, the classical augmented Lagrangian method and its variants
such as ADMM [14, 15, 20, 23] are most popular. However, ADMM is not full-splitting
since at each iteration it requires solving a subproblem of the form minx\in \BbbR q

1
2\| Kx - 

bn\| 2 + g(x), where bn \in \BbbR p varies with the iteration counter n. Note that even if
the proximal operator of g is easy to evaluate, this subproblem needs to be solved
iteratively, unless K is the identity operator. On the other hand, for regularized
least-squares problem, ADMM requires solving a linear system of equations at each
iteration, which could be prohibitively expensive for large scale applications.

The most classical and simple primal-dual full-splitting algorithm goes back to
[33], which is nowadays widely known as the Arrow--Hurwicz method. Started at
x0 \in \BbbR q and y0 \in \BbbR p, the Arrow--Hurwicz method iterates for n \geq 1 as\biggl\{ 

xn = Prox\tau g(xn - 1  - \tau K\top yn - 1),
yn = Prox\sigma f\ast (yn - 1 + \sigma Kxn),

(4)

where \tau , \sigma > 0 are stepsize parameters. The heuristics of the Arrow--Hurwicz method
is to solve the minimax problem (1) by alternatingly minimizing with x, maximizing
with y and meanwhile incorporating the proximal technique by taking into account the
latest information. Convergence of the Arrow--Hurwicz method with small stepsizes
was studied in [13], and a sublinear convergence rate result was obtained in [7, 27]
when dom(f\ast ) is bounded. However, the Arrow--Hurwicz method does not converge,
in general. In fact, a divergent example has been constructed in [18]. Nonetheless,
this method has been popular in image processing community and is known as the
primal-dual hybrid gradient method [7, 13, 37].

To obtain a convergent full-splitting algorithm under a more general setting,
Chambolle and Pock [7, 8] modified (4) by adopting an extrapolation step. Specifi-
cally, xn is replaced by the extrapolated point zn = xn + \delta (xn  - xn - 1) in the compu-
tation of yn in (4), where \delta \in (0, 1] is a parameter, resulting in the following iterative
scheme: \left\{   xn = Prox\tau g(xn - 1  - \tau K\top yn - 1),

zn = xn + \delta (xn  - xn - 1),
yn = Prox\sigma f\ast (yn - 1 + \sigma Kzn).

(5)

We refer to (5) as PDA. When \delta = 1, convergence of PDA was established in [7] under
the condition \tau \sigma L2 < 1. Later, it was shown in [19] that PDA is an application of a
weighted proximal point algorithm to solve an equivalent mixed variational inequality
(MVI) problem of the optimality condition of (1). Furthermore, PDA is also referred
to as the split inexact Uzawa method in [13], where the connection with preconditioned
or linearized ADMM has been revealed; see [7, 31]. When g and f\ast are piecewise
linear-quadratic or their subdifferential operators satisfy certain metric subregularity
conditions, linear convergence results were obtained in [21]. Note that, without taking
a correction step as in [19], convergence of PDA with \delta \in (0, 1) remains unclear.
Overrelaxed, inertial, accelerated, and stochastic variants of PDA were investigated
in, e.g., [6, 8].

Recently, Malitsky proposed a golden ratio algorithm and an adaptive variant of
it, denoted, respectively, by GRAAL (defined in [25, eq. 10]) and aGRAAL (defined
in [25, Algorithm 1]), for solving the MVI problem. It was shown that these algo-
rithms converge under more relaxed conditions determined by the golden ratio, which
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explains their names. Since the optimality condition of (1) can be represented by the
MVI problem, Malitsky's algorithms can be applied readily. Unfortunately, numerical
experiments show that straightforward application of GRAAL and aGRAAL to the
MVI representation of (1) is much less efficient than primal-dual type methods, e.g.,
the PDA scheme (5), which are able to take advantage of problem structures thor-
oughly. While this paper was under review, a first-order primal-dual algorithm with
adaptive choice of stepsizes was proposed in [35] to solve the bilinear saddle-point
problem (1) by using an idea similar to [25]. However, the local smoothness condition
on the function g is required there, which is different from our setting. Moreover, the
algorithm still needs to know the spectral norm of K, while we do not in this work.
Motivated by [25], we proposed a golden ratio primal-dual algorithm (GRPDA) in [9],
which inherits the advantages of both golden ratio and primal-dual type algorithms.
Instead of an extrapolation step as taken in PDA, a convex combination of essentially
all the previously generated primal iterates are used in the current iteration of GR-
PDA. Specifically, given x0 \in \BbbR q, y0 \in \BbbR p, and letting z0 := x0, GRPDA iterates for
n \geq 1 as \left\{     

zn = \psi  - 1
\psi xn - 1 +

1
\psi zn - 1,

xn = Prox\tau g(zn  - \tau K\top yn - 1),

yn = Prox\sigma f\ast (yn - 1 + \sigma Kxn).

(6)

Global iterative convergence and ergodic convergence rate results are established un-

der the condition \tau \sigma L2 < \psi . Since \psi \in (1, \phi ] and \phi =
\surd 
5+1
2 , this requirement is much

more relaxed than that for PDA, which is \tau \sigma L2 < 1. Hence, GRPDA is not only able
to fully exploit problem structures but also permits larger primal and dual stepsizes,
which are critical for fast practical convergence.

1.3. Motivations and contributions. In this paper, we incorporate linesearch
into GRPDA scheme (6). Our primary motivations have two aspects. First, in
many applications, especially when K is large and dense, e.g., CT image recon-
struction [2, 32], the exact spectral norm of K can be very expensive to compute
or estimate. Second, even if the spectral norm of K can be obtained, the stepsizes
governed by the condition \tau \sigma \| K\| 2 < \psi are usually too conservative for fast practical
convergence. Hence, our goal in this paper is to adapt linesearch into (6) to acceler-
ate the algorithm significantly while theoretically still guaranteeing convergence with
desirable convergence rates.

Linesearch strategies are often of fundamentally practical importance for both
unconstrained and constrained optimization. They are also commonly used in solv-
ing structured nonsmooth convex optimization problems, often combined with certain
smoothing and homotopy techniques. For example, an algorithm is presented in [34]
for solving the composite model (2) and its variants, and a nonmonotone linesearch al-
gorithm is given in [16] for solving the \ell 1-regularized least-squares problem. Moreover,
linesearch strategy has been adapted into the PDA in [26]. In general, linesearch re-
quires extra evaluations of the proximal operators and matrix-vector multiplications at
every iteration. Interestingly, for many special yet important applications as pointed
out in [26], the proximal operator of f\ast is extremely simple, and as a consequence the
linesearch procedure does not require any extra matrix-vector multiplications.

Our work is an adaptation of linesearch into GRPDA, which deviates from [26]
mainly in three aspects. First, the convergence rate results obtained in this paper
are different from those in [26]. Specifically, those presented in [26] are measured
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1588 XIAO-KAI CHANG, JUNFENG YANG, AND HONGCHAO ZHANG

by the so-called primal-dual gap function proposed in [7], while ours are measured
by the function value gap and constraint violations of a constrained optimization
problem equivalent to (2). Although frequently used in the literature to quantify
convergence rates of primal-dual type algorithms (see, e.g., [7, 8, 9, 26]), the primal-
dual gap function has a major flaw, that is, it can vanish at nonstationary points and
thus make the existing results measured by this function convey little information. In
contrast, the measures adopted in this paper are conventional and very meaningful for
constrained optimization. Second, GRPDA is quite different from PDA in the sense
that it remains unclear how to analyze GRPDA from the fixed point perspective (see
[25] for similar remarks on GRAAL), while PDA fits well into the framework of fixed
point iterations of averaged operators; see, e.g., [10, 19]. Finally, our experimental
results show that GRPDA in combination with the linesearch given in this paper could
significantly improve its numerical performance compared with its PDA counterpart.

Our main contributions of this paper include the design of GRPDAs with line-
search under different settings and their convergence analysis. As will be seen in later
sections, we provide very novel approaches to analyze the linesearch behaviors, and
our theoretical analysis on the stepsize behaviors is fundamentally different from those
presented in [26] or given in all other literature. Moreover, our algorithm combining
with linesearch not only does not assume any priori knowledge about the spectral
norm of K, but also generates adaptive and potentially much larger stepsizes. When
both the component functions f and g are generally convex, we establish global it-
erate convergence of GRPDA as well as ergodic \scrO (1/N) sublinear convergence rate
in terms of function value gap and constraint violations of an equivalent constrained
optimization. When either one of the component functions is strongly convex, GR-
PDA with linesearch is shown to converge at the faster \scrO (1/N2) ergodic sublinear
rate. Furthermore, if the subdifferential operators of both component functions are
strongly metric subregular, a notion that is much weaker than strong convexity, non-
ergodic linear convergence results to the unique solution are established. Hence, even
with the stepsize relaxations by the proposed linesearch, the global convergence as
well as theoretical convergence rates are still guaranteed to remain consistent with
their counterparts without using linesearch. Moreover, numerical experiments show
that many practical benefits can be obtained from the proposed linesearch strategies
which could be critical in important applications.

1.4. Organization. The rest of this paper is organized as follows. In section 2,
we make our assumptions and present some useful facts and further notation. Section
3 is devoted to GRPDA with linesearch in the general convex case, followed in section
4 by the case when either g or f\ast is strongly convex. The case when both \partial g and \partial f\ast 

are strongly metric subregular is studied in section 5. Numerical results on minimax
matrix game and LASSO problems are reported in section 6 to show the benefits
gained by adopting the linesearch strategies. Finally, some concluding remarks are
drawn in section 7.

2. Assumptions and preliminaries.

2.1. Assumptions and further notation. For convenience of analysis, we in-
troduce an auxiliary variable w \in \BbbR p and rewrite the primal problem (2), equivalently,
as

minx,w\{ g(x) + f(w) | Kx - w = 0, x \in \BbbR q, w \in \BbbR p\} .(7)
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Let y \in \BbbR p be the Lagrange multiplier. The objective and the Lagrangian functions
of (7) are denoted, respectively, by

\Phi (x,w) := g(x) + f(w) and \scrL (x,w, y) := \Phi (x,w) + \langle y,Kx - w\rangle .(8)

Throughout the paper, we make the following blanket assumptions.

Assumption 2.1. Assume that the set of solutions of (2), and hence (7), is
nonempty and, in addition, there exists \~x \in ri(dom(g)) such that K\~x \in ri(dom(f)).

Under Assumption 2.1, it follows from [29, Corollaries 28.2.2 and 28.3.1] that
(x \star , w \star ) \in \BbbR q \times \BbbR p is a solution of (7) if and only if there exists an optimal solution
y \star \in \BbbR p to the dual problem (3) such that (x \star , w \star , y \star ) is a saddle point of \scrL (x,w, y),
i.e.,

\scrL (x \star , w \star , y) \leq \scrL (x \star , w \star , y \star ) \leq \scrL (x,w, y \star ) for all (x,w, y) \in \BbbR q \times \BbbR p \times \BbbR p.

As such, (x \star , y \star ) is a solution of the minimax problem (1) and y \star is a solution of the
dual problem (3). We denote the set of saddle points of \scrL (x,w, y) by \Omega , which is
nonempty under Assumption 2.1 and is given by

\Omega = \{ (x \star , w \star , y \star ) \in \BbbR q \times \BbbR p \times \BbbR p |  - K\top y \star \in \partial g(x \star ), y \star \in \partial f(w \star ), Kx \star = w \star \} .

In addition, we make the following assumptions on the proximal operators of f and
g, which are widely satisfied in many practical applications; see, e.g., [3, Chapter 6].

Assumption 2.2. Assume that the proximal operators of the component functions
f and g either have closed form formulas or can be evaluated efficiently.

Note that the proximal operators of f\ast and g\ast are also easily computable under
Assumption 2.2 due to the Moreau decomposition theorem [29, Theorem 31.5].

2.2. Facts and identities. The following simple facts and identities are useful
in our analysis.

Fact 2.1. Let h : \BbbR m \rightarrow ( - \infty ,+\infty ] be an extended real-valued closed proper and
\gamma -strongly convex function with modulus \gamma \geq 0. Then for any \tau > 0 and x \in \BbbR m, it
holds that z = Prox\tau h(x) if and only if h(y) \geq h(z) + 1

\tau \langle x - z, y  - z\rangle +
\gamma 
2 \| y  - z\| 

2 for
all y \in \BbbR m.

Fact 2.2. Let \{ an : n \geq 1\} and \{ bn : n \geq 1\} be real and nonnegative sequences.
If an+1 \leq an  - bn for all n \geq 1, then limn\rightarrow \infty an exists and limn\rightarrow \infty bn = 0.

For any x, y, z \in \BbbR m and \alpha \in \BbbR , there hold

2\langle x - y, x - z\rangle = \| x - y\| 2 + \| x - z\| 2  - \| y  - z\| 2,(9)

\| \alpha x+ (1 - \alpha )y\| 2 = \alpha \| x\| 2 + (1 - \alpha )\| y\| 2  - \alpha (1 - \alpha )\| x - y\| 2.(10)

2.3. Metric subregularity. Metric subregularity is a property of set-valued
operators. In the case of subdifferential operators of closed proper convex functions, it
is equivalent to the quadratic growth condition [1, 11]. Specifically, for a closed proper
convex function h : \BbbR m \rightarrow ( - \infty ,\infty ], the subdifferential operator \partial h is metrically
subregular at x \star for y \star with (x \star , y \star ) \in gra(\partial h) := \{ (u, v) : v \in \partial h(u)\} if and only
if there exist a constant c > 0 and a neighborhood U of x \star such that the following
growth condition holds:

h(x) \geq h(x \star ) + \langle y \star , x - x \star \rangle + cd2(x, (\partial h) - 1(y \star )) for all x \in U,
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where d(x,X) denotes certain distance from x to the set X. Furthermore, \partial h is
strongly subregular at x \star for y \star with (x \star , y \star ) \in gra(\partial h) if and only if there exist a
constant c > 0 and a neighborhood U of x \star such that

h(x) \geq h(x \star ) + \langle y \star , x - x \star \rangle + c\| x - x \star \| 2 for all x \in U.(11)

Note that if h is strongly convex, then it satisfies (11). However, the contrary is not
true. In fact, (11) is much weaker than strong convexity as it is a local condition
and requires being held at y \star only in a neighborhood of x \star . Moreover, \partial h is globally
(strongly) subregular at x \star for y \star if (strong) subregularity holds with U = \BbbR m.

3. General convex case. Recall that \phi = (
\surd 
5+1)/2 denotes the golden ratio.

In this section, we introduce a linesearch strategy into GRPDA to choose stepsizes
adaptively. Within each linesearch step, only the dual variable needs to be updated.
The resulting algorithm, called GRPDA-L, is summarized in Algorithm 3.1.

Algorithm 3.1 (GRPDA-L).

Step 0. Choose x0 = z0 \in \BbbR q, y0 \in \BbbR p, \psi \in (1, \phi ), \sigma \in (0, 1), \beta > 0, \mu \in (0, 1), and
\tau 0 > 0. Set \varphi = 1+\psi 

\psi 2 and n = 1.
Step 1. Compute

zn =
\psi  - 1

\psi 
xn - 1 +

1

\psi 
zn - 1,(12)

xn = Prox\tau n - 1g(zn  - \tau n - 1K
\top yn - 1).(13)

Step 2. Let \tau = \varphi \tau n - 1 and compute

yn = Prox\beta \tau nf\ast (yn - 1 + \beta \tau nKxn),(14)

where \tau n = \tau \mu i and i is the smallest nonnegative integer such that\sqrt{} 
\beta \tau n\| K\top yn  - K\top yn - 1\| \leq \sigma 

\sqrt{} 
\psi /\tau n - 1\| yn  - yn - 1\| .(15)

Step 3. Set n\leftarrow n+ 1 and return to Step 1.

Since \psi \in (1, \phi ), we have \varphi = (1 + \psi )/\psi 2 \in (1, 2). Thus, the initial trial of \tau n in
(14) is strictly greater than \tau n - 1. By using Moreau's decomposition y = Proxf/\sigma (y)+
1
\sigma Prox\sigma f\ast (\sigma y), for any \sigma > 0 and y \in \BbbR p, yn defined in (14) can be updated as

yn = yn - 1 + \beta \tau n(Kxn  - wn) with wn = Proxf/(\beta \tau n)
\bigl( 
yn - 1/(\beta \tau n) +Kxn

\bigr) 
.(16)

From Step 2 of Algorithm 3.1, the linesearch procedure may require computing
Prox\beta \tau nf\ast and K\top yn repeatedly to find a proper \tau n at each iteration. However, as
pointed out in [25, Remark 2], this procedure becomes extremely simple when Prox\lambda f\ast 

is linear or affine. Some examples are listed below:
(a) Prox\lambda f\ast (u) = u - \lambda b when f\ast (y) = \langle b, y\rangle for some b \in \BbbR p;
(b) Prox\lambda f\ast (u) = 1

1+\lambda (u+ \lambda b) when f\ast (y) = 1
2\| y  - b\| 

2 for some b \in \BbbR p;
(c) Prox\lambda f\ast (u) = u + b - \langle u,a\rangle 

\| a\| 2 a when f\ast is the indicator function of H = \{ u :

\langle a, u\rangle = b\} for some a \in \BbbR p and b \in \BbbR .
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In all these cases, the evaluation of Prox\lambda f\ast is very simple, and it is unnecessary
to compute K\top yn repeatedly since it can be obtained by combining some already
computed quantities. Therefore, in these cases the linesearch step is quite cheap
and does not require any additional matrix-vector multiplications. Furthermore, if
necessary, one can always exchange the roles of the primal and the dual variables
in (1) to take advantage of the above-mentioned structure. Also note that the ratio
\tau n/\tau n - 1 is upper bounded by \varphi \in (1, 2). As suggested in [25], one default choice could
let \psi = 1.5 so that \varphi = (1 + \psi )/\psi 2 = 10/9. The parameter \beta > 0 in Algorithm 3.1
is introduced to scale the primal and the dual variables so that they will converge
in a weighted balance way. Similar settings have also been done in [9] for GRPDA
without linesearch.

The following lemma shows that the linesearch step of Algorithm 3.1 is well
defined. In addition, it establishes some important properties on \{ \tau n : n \geq 1\} and
\{ \delta n : n \geq 1\} , with \delta n := \tau n/\tau n - 1, which are essential for establishing the convergence
results. Since its proof is rather technical, for fluency of the overall paper, we put the
proof in Appendix A.

Lemma 3.1. Let \tau := \sigma 
\surd 
\psi 

L
\surd 
\beta \varphi 

> 0. Then, we have the following properties. (i)

The linesearch step of Algorithm 3.1, i.e., Step 2, always terminates. (ii) For any
\rho \in (0, 1), there exists an infinite subsequence \{ nk : k \geq 1\} \subseteq \{ 1, 2, . . .\} such that
\tau nk
\geq \tau and \delta nk

\geq \rho . (iii) For any integer N > 0, we have | \scrK N | \geq \^cN for some
constant \^c > 0, where \scrK N := \{ 1 \leq n \leq N : \tau n \geq \tau and \delta n \geq 1/\varphi \} and | \scrK N | is the

cardinality of \scrK N , which implies
\sum N
n=1 \tau n \geq cN with c = \^c\tau .

We emphasize that the linesearch procedure adopted by Algorithm 3.1 is moti-
vated but theoretically very different from that of [26, Algorithim 1]. In fact, the
sequence \{ \tau n : n \geq 1\} generated by [26, Algorithim 1] is uniformly bounded below
by some positive constant; see [26, Lemma 3.3 (ii)]. In contrast, as seen in (iii) of
Lemma 3.1, only a subsequence \{ \tau nk

: k \geq 1\} is guaranteed to have uniform lower
bound \tau > 0. Similar arguments also apply to Algorithm 4.1 in section 4.

In the rest of this section, without mentioning repeatedly, we always fix arbitrary
a primal and dual solution triplet (x \star , w \star , y \star ) \in \Omega , and let \{ (zn, xn, yn) : n \geq 1\} be
generated by Algorithm 3.1 and \{ wn : n \geq 1\} be given in (16). Furthermore, for
(x,w, y) \in \BbbR q \times \BbbR p \times \BbbR p, we define

J(x,w, y) := \scrL (x,w, y) - \scrL (x \star , w \star , y) = \Phi (x,w) + \langle y,Kx - w\rangle  - \Phi (x \star , w \star ),(17)

where \Phi (x,w), \scrL (x,w, y), and \Omega are defined in (8) and Assumption 2.1. Next, we
present two useful lemmas, which play critical roles in the convergence analysis.

Lemma 3.2. For any y \in \BbbR p, there holds

\tau nJ(xn, wn, y) \leq \langle xn+1  - zn+1, x
 \star  - xn+1\rangle +

1

\beta 
\langle yn  - yn - 1, y  - yn\rangle 

+\psi \delta n\langle xn  - zn+1, xn+1  - xn\rangle + \tau n
\bigl\langle 
K\top (yn  - yn - 1), xn  - xn+1

\bigr\rangle 
.(18)D
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Proof. It follows from (13), (16), and Fact 2.1 that

\tau n
\bigl( 
g(xn+1) - g(x \star )

\bigr) 
\leq 
\bigl\langle 
xn+1  - zn+1 + \tau nK

\top yn, x
 \star  - xn+1

\bigr\rangle 
=
\bigl\langle 
xn+1  - zn+1 + \tau nK

\top \bigl( yn - 1 + \beta \tau n(Kxn  - wn)
\bigr) 
,

x \star  - xn+1

\bigr\rangle 
,(19)

\tau n - 1

\bigl( 
g(xn) - g(xn+1)

\bigr) 
\leq \langle xn  - zn + \tau n - 1K

\top yn - 1, xn+1  - xn\rangle ,(20)

\tau n
\bigl( 
f(wn) - f(w \star )

\bigr) 
\leq  - \tau n

\bigl\langle 
yn - 1 + \beta \tau n(Kxn  - wn), w \star  - wn

\bigr\rangle 
.(21)

Multiplying (20) by \delta n = \tau n/\tau n - 1 and using xn  - zn = \psi (xn  - zn+1), which follows
from (12), we obtain

\tau n
\bigl( 
g(xn) - g(xn+1)

\bigr) 
\leq 
\bigl\langle 
\psi \delta n(xn  - zn+1) + \tau nK

\top yn - 1, xn+1  - xn
\bigr\rangle 
.(22)

Recall that yn  - yn - 1 = \beta \tau n(Kxn  - wn) and Kx \star = w \star . By taking a sum to (19),
(21)--(22), and adding \tau n\langle y,Kxn  - wn\rangle to both sides, we obtain

\tau n(\scrL (xn, wn, y) - \scrL (x \star , w \star , y)) = \tau n
\bigl( 
g(xn) + f(wn) + \langle y,Kxn  - wn\rangle  - g(x \star )

 - f(x \star )
\bigr) 
\leq \langle xn+1  - zn+1, x

 \star  - xn+1\rangle + \psi \delta n \langle xn  - zn+1, xn+1  - xn\rangle 
+\tau n\langle Kxn  - wn, y  - yn - 1\rangle 
+\beta \tau 2n\langle Kxn  - wn, (Kx \star  - Kxn+1) - (w \star  - wn)\rangle 

= \langle xn+1  - zn+1, x
 \star  - xn+1\rangle + \psi \delta n \langle xn  - zn+1, xn+1  - xn\rangle +

1

\beta 
\langle yn  - yn - 1, y  - yn - 1\rangle 

+\tau n\langle yn  - yn - 1, wn  - Kxn+1\rangle 

= \langle xn+1  - zn+1, x
 \star  - xn+1\rangle + \psi \delta n \langle xn  - zn+1, xn+1  - xn\rangle +

1

\beta 
\langle yn  - yn - 1, y  - yn\rangle 

+\tau n\langle K\top (yn  - yn - 1), xn  - xn+1\rangle ,

which, by the definition of J(\cdot ) in (17), implies (18) immediately.

For any y \in \BbbR p and n \geq 1, define
(23)\Biggl\{ 

an(x
 \star , y) := \psi 

\psi  - 1\| zn+1  - x \star \| 2 + 1
\beta \| yn - 1  - y\| 2,

bn := \psi \delta n\| zn+1  - xn\| 2 + (1 - \sigma )
\bigl( 
\psi \delta n\| xn+1  - xn\| 2 + 1

\beta \| yn  - yn - 1\| 2
\bigr) 
.

Lemma 3.3. There holds an+1(x
 \star , y) + 2\tau nJ(xn, wn, y) \leq an(x

 \star , y)  - bn for any
y \in \BbbR p and n \geq 1.

Proof. Fix n \geq 1. First, it is easy to verify from \varphi = (1 + \psi )/\psi 2 and \delta n =
\tau n/\tau n - 1 \leq \varphi that

1 +
1

\psi 
 - \psi \delta n \geq 1 +

1

\psi 
 - \psi \varphi = 0.(24)

It follows from (15) and the basic inequality 2ab \leq a2 + b2 for any a, b \in \BbbR that

(25)

2\tau n\| K\top yn  - K\top yn - 1\| \| xn+1  - xn\| \leq \sigma 
\biggl( 
\psi \delta n\| xn+1  - xn\| 2 +

1

\beta 
\| yn  - yn - 1\| 2

\biggr) 
.
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Furthermore, by Lemma 3.2, identity (9), and Cauchy--Schwarz inequality, we have

\| xn+1  - x \star \| 2 +
1

\beta 
\| yn  - y\| 2 + 2\tau nJ(xn, wn, y)(26)

\leq \| zn+1  - x \star \| 2 +
1

\beta 
\| yn - 1  - y\| 2 + 2\tau n\| K\top yn  - K\top yn - 1\| \| xn+1  - xn\| 

 - \psi \delta n\| zn+1  - xn\| 2  - (1 - \psi \delta n)\| xn+1  - zn+1\| 2  - \psi \delta n\| xn+1  - xn\| 2

 - 1

\beta 
\| yn  - yn - 1\| 2.

Since xn+1 = \psi 
\psi  - 1zn+2  - 1

\psi  - 1zn+1, which again follows from (12), we deduce from

(10) that

\| xn+1  - x \star \| 2 =
\psi 

\psi  - 1
\| zn+2  - x \star \| 2  - 

1

\psi  - 1
\| zn+1  - x \star \| 2 +

\psi 

(\psi  - 1)2
\| zn+2  - zn+1\| 2

=
\psi 

\psi  - 1
\| zn+2  - x \star \| 2  - 

1

\psi  - 1
\| zn+1  - x \star \| 2 +

1

\psi 
\| xn+1  - zn+1\| 2,(27)

where the second equality is due to zn+2  - zn+1 = \psi  - 1
\psi (xn+1  - zn+1). By combining

(27) with (26), we obtain

\psi 

\psi  - 1
\| zn+2  - x \star \| 2 +

1

\beta 
\| yn  - y\| 2 + 2\tau nJ(xn, wn, y)(28)

\leq \psi 

\psi  - 1
\| zn+1  - x \star \| 2 +

1

\beta 
\| yn - 1  - y\| 2 + 2\tau n\| K\top yn  - K\top yn - 1\| \| xn+1  - xn\| 

 - \psi \delta n\| zn+1  - xn\| 2  - 
\biggl( 
1 +

1

\psi 
 - \psi \delta n

\biggr) 
\| xn+1  - zn+1\| 2  - \psi \delta n\| xn+1  - xn\| 2

 - 1

\beta 
\| yn  - yn - 1\| 2

\leq \psi 

\psi  - 1
\| zn+1  - x \star \| 2 +

1

\beta 
\| yn - 1  - y\| 2  - \psi \delta n\| zn+1  - xn\| 2

 - (1 - \sigma )\psi \delta n\| xn+1  - xn\| 2  - 
1 - \sigma 
\beta 
\| yn  - yn - 1\| 2,

where the second ``\leq "" follows from (24) and (25). Finally, the conclusion of Lemma
3.3 follows immediately from (28) and the definitions of an(x

 \star , y) and bn in (23).

Now, we are ready to establish global iterate convergence and \scrO (1/N) ergodic
sublinear convergence rate of Algorithm 3.1.

Theorem 3.1 (global convergence). The sequence \{ (xn, yn) : n \geq 1\} converges
to a solution of (1).

Proof. Let \rho \in (0, 1) and \tau > 0 be defined in Lemma 3.1. By (ii) of Lemma 3.1,
there exists an infinite sequence \{ nk : k \geq 1\} such that \tau nk

\geq \tau and \delta nk
\geq \rho . Since

J(xn, wn, y
 \star ) \geq 0, it follows from Lemma 3.3 that an+1(x

 \star , y \star ) \leq an(x
 \star , y \star )  - bn.

Hence, by the definition of bn in (23), we have

\psi 

\infty \sum 
k=1

\delta nk

\bigl( 
\| znk+1  - xnk

\| 2 + (1 - \sigma )\| xnk+1  - xnk
\| 2
\bigr) 
\leq 

\infty \sum 
n=1

bn <\infty .(29)
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We have that
\sum \infty 
k=1 \delta nk

= \infty , which together with (29) implies that there exists a
subsequence of \{ nk : k \geq 1\} , still denoted as \{ nk : k \geq 1\} , such that

(30) lim
k\rightarrow \infty 

\| znk+1  - xnk
\| = 0 and lim

k\rightarrow \infty 
\| xnk+1  - xnk

\| = 0.

Furthermore, Fact 2.2 implies that limn\rightarrow \infty an(x
 \star , y \star ) exists and limn\rightarrow \infty bn = 0.

Hence, both \{ zn : n \geq 1\} and \{ yn : n \geq 1\} are bounded, and limn\rightarrow \infty \| yn+1  - yn\| =
0. Then, (12) implies that \{ xn : n \geq 1\} is also bounded. Therefore, there exist
a subsequence of \{ nk : k \geq 1\} , still denoted as \{ nk : k \geq 1\} , and (x\ast , y\ast ) such
that limk\rightarrow \infty xnk

= x\ast and limk\rightarrow \infty ynk
= y\ast , which together with (30) implies that

limk\rightarrow \infty xnk+1 = limk\rightarrow \infty xnk
= limk\rightarrow \infty znk+1 = x\ast . Now, Fact 2.1 and (14) imply\biggl\langle 

1

\beta 
(yn  - yn - 1) - \tau nKxn, y  - yn

\biggr\rangle 
\geq \tau n

\bigl( 
f\ast (yn) - f\ast (y)

\bigr) 
for all y \in \BbbR p.(31)

Similar to (19) and (31), for any (x, y), there hold

(32)

\Biggl\{ 
\langle xnk+1  - znk+1 + \tau nk

K\top ynk
, x - xnk+1\rangle \geq \tau nk

\bigl( 
g(xnk+1) - g(x)

\bigr) 
,\bigl\langle 

1
\beta (ynk

 - ynk - 1) - \tau nk
Kxnk

, y  - ynk

\bigr\rangle 
\geq \tau nk

\bigl( 
f\ast (ynk

) - f\ast (y)
\bigr) 
.

Then, dividing \tau nk
\geq \tau > 0 from both sides of (32), taking into account that both g

and f\ast are closed (and thus lower semicontinuous) and letting k \rightarrow \infty , we obtain

(33) \langle K\top y\ast , x - x\ast \rangle \geq g(x\ast ) - g(x) and  - \langle Kx\ast , y  - y\ast \rangle \geq f\ast (y\ast ) - f\ast (y).

Since (33) holds for any (x, y) \in \BbbR q \times \BbbR p, we have  - K\top y\ast \in \partial g(x\ast ) and Kx\ast \in 
\partial f\ast (y\ast ), i.e., (x\ast , y\ast ) is a solution of (1). Note that Lemma 3.3 holds for any x \star 

such that (x \star , w \star , y \star ) \in \Omega for some (w \star , y \star ). Therefore, one can replace x \star by
x\ast and meanwhile set y = y\ast in the definition of an(x

 \star , y). As such, we have
limk\rightarrow \infty ank

(x\ast , y\ast ) = 0 since limk\rightarrow \infty znk+1 = x\ast and limk\rightarrow \infty ynk - 1 = limk\rightarrow \infty ynk
=

y\ast . Since \{ an(x\ast , y\ast ) : n \geq 1\} is monotonically nonincreasing, it follows that limn\rightarrow \infty 
an(x

\ast , y\ast ) = 0. Therefore, limn\rightarrow \infty (zn, yn) = (x\ast , y\ast ). Again by (12), we have
limn\rightarrow \infty xn = x\ast . This completes the proof.

Theorem 3.2 (sublinear convergence rate). For any N \geq 1, define

\^xN =
1

sN

N\sum 
n=1

\tau nxn and \^wN =
1

sN

N\sum 
n=1

\tau nwn with sN =

N\sum 
n=1

\tau n.(34)

Then, there exists a constant C1 > 0 such that for any N \geq 1 we have

| \Phi (\^xN , \^wN ) - \Phi (x \star , w \star )| \leq C1

N
and \| K\^xN  - \^wN\| \leq 

2C1

cN
,

where c is a constant satisfying c \geq 2\| y \star \| .
Proof. Recall that an(x

 \star , y) and bn are nonnegative. For any y \in \BbbR p, Lemma
3.3 implies that 2\tau nJ(xn, wn, y) \leq an(x

 \star , y)  - an+1(x
 \star , y), a sum of which over n =

1, . . . , N yields

2

N\sum 
n=1

\tau nJ(xn, wn, y) \leq a1(x \star , y) - aN+1(x
 \star , y) \leq a1(x \star , y).(35)
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Since J(x,w, y) is convex in x and w, it follows from (34) and Jensen's inequality that

J
\bigl( 
\^xN , \^wN , y

\bigr) 
\leq 1

sN

N\sum 
n=1

\tau nJ(xn, wn, y).(36)

Combining (35), (36), and the definition of J(\cdot ) in (17), we obtain

\Phi (\^xN , \^wN ) + \langle y,K\^xN  - \^wN \rangle  - \Phi (x \star , w \star ) \leq a1(x \star , y)/(2sN ).(37)

By property (iii) in Lemma 3.1, we have sN =
\sum N
n=1 \tau n \geq cN . By taking the

maximum of both sides of (37) over \| y\| \leq c and defining C1 = supy\{ a1(x \star , y) :
\| y\| \leq c\} /(2c) > 0, we obtain

\Phi (\^xN , \^wN ) + c\| K\^xN  - \^wN\|  - \Phi (x \star , w \star ) \leq C1/N,(38)

which implies \Phi (\^xN , \^wN )  - \Phi (x \star , w \star ) \leq C1/N . Furthermore, since \scrL (x \star , w \star , y \star ) \leq 
\scrL (\^xN , \^wN , y \star ), Kx \star = w \star and \| y \star \| \leq c/2, we have

\Phi (x \star , w \star ) - \Phi (\^xN , \^wN ) \leq \langle y \star ,K\^xN  - \^wN \rangle \leq (c/2)\| K\^xN  - \^wN\| ,(39)

which together with (38) implies

c\| K\^xN  - \^wN\| \leq \Phi (x \star , w \star ) - \Phi (\^xN , \^wN ) + C1/N \leq (c/2)\| K\^xN  - \^wN\| + C1/N.

As a result, we derive \| K\^xN  - \^wN\| \leq 2C1/(cN). It then follows from (39) that
\Phi (x \star , w \star )  - \Phi (\^xN , \^wN ) \leq C1/N , and thus | \Phi (\^xN , \^wN )  - \Phi (x \star , w \star )| \leq C1/N . The
proof is completed.

4. When one component function is strongly convex. Consider the case
when either g or f\ast is strongly convex. It was shown in [7] that one can choose
the stepsizes and some parameters adaptively so that the resulting PDA achieves
faster \scrO (1/N2) convergence rate. Similar results have been obtained in [26] for PDA
with linesearch. In this section, we first propose an adaptive linesearch strategy for
GRPDA and then carry out a convergence analysis. By a sign change to the saddle
function, the minimax problem (1) is equivalent to

maxxminy\{ f\ast (y) + \langle  - K\top y, x\rangle  - g(x) | x \in \BbbR q, y \in \BbbR p\} ;(40)

by swapping ``maxx\in \BbbR q"" with ``miny\in \BbbR p"" and (g,K, x, q) with (f\ast , - KT , y, p), problem
(40) is reducible to (1). Thus, we need only treat the case when g is strongly convex,
while the case when f\ast is strongly convex can be treated in the same way, which is
thus omitted.

In the rest of this section, we assume that g is strongly convex with modulus
\gamma g > 0. The following algorithm is an adaptation of linesearch into GRPDA, which
exploits strong convexity of g since the modulus \gamma g plays a role in the choices of
parameters.

Algorithm 4.1 (GRPDA with linesearch when g is \gamma g-strongly convex).

Step 0. Let \psi 0 = 1.3247, . . . be the unique real root of \psi 3  - \psi  - 1 = 0. Choose
\psi \in (\psi 0, \phi ), \beta 0 > 0, \tau 0 > 0, and \mu \in (0, 1). Choose x0 = z0 \in \BbbR q and
y0 \in \BbbR p. Set \varphi = 1+\psi 

\psi 2 and n = 1.

D
ow

nl
oa

de
d 

05
/2

9/
23

 to
 1

30
.3

9.
16

9.
8 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1596 XIAO-KAI CHANG, JUNFENG YANG, AND HONGCHAO ZHANG

Step 1. Compute

zn =
\psi  - 1

\psi 
xn - 1 +

1

\psi 
zn - 1,(41)

xn = Prox\tau n - 1g(zn  - \tau n - 1K
\top yn - 1),(42)

\omega n =
\psi  - \varphi 

\psi + \varphi \gamma g\tau n - 1
,(43)

\beta n = \beta n - 1(1 + \gamma g\omega n\tau n - 1).(44)

Step 2. Let \tau = \varphi \tau n - 1 and compute

yn = Prox\beta n\tau nf\ast (yn - 1 + \beta n\tau nKxn),

where \tau n = \tau \mu i and i is the smallest nonnegative integer such that\sqrt{} 
\beta n\tau n\| K\top yn  - K\top yn - 1\| \leq 

\sqrt{} 
\psi /\tau n - 1\| yn  - yn - 1\| .(45)

Step 3. Set n\leftarrow n+ 1 and return to Step 1.

Similar to (16), yn defined in (4.1) can be rewritten as

yn = yn - 1 + \beta n\tau n(Kxn  - wn) with wn = Proxf/(\beta n\tau n)

\bigl( 
yn - 1/(\beta n\tau n) +Kxn

\bigr) 
.(46)

As in [9, Algorithm 4.1], \omega n plays a key role in establishing the accelerated rate. The
condition \psi > \psi 0, where \psi 0 is the unique real root of \psi 3  - \psi  - 1 = 0, ensures that
\psi > (1 + \psi )/\psi 2 = \varphi . Therefore, we have \omega n > 0 and \beta n > \beta n - 1 > 0 for all n \geq 1.

Next, we state a key lemma with respect to Algorithm 4.1, whose detailed proof
is left to Appendix B since it similar in spirit to that of Lemma 3.1.

Lemma 4.1. Let \{ (\tau n, \beta n) : n \geq 0\} be generated by Algorithm 4.1. Then, we have
the following properties. (i) The linesearch step of Algorithm 4.1, i.e., Step 2, always
terminates. (ii) There exists a constant c > 0 such that \beta n \geq cn2 for all n \geq 1. (iii)

There exists a constant \~c > 0 such that
\sum N
n=1 \tau n \leq \~c

\sum 
n\in \scrS N

\tau n for all N \geq 1, where

\scrS N :=
\bigl\{ 
1 \leq n \leq N :

\surd 
\beta n\tau n \geq 1/L

\bigr\} 
.

We next establish the promised \scrO (1/N2) ergodic convergence rate result. Since
g is strongly convex, x \star is unique.

Theorem 4.1 (global convergence and \scrO (1/N2) rate). Let \{ (zn, xn, yn, \beta n, \tau n) :
n \geq 1\} be generated by Algorithm 4.1, and let \{ wn : n \geq 1\} be defined in (46). Then,
the following holds:
(a) there exist C1, C2 > 0 such that \| zn+1 - x \star \| \leq C1/n and \| xn+1 - x \star \| \leq C2/n for
all n \geq 1;
(b) the sequence \{ yn : n \geq 1\} is bounded and there exists a subsequence of \{ yn : n \geq 1\} 
converging to y\ast such that (x \star , y\ast ) is a solution of (1);
(c) there exists a constant C3 > 0 such that for any N \geq 1 we have

| \Phi (\^xN , \^wN ) - \Phi (x \star , w \star )| \leq C3

N2
and \| K\^xN  - \^wN\| \leq 

2C3

\u cN2
,

where \u c > 0 is a constant satisfying \u c \geq 2\| y \star \| and

\^xN =
1

sN

N\sum 
n=1

\beta n\tau nxn and \^wN =
1

sN

N\sum 
n=1

\beta n\tau nwn with sN =

N\sum 
n=1

\beta n\tau n.(47)
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Proof. Since g is \gamma g-strongly convex, it follows from (42) and Fact 2.1 that

\langle xn  - zn + \tau n - 1K
\top yn - 1, x - xn\rangle (48)

\geq \tau n - 1

\biggl( 
g(xn) - g(x) +

\gamma g
2
\| xn  - x\| 2

\biggr) 
for all x.

By passing n+ 1 to n and x \star to x in (48), we obtain

\langle xn+1  - zn+1 + \tau nK
\top yn, x \star  - xn+1\rangle (49)

\geq \tau n
\biggl( 
g(xn+1) - g(x \star ) +

\gamma g
2
\| xn+1  - x \star \| 2

\biggr) 
.

Similarly, by passing xn+1 to x in (48) and multiplying both sides by \delta n = \tau n/\tau n - 1,
we obtain

(50)

\langle \delta n(xn  - zn) + \tau nK
\top yn - 1, xn+1  - xn\rangle \geq \tau n

\biggl( 
g(xn) - g(xn+1) +

\gamma g
2
\| xn+1  - xn\| 2

\biggr) 
.

Similar to (21), it follows from (46) that

 - \tau n
\bigl\langle 
yn - 1 + \beta n\tau n(Kxn  - wn), w \star  - wn

\bigr\rangle 
\geq \tau n

\bigl( 
f(wn) - f(w \star )

\bigr) 
.(51)

By adding (49)--(51), noting xn - zn = \psi (xn - zn+1), and using similar arguments as
in Lemma 3.2, we obtain for any y \in \BbbR p that

\tau nJ(xn, wn, y) \leq \langle xn+1  - zn+1, x
 \star  - xn+1\rangle +

1

\beta n

\bigl\langle 
yn  - yn - 1, y  - yn

\bigr\rangle 
z

+ \psi \delta n
\bigl\langle 
xn  - zn+1, xn+1  - xn

\bigr\rangle 
+ \tau n\langle K\top (yn  - yn - 1), xn  - xn+1\rangle 

 - \gamma g\tau n
2

\bigl( 
\| xn+1  - x \star \| 2 + \| xn+1  - xn\| 2

\bigr) 
,(52)

where J(\cdot ) is given in (17). By removing  - \gamma g\tau n2 \| xn+1  - xn\| 2 \leq 0 in (52), using (9),
(27), and Cauchy--Schwarz inequality, we obtain from direct calculations that

(53)

(1 + \gamma g\tau n)
\psi 

\psi  - 1
\| zn+2  - x \star \| 2 +

1

\beta n
\| yn  - y\| 2 + 2\tau nJ(xn, wn, y)

\leq \psi + \gamma g\tau n
\psi  - 1

\| zn+1  - x \star \| 2 +
1

\beta n
\| yn - 1  - y\| 2 +

\Bigl( 
\psi \delta n  - 1 - 1 + \gamma g\tau n

\psi 

\Bigr) 
\| xn+1  - zn+1\| 2

 - \psi \delta n\| zn+1  - xn\| 2  - \psi \delta n\| xn+1  - xn\| 2  - 
1

\beta n
\| yn  - yn - 1\| 2

+2\tau n\| K\top yn  - K\top yn - 1\| \| xn+1  - xn\| .

Recall that \delta n = \tau n/\tau n - 1. Similar to (25), we have

2\tau n\| K\top yn  - K\top yn - 1\| \| xn+1  - xn\| \leq \psi \delta n\| xn+1  - xn\| 2 +
1

\beta n
\| yn  - yn - 1\| 2.

Moreover, \psi \delta n  - 1 - 1+\gamma g\tau n
\psi \leq \psi \varphi  - 1 - 1

\psi  - 
\gamma g\tau n
\psi =  - \gamma g\tau n\psi since \delta n \leq \varphi . Thus, (53)
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1598 XIAO-KAI CHANG, JUNFENG YANG, AND HONGCHAO ZHANG

implies

(1 + \gamma g\tau n)
\psi 

\psi  - 1
\| zn+2 - x \star \| 2 +

1

\beta n
\| yn  - y\| 2 + 2\tau nJ(xn, wn, y)

\leq \psi + \gamma g\tau n
\psi  - 1

\| zn+1  - x \star \| 2 +
1

\beta n
\| yn - 1  - y\| 2

 - \gamma g\tau n
\psi 
\| xn+1  - zn+1\| 2.(54)

Note that (1 + \gamma g\tau n)
\psi 
\psi  - 1 =

\psi (1+\gamma g\tau n)
\psi +\gamma g\tau n+1

\psi +\gamma g\tau n+1

\psi  - 1 . It follows from \tau n+1 \leq \varphi \tau n that

\psi (1 + \gamma g\tau n)

\psi + \gamma g\tau n+1
\geq \psi (1 + \gamma g\tau n)

\psi + \gamma g\varphi \tau n
= 1 +

\psi  - \varphi 
\psi + \gamma g\varphi \tau n

\gamma g\tau n = 1 + \omega n+1\gamma g\tau n,

and thus

(1 + \gamma g\tau n)
\psi 

\psi  - 1
\geq (1 + \omega n+1\gamma g\tau n)

\psi + \gamma g\tau n+1

\psi  - 1
=
\beta n+1

\beta n

\psi + \gamma g\tau n+1

\psi  - 1
.(55)

Define An(x
 \star , y) :=

\psi +\gamma g\tau n
2(\psi  - 1) \| zn+1 - x \star \| 2+ 1

2\beta n
\| yn - 1 - y\| 2. Combining (54) and (55),

we deduce

\beta n+1An+1(x
 \star , y) + \beta n\tau nJ(xn, wn, y) \leq \beta nAn(x \star , y) - 

\beta n\gamma g\tau n
2\psi 

\| xn+1  - zn+1\| 2.(56)

By summing (56) over n = 1, . . . , N , we obtain

(57)

\beta N+1AN+1(x
 \star , y) +

N\sum 
n=1

\beta n\tau nJ(xn, wn, y) +

N\sum 
n=1

\beta n\gamma g\tau n
2\psi 

\| xn+1  - zn+1\| 2 \leq \beta 1A1(x
 \star , y).

Then, from the convexity of J(\cdot ) in (x,w), the nonnegativity of J(xn, wn, y
 \star ), the

definition of An(x
 \star , y), (47) and (57), we obtain

J(\^xN , \^wN , y) \leq 
1

sN

N\sum 
n=1

\beta n\tau nJ(xn, wn, y) \leq 
\beta 1A1(x

 \star , y)

sN
for all y \in \BbbR p,(58)

\| zN+2  - x \star \| 2 \leq 
2(\psi  - 1)

\psi + \gamma g\tau N+1

\beta 1A1(x
 \star , y \star )

\beta N+1
\leq 2\beta 1A1(x

 \star , y \star )

\beta N+1
.(59)

Then, it is easy to derive from (ii) of Lemma 4.1 and (59) that \| zN+1  - x \star \| \leq C1/N
with C1 :=

\sqrt{} 
2\beta 1A1(x \star , y \star )/c > 0 and thus \| xN+1  - x \star \| \leq C2/N for some C2 > 0,

which follows from (41). Hence, property (a) holds.
Let \scrS = \{ n \in \scrZ + :

\surd 
\beta n\tau n \geq 1/L\} . Properties (ii) and (iii) in Lemma 4.1

imply that | \scrS | =\infty . We next show by contradiction that there exists a subsequence
\{ nk : k \geq 1\} \subseteq \scrS such that

(60) lim
k\rightarrow \infty 

\| xnk+1  - znk+1\| /\tau nk
= 0.

Let N \geq 1 be arbitrarily fixed and \theta = (\psi  - \varphi )\gamma g/\psi > 0. Lemma 4.1 (ii) and (44)
imply

c(N + 1)2 \leq \beta N+1 = \beta N

\biggl( 
1 +

(\psi  - \varphi )\gamma g\tau N
\psi + \varphi \gamma g\tau N

\biggr) 
\leq \beta N

\bigl( 
1 + \theta \tau N

\bigr) 
\leq \beta 1

N\prod 
n=1

(1 + \theta \tau n) .
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Then, by Lemma 4.1 (iii) we deduce

2 ln(N + 1) - ln(\beta 1/c) \leq 
N\sum 
n=1

ln(1 + \theta \tau n) \leq \theta 
N\sum 
n=1

\tau n \leq \theta \~c
\sum 
n\in \scrS N

\tau n.(61)

On the other hand, it follows from (57) that

2\psi \beta 1A1(x
 \star , y \star )

\gamma g
\geq 
\sum 
n\in \scrS 

\beta n\tau 
3
n

\biggl( 
\| xn+1  - zn+1\| 

\tau n

\biggr) 2

\geq 1

L2

\sum 
n\in \scrS 

\tau n

\biggl( 
\| xn+1  - zn+1\| 

\tau n

\biggr) 2

,

from which the existence of a subsequence \{ nk : k \geq 1\} \subseteq \scrS such that (60) holds is
guaranteed since (61) indicates that

\sum 
n\in \scrS \tau n = limN\rightarrow \infty 

\sum 
n\in \scrS N

\tau n =\infty .
Now, it follows from (57) that \{ \beta nAn : n \geq 1\} is bounded, which implies that

\{ yn : n \geq 1\} is also bounded. Let \{ nk : k \geq 1\} \subseteq \scrS be the subsequence satisfying
(60), which then has a subsequence, still denoted as \{ nk : k \geq 1\} \subseteq \scrS , such that
limk\rightarrow \infty ynk

= y\ast . Similar to (32), for any (x, y) \in \BbbR q \times \BbbR p, we have

(62)

\Biggl\{ 
\langle xnk+1  - znk+1 + \tau nk

K\top ynk
, x - xnk+1\rangle \geq \tau nk

\bigl( 
g(xnk+1) - g(x)

\bigr) 
,\bigl\langle 

1
\beta nk

(ynk
 - ynk - 1) - \tau nk

Kxnk
, y  - ynk

\bigr\rangle 
\geq \tau nk

\bigl( 
f\ast (ynk

) - f\ast (y)
\bigr) 
.

Since nk \in \scrS , we have
\sqrt{} 
\beta nk

\tau nk
\geq 1/L, which together with \beta n \geq cn2 for some

c > 0 implies limk\rightarrow \infty \beta nk
\tau nk

=\infty . Hence, limk\rightarrow \infty \| ynk
 - ynk - 1\| /(\beta nk

\tau nk
) = 0 since

\{ yn : n \geq 1\} is bounded. Then, dividing \tau nk
from both sides of the two inequalities

in (62), taking k \rightarrow \infty , it follows from limn\rightarrow \infty xn = x \star , limk\rightarrow \infty ynk
= y\ast , lower

semicontinuous of g and f\ast , and (60) that (33) holds, which implies (x \star , y\ast ) is a
saddle point of (1). Hence, property (b) holds.

Finally, it follows from (44) and \omega n+1 < 1 that \beta n\tau n = (\beta n+1  - \beta n)/(\omega n+1\gamma g) \geq 
(\beta n+1  - \beta n)/\gamma g. Hence, we have from \beta n \geq cn2 that sN =

\sum N
n=1 \beta n\tau n \geq (\beta N+1  - 

\beta 1)/\gamma g \geq c1N
2 for some c1 > 0. Consequently, for any y \in \BbbR p, it follows from (58)

that

J(\^xN , \^wN , y) = \Phi (\^xN , \^wN ) + \langle y,K\^xN  - \^wN \rangle  - \Phi (x \star , w \star ) \leq \beta 1A1(x
 \star , y)/(c1N

2).

Taking the maximum of both sides over \| y\| \leq \u c, we obtain

\Phi (\^xN , \^wN ) + \u c\| K\^xN  - \^wN\|  - \Phi (x \star , w \star ) \leq C3/N
2,

where C3 = (\beta 1/c1) supy\{ A1(x
 \star , y) : \| y\| \leq \u c\} > 0. Hence, by noting \u c \geq 2\| y \star \| and

following similar arguments as in Theorem 3.2, we can then show that property (c)
holds.

5. Linear convergence under metric subregularity. In this section, we re-
consider Algorithm 3.1 with \sigma \in (0, 1] and establish its linear convergence rate under
the assumption that the subdifferential operators \partial g and \partial f\ast are globally and strongly
metric subregular (see section 2.3). In fact, when \sigma \in (0, 1) only locally strongly met-
ric subregularity is needed. Specifically, we make the following assumption.

Assumption 5.1. Let (x \star , w \star , y \star ) \in \Omega . Hence, (x \star , - K\top y \star ) \in gra(\partial g) and
(y \star ,Kx \star ) \in gra(\partial f\ast ). Assume that \partial g and \partial f\ast are globally and strongly metric sub-
regular, respectively, at x \star for  - K\top y \star and at y \star for Kx \star , i.e., there exist constants
\kappa g > 0 and \kappa f > 0 such that\Biggl\{ 

g(x) \geq g(x \star ) - \langle K\top y \star , x - x \star \rangle + \kappa g

2 \| x - x
 \star \| 2 for all x \in \BbbR q,

f\ast (y) \geq f\ast (y \star ) + \langle Kx \star , y  - y \star \rangle + \kappa f

2 \| y  - y
 \star \| 2 for all y \in \BbbR p.

(63)
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The conditions in (63) are known as quadratic growth conditions, which are equiv-
alent to the metric subregularity of \partial g and \partial f\ast ; see [1, 11]. Under Assumption 5.1,
the primal-dual solution pair (x \star , y \star ) is unique. We emphasize that \kappa g and \kappa f do not
need to be known since Algorithm 3.1 does not rely on them, and their existence will
be used in the analysis solely. Linear convergence results under metric subregular-
ity conditions have been achieved in [21] for a triangularly preconditioned PDA and
in [22] for PDA, which was analyzed within the framework of fixed-point iterations of
averaged operators. In contrast, how to analyze golden ratio type algorithms within
the framework of fixed-point iterations remains unclear. In the following, we provide
more direct analysis for establishing linear convergence which does not rely on the
theory of fixed-point iterations.

Let \{ \tau n : n \geq 0\} be the sequence generated by Algorithm 3.1, and let \delta n =
\tau n/\tau n - 1. For n \geq 1, define \theta n := min\{ 1/\chi (\tau n, \delta n), 1 + \beta \kappa f\tau n - 1\} , where, for \tau > 0
and 0 < \delta \leq \varphi , \chi (\tau , \delta ) is defined by

\chi (\tau , \delta ) := 1 - (\psi  - 1)min\{ kg, \psi \} min\{ \tau , \delta \} /(2\psi ).

Note that \psi > 1. Hence, without loss of generality, we can assume \kappa g > 0 is sufficiently
small such that \chi (\tau , \delta ) \in (0, 1) for any \tau > 0 and 0 < \delta \leq \varphi . We have the following
key lemma.

Lemma 5.1. Consider Algorithm 3.1 with \sigma \in (0, 1]. Then, we have the following
properties. (i) The linesearch step of Algorithm 3.1, i.e., Step 2, always terminates.
(ii) Under Assumption 5.1, there exist constants \theta > 1 and c > 0 such that \Gamma N+1 :=\prod N+1
n=2 \theta n \geq c\theta N for any integer N \geq 1.

Proof. The conclusion (i) with \sigma \in (0, 1) has already been shown in Lemma 3.1 (i).
Similarly, the conclusion (i) with \sigma = 1 can be also established. We now prove conclu-
sion (ii). By following almost exactly the same proof, we can show that Lemma 3.1
(iii) holds for any \sigma \in (0, 1], i.e., for any integer N \geq 1, we have | \scrK N | \geq \^cN for
some constant \^c > 0, where \scrK N = \{ 1 \leq n \leq N : \tau n \geq \tau and \delta n \geq 1/\varphi \} . Since
\chi (\tau n, \delta n) \in (0, 1), we have \theta n > 1 for all n \geq 1. Furthermore, for any n \in \scrK N , we
have \tau n \geq \tau and \delta n \geq 1/\varphi , and thus \tau n - 1 \geq \tau n/\varphi \geq \tau /\varphi since \tau n \leq \varphi \tau n - 1. Note
that \chi (\tau , \delta ) is nonincreasing with respect to both \tau and \delta . Hence, for any n \in \scrK N ,
we have

\theta n \geq min\{ 1/\chi (\tau , 1/\varphi ), 1 + \beta \kappa f\tau /\varphi 
\bigr\} 
=: \~\theta > 1.

Therefore, for any N \geq 1, it follows from | \scrK N | \geq \^cN that

\Gamma N+1 =
1

\theta 1

N+1\prod 
n=1

\theta n \geq 
1

\theta 1

\prod 
n\in \scrK N

\theta n \geq 
\~\theta | \scrK N | 

\theta 1
\geq 

\~\theta \^cN

\theta 1
= c\theta N ,

where \theta := \~\theta \^c > 1 and c := 1/\theta 1 > 0. This completes the proof.

For x \in \BbbR q and y \in \BbbR p, define\left\{     
P (x) := g(x) - g(x \star ) + \langle K\top y \star , x - x \star \rangle ,
D(y) := f\ast (y) - f\ast (y \star ) - \langle Kx \star , y  - y \star \rangle ,
H(x, y) := P (x) +D(y) - \kappa g

2 \| x - x
 \star \| 2  - \kappa f

2 \| y  - y
 \star \| 2.

(64)

Under Assumption 5.1, we have H(x, y) \geq 0 for any x \in \BbbR q and y \in \BbbR p. Based on
Lemma 5.1, we can establish the following nonergodic R-linear convergence results.
Some proof details are omitted due to the similarity to the previous arguments in
section 3.
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Theorem 5.1 (R-linear convergence). Let \{ (zn, xn, yn) : n \geq 1\} be the sequence
generated by Algorithm 3.1 with \sigma \in (0, 1]. Then, under Assumption 5.1, there exist
constants C1, C2 > 0 and \theta > 1 such that \| zn  - x \star \| \leq C1/\theta 

n and \| yn  - y \star \| \leq C2/\theta 
n

for all n \geq 1, which implies that \{ (zn, yn) : n \geq 1\} converges to (x \star , y \star ) R-linearly.

Proof. Following the proof of Lemma 3.2, one can easily show that

\tau nH(xn, yn) \leq \langle xn+1  - zn+1, x
 \star  - xn+1\rangle +

1

\beta 
\langle yn  - yn - 1, y

 \star  - yn\rangle 

+ \psi \delta n\langle xn  - zn+1, xn+1  - xn\rangle 

+ \tau n
\bigl\langle 
K\top (yn  - yn - 1), xn  - xn+1

\bigr\rangle 
 - \kappa g\tau n

2
\| xn  - x \star \| 2  - 

\kappa f\tau n
2
\| yn  - y \star \| 2,

where H(\cdot ) is defined in (64). Note that H(xn, yn) \geq 0 under Assumption 5.1. Hence,
by the same arguments as in (25)--(27), we can derive

\kappa g\tau n\| xn  - x \star \| 2 + \psi \delta n\| zn+1  - xn\| 2 +
\psi 

\psi  - 1
\| zn+2  - x \star \| 2 +

\Bigl( 1
\beta 
+ \kappa f\tau n

\Bigr) 
\| yn  - y \star \| 2

\leq \psi 

\psi  - 1
\| zn+1  - x \star \| 2 +

1

\beta 
\| yn - 1  - y \star \| 2.(65)

It is easy to see that \kappa g\tau n\| xn - x \star \| 2+\psi \delta n\| zn+1 - xn\| 2 \geq 1
2 min(\kappa g, \psi )min(\tau n, \delta n)\| zn+1

 - x \star \| 2. Furthermore, from the definition of \chi (\tau , \delta ), we have \psi 
\psi  - 1 - 

1
2 min(\kappa g, \psi )min(\tau n,

\delta n) = \chi (\tau n, \delta n)
\psi 
\psi  - 1 . Therefore, it follows from (65) that

\psi 

\psi  - 1
\| zn+2  - x \star \| 2 +

\Bigl( 1
\beta 
+ \kappa f\tau n

\Bigr) 
\| yn  - y \star \| 2 \leq \chi (\tau n, \delta n)

\psi 

\psi  - 1
\| zn+1  - x \star \| 2

+
1

\beta 
\| yn - 1  - y \star \| 2,

from which we deduce \theta n+1An+1 \leq An with \theta n+1 = min\{ 1/\chi (\tau n+1, \delta n+1), 1+\beta \kappa f\tau n\} 
and

An := \chi (\tau n, \delta n)
\psi 

\psi  - 1
\| zn+1  - x \star \| 2 +

1

\beta 
\| yn - 1  - y \star \| 2.(66)

Using \theta n+1An+1 \leq An inductively for n = 1, . . . , N and taking into account Lemma 5.1
(ii), we obtain AN+1 \leq A1/\Gamma N+1 \leq (A1/c)/\theta 

N . Furthermore, by the definition of
\chi (\tau , \delta ), \delta n \leq \varphi for all n and \varphi = (\psi + 1)/\psi 2, we see that

\chi (\tau N+1, \delta N+1) \geq 1 - (\psi  - 1)\psi \varphi /(2\psi ) = (\psi 2 + 1)/(2\psi 2) > 1/2.

Then, the claims of this theorem follow immediately from the definition of An in
(66).

Finally, we note that for \sigma < 1 the convergence of \{ (xn, yn) : n \geq 1\} generated
by Algorithm 3.1 to a solution of (1) has already been established in Theorem 3.1.
Hence, as mentioned previously, in this case the quadratic growth conditions given in
(63) need only be held locally for showing the R-linear convergence of Algorithm 3.1.

6. Numerical results. In this section, we present numerical results to demon-
strate the performance of the proposed Algorithms 3.1 and 4.1, which are denoted
by GRPDA-L and AGRPDA-L, respectively. We set \sigma = 0.99 for GRPDA-L and
\psi = 1.5 and \mu = 0.7 for both algorithms. First, choose y - 1 arbitrarily in a small
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1602 XIAO-KAI CHANG, JUNFENG YANG, AND HONGCHAO ZHANG

neighborhood of the starting point y0 such that K\top (y - 1  - y0) \not = 0 and then com-
pute \xi = \| y - 1  - y0\| /\| K\top (y - 1  - y0)\| \geq 1/L. Then, set \tau 0 = \xi 

\sqrt{} 
\psi /\beta \geq 

\sqrt{} 
\psi /\beta /L

for GRPDA-L and \tau 0 = \xi 
\sqrt{} 
\psi /\beta 0 \geq 

\sqrt{} 
\psi /\beta 0/L with some \beta 0 > 0 for AGRPDA-L.

We compare the proposed algorithms with their corresponding counterparts without
linesearch, i.e., GRPDA [9, Algorithm 3.1] with \tau =

\sqrt{} 
\psi /\beta /L and \psi = 1.618, and

the state-of-the-art PDA with linesearch, i.e., PDA-L [26, Algorithm 1], with \mu = 0.7,
\delta = 0.99, and \tau 0 = \| y - 1  - y0\| /(

\surd 
\beta \| K\top (y - 1  - y0)\| ). Other parameters will be

specified in the following.
All experiments were performed within Python 3.8 on an Intel Core i5-4590

CPU 3.30GHz PC with 8GB of RAM running on 64-bit Windows operating system.
For reproducible purpose, the codes are provided at https://github.com/cxk9369010/
GRPDA-Linesearch. We solve the minimax matrix game problem and the LASSO
problem for comparison.

Problem 6.1 (minimax matrix game). Let \Delta m = \{ x \in \BbbR m :
\sum 
i xi = 1, x \geq 0\} 

be the standard unit simplex in \BbbR m. The minimax matrix game problem is given by
minx\in \Delta q

maxy\in \Delta p
\langle Kx, y\rangle , where K \in \BbbR p\times q.

Clearly, Problem 6.1 is a special case of (1) with g = \iota \Delta q and f\ast = \iota \Delta p , where \iota C
denotes the indicator function of a set C. Since neither g nor f\ast is strongly convex,
only the nonaccelerated algorithms GRPDA, GRPDA-L, and PDA-L are relevant
here. For a feasible pair (x, y) \in \Delta q \times \Delta p, it is elementary to verify that the gap
between the primal function value of (2) and the dual function value of (3) is given
by (see also [8, sect. 7.1])

G(x, y) :=
\bigl( 
g(x) + f(Kx)

\bigr) 
 - 
\bigl( 
 - f\ast (y) - g\ast ( - K\top y)

\bigr) 
= max

1\leq i\leq p
(Kx)i  - min

1\leq j\leq q
(K\top y)j .

Initial points for all the algorithms are set to be x0 = 1
q (1, . . . , 1)

\top \in \BbbR q and y0 =
1
p (1, . . . , 1)

\top \in \BbbR p. The projection onto the unit simplex is computed by the algorithm

from [12]. We set \psi = 1.618 and \tau = \sigma = 1/\| K\| for GRPDA, and \beta = 1 for PDA-L
and GRPDA-L. As in [26], we generated K \in \BbbR p\times q randomly in four different ways
with random number generator seed = 50:

(i) All entries of K were generated independently from the uniform distribution
in [ - 1, 1], and (p, q) = (100, 100).

(ii) All entries of K were generated independently from the normal distribution
\scrN (0, 1), and (p, q) = (100, 100).

(iii) All entries of K were generated independently from the normal distribution
\scrN (0, 10), and (p, q) = (500, 100).

(iv) The matrix K is sparse with 10\% nonzero elements generated independently
from the uniform distribution in [0, 1], and (p, q) = (1000, 2000).

For a given \epsilon > 0, we terminate the algorithms when G(xn, yn) < \epsilon or n = nmax,
where nmax is the maximum number of iterations allowed. In this section, we set
nmax = 3 \times 105 and examine how the values of the primal-dual function value gap
G(xn, yn) decrease against CPU time. Table 1 presents the total CPU time (Time,
in seconds), the number of iterations (Iter), and the number of extra linesearch trial
steps (\#LS) of PDA-L and GRPDA-L as compared with their counterparts without
linesearch. We emphasize that for each trial of linesearch a projection onto the unit
simplex is required for this example. The decreasing behavior of the primal-dual
function value gap (abbreviated as PD gap) versus CPU time is shown in Figure 1
for the compared algorithms with \epsilon = 10 - 10. The details of linesearch are illustrated
in Figure 2.
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Table 1
Results on Problem 6.1. In the table, ``---"" represents that the algorithm reached the maximum

number of iterations without satisfying the stopping condition.

\epsilon Test
GRPDA PDA-L GRPDA-L

Iter Time Iter \#LS Time Iter \#LS Time

10 - 7

(i) 25688 3.7 18816 18582 4.2 12944 3824 2.1
(ii) 103788 14.6 41486 41014 9.2 31631 9345 6.8
(iii) --- --- 80040 79708 31.4 63815 18853 21.4
(iv) --- --- 56119 54803 115.7 30345 8958 60.5

10 - 10

(i) 151134 20.2 58879 58161 15.3 47564 14050 9.2
(ii) 245612 32.5 90415 89387 22.4 74378 21971 14.2
(iii) --- --- 161868 161182 67.3 144064 42558 48.2
(iv) --- --- --- --- --- --- --- ---
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(a) Test (i).
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(b) Test (ii).
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(c) Test (iii).
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(d) Test (iv).

Fig. 1. Comparison results of GRPDA, GRPDA-L, PDA-L, and aGRAAL on Problem 6.1:
primal-dual function value gap (vertical axes) versus CPU time (horizontal axes).

It can be seen from Table 1 that PDA-L requires approximately one extra line-
search trial step per outer iteration, while GRPDA-L requires roughly one extra line-
search trial step per three outer iterations. As a result, GRPDA-L consumed less
CPU time than PDA-L. From Figure 1, it is clear that GRPDA-L performs the best
for all four tests, followed by PDA-L, and both are faster than GRPDA. Test (iv) is
a difficult case, for which all the compared algorithms fail to reduce the primal-dual
function value gap to be less than 10 - 10 within the prescribed maximum number of
iterations. Figure 2 (a) shows that PDA-L takes 0--4 linesearch trials per iteration for
case (iii), while GRPDA-L takes 0--5 per iteration and on average GRPDA-L takes
much less extra linesearch steps than PDA-L (see the cumulative results in Figure
2 (b)). Note that here for illustration purposes, we only present results of the first
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0 50 100 150 200
iterations, n

0

1

2

3

4

5

6

# L
S

PDA-L

0 50 100 150 200
iterations, n

0

1

2

3

4

5

6

# L
S

GRPDA-L

(a) \# LS consumed by PDA-L and GRPDA-L.
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(b) Cumulative results of \#
LS.

Fig. 2. Details of linesearch steps for case (iii) of Problem 6.1. Left (a): comparison of
extra linesearch trial steps taken by PDA-L and GRPDA-L. Right (b): cumulative results for both
algorithms.

200 iterations of case (iii). For other cases, similar remarks can be said, e.g., for case
(i) PDA-L takes 0--2 linesearch trials per iteration, while GRPDA-L takes 0--3 per
iteration, and the total number of linesearch steps taken by GRPDA-L is again much
less than that of PDA-L.

Problem 6.2 (LASSO). Let K \in \BbbR p\times q be a sensing matrix, and let b \in \BbbR p be
an observation vector. One form of the LASSO problem is to recover a sparse signal
via solving

(67) min
x
F (x) := \eta \| x\| 1 +

1

2
\| Kx - b\| 2,

where \eta > 0 is a regularization parameter.

It is easy to verify that the LASSO problem (67) can be represented as the sad-
dle point problem (1) with g(x) = \eta \| x\| 1 and f\ast (y) = 1

2\| y\| 
2 + \langle b, y\rangle . Thus, the

proximal operator Prox\tau f\ast (\cdot ) is linear, and there is no extra matrix-vector multiplica-
tions needed within a linesearch step for GRPDA-L as K\top yn can always be obtained
via a convex combination of K\top yn - 1 and K\top (Kxn  - b). On the other hand, prob-
lem (1) is equivalent to (40). Then, by swapping ``maxx\in \BbbR q"" with ``miny\in \BbbR p"" and
(g,K, x, q) with (f\ast , - KT , y, p), the strong convexity of 1

2\| y\| 
2+ \langle b, y\rangle (previously f\ast )

can be transferred to g, which enables the application of the accelerated version, i.e.,
AGRPDA-L. Therefore, the algorithms to compare in this experiment are GRPDA-L,
AGRPDA-L, and PDA-L. GRPDA without linesearch will not be compared in this
case since it is less efficient.

We set seed = 100 and generate a random vector x\ast \in \BbbR q for which s random
coordinates are drawn from \scrN (0, 1) and the rest are set to be zero. Then, we generate
\omega \in \BbbR p with entries drawn from \scrN (0, 0.1) and set b = Kx\ast +\omega . The matrix K \in \BbbR p\times q
is constructed in the following ways:

(i) All entries of K are generated independently from \scrN (0, 1). The s entries of
x\ast are drawn from the uniform distribution in [ - 10, 10].

(ii) First, we generate a matrix A \in \BbbR p\times q, whose entries are independently drawn
from \scrN (0, 1). Then, for a scalar v \in (0, 1) we construct the matrix K column
by column as follows: K1 = A1/

\surd 
1 - v2 and Kj = vKj - 1 +Aj , j = 2, . . . , q.

Here Kj and Aj represent the jth column of K and A, respectively. As
v \in (0, 1) becomes larger, K becomes more ill-conditioned. In this experiment
we take v = 0.5 and v = 0.9, respectively. The sparse vector x\ast is generated
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in the same way as in case (i).
In both cases, the regularization parameter \eta was set to be 0.1. Similar to [26],

we set \beta = 400 for PDA-L and GRPDA-L. For AGRPDA-L, we set \gamma = 0.01 and
\beta 0 = 1 as in [9, 26]. The initial points for all algorithms are x0 = (0, . . . , 0)\top and
y0 = Kx0  - b.

In this experiment, we first ran all the algorithms by a sufficiently large number of
iterations and then chose the minimum attainable function value as an approximation
of the optimal value F \ast of (67). Again, for a given \epsilon > 0, we terminate the algorithms
when F (xn)  - F \ast < \epsilon or n = nmax. In this experiment, we set \epsilon = 10 - 12 and
nmax = 8 \times 104 to examine their convergence behavior. The comparison results on
the number of iterations, the number of extra linesearch steps, and CPU time are
given in Table 2. The evolution of function value residuals F (xn)  - F \ast versus CPU
time is given in Figure 3.

Table 2
Comparison results on the LASSO problem (67).

\epsilon Test
PDA-L GRPDA-L AGRPDA-L

Iter \#LS Time Iter \#LS Time Iter \#LS Time

10 - 8
(i) 4693 4619 13.7 4292 1251 11.5 2422 718 9.2

(ii) v = 0.5 6208 6161 20.3 5017 1465 16.5 1754 518 7.1
(ii) v = 0.9 27915 27902 92.2 26679 7869 83.3 7465 2208 32.5

10 - 12
(i) 11177 11020 32.8 9734 2859 26.1 3512 1038 13.2

(ii) v = 0.5 14621 14527 48.1 12145 3573 38.1 3124 925 12.9
(ii) v = 0.9 62928 62917 211.5 56059 16547 180.1 12209 3609 53.2

It can be seen from the results in Table 2 that a similar conclusion can be drawn,
i.e., PDA-L requires approximately one extra linesearch trial step per outer itera-
tion, while GRPDA-L and AGRPDA-L require roughly one extra linesearch trial step
per three outer iterations. Since the proximal operator Prox\tau f\ast (\cdot ) is linear and does
not incur extra computations, GRPDA-L and PDA-L perform similarly, although
GRPDA-L performs slightly better, in terms of outer iteration and CPU time. In
comparison, AGRPDA-L, which takes advantage of strong convexity, is much faster
than both GRPDA-L and PDA-L. The detailed convergence behavior of the three
algorithms is given in Figure 3. From these results, we see that strong convexity of
the component functions, if properly explored, could significantly improve the perfor-
mance of primal-dual type algorithms.

7. Conclusions. In this paper, we have incorporated linesearch strategy into
the GRPDA recently proposed in [9]. Global convergence and \scrO (1/N) ergodic con-
vergence rate measured by the function value gap and constraint violations are es-
tablished in the general convex case. When one of the component functions is
strongly convex, accelerated GRPDA with linesearch is proposed, which achieves
faster \scrO (1/N2) ergodic rate of convergence quantified by the same measures. Further-
more, when the subdifferential operators of both component functions are strongly
metric subregular, R-linear convergence results are established. The proposed line-
search strategy does not require evaluating the spectral norm of K and adopts po-
tentially much larger stepsizes. In many practical cases, such as the regularized least-
squares problem, the proposed linesearch strategy only requires minimal extra compu-
tational cost and thus is particularly useful. Our numerical experiments on minimax
matrix game and LASSO problems demonstrate the benefits gained by incorporat-
ing our proposed linesearch and taking advantage of strong convexity of component
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(a) Case (i).
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(b) Case (ii) with v = 0.5.
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(c) Case (ii) with v = 0.9.

Fig. 3. Experimental results on the LASSO problem. Decreasing behavior of function value
versus CPU time. From left to right: case (i) with (p, q, s) = (1000, 2000, 100), case (ii) with
(p, q, s, v) = (1000, 2000, 10, 0.5), and case (ii) with (p, q, s, v) = (1000, 2000, 10, 0.9).

functions in the objective function. Experimentally, the extra linesearch trial steps
used by golden ratio type primal-dual algorithms are about one-third of those pro-
posed by Malitsky and Pock [26] and larger stepsizes can be accepted, which could
be significant when the evaluations of proximal operators are highly nontrivial.

Appendix A. Proof of Lemma 3.1.

Proof. (i) Since (15) is fulfilled whenever \tau n satisfies
\surd 
\beta \tau nL \leq \sigma 

\sqrt{} 
\psi /\tau n - 1, we

have from \tau n = \varphi \tau n - 1\mu 
i that (15) is fulfilled whenever

\sqrt{} 
\mu i \leq \tau /\tau n - 1. Hence, (15)

will be fulfilled by the linesearch procedure in Step 2 of Algorithm 3.1 since \mu \in (0, 1).
(ii) We consider two cases.
Case 1. There exists a \=k such that \tau n \geq \tau for all n \geq \=k. If there is no infinite

subsequence \{ nk : k \geq 1\} \subseteq \{ 1, 2, . . .\} such that \delta nk
\geq \rho , we have \delta n < \rho < 1 for

all n sufficiently large. Then, we will have from \tau n = \tau 0
\prod n
i=1 \delta i and \rho < 1 that

limn\rightarrow \infty \tau n = 0, which contradicts with \tau n \geq \tau for all n \geq \=k. Hence, in this case,
property (ii) holds.

Case 2. There exists an infinite subsequence \{ ni : i \geq 1\} such that \tau ni
< \tau . By

the linesearch procedure in Step 2, for any \tau n \leq \tau , the initial trial \tau n+1 = \varphi \tau n will
satisfy (15) and be accepted by the linesearch. Hence, defining \ell (t) = \lfloor log\varphi (\tau /t)\rfloor 
where t < \tau , we have the following property:

If \tau n < \tau , then with k\prime := n+ \ell (\tau n) we have

\tau k < \tau and \tau k+1 = \varphi \tau k for all k = n, n+ 1, . . . , k\prime , and \tau \leq \tau k\prime +1 < \varphi \tau .(68)

Here, \lfloor t\rfloor is the largest integer less than or equal to t. So, for any \tau ni < \tau , we have
\tau k\prime +1 \geq \tau , where k\prime = ni + \ell (\tau ni). In addition, we have \delta k\prime +1 = \tau k\prime +1/\tau k\prime = \varphi > \rho .
Hence, in this case property (ii) also holds.

(iii) First, if \tau 0 < \tau , by property (68), we have \tau s = \tau 0\varphi 
s \geq \tau , where s = \ell (\tau 0)+1.

Hence, without loss of generality, to show property (iii), we can simply assume \tau 1 \geq \tau .
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GOLDEN RATIO PRIMAL-DUAL ALGORITHM WITH LINESEARCH 1607

Now, we show the following property:

(69) For any \tau n - 1 \geq \tau and \tau n < \tau , we have that (70) and (71) hold.

Since \tau n < \tau n - 1, by the linesearch procedure in Step 2, we have \tau n = \varphi \tau n - 1\mu 
j with

j \geq 1 and
\sqrt{} 
\beta \varphi \tau n - 1\mu j - 1L > \sigma 

\sqrt{} 
\psi /\tau n - 1, which is equivalent to

(70) \tau n - 1 > \tau \mu  - (j - 1)/2.

On the other hand, by (70) and j \geq 1, we have

1 + \ell (\tau n) = 1 + \lfloor log\varphi (\tau /\tau n)\rfloor = 1 + \lfloor log\varphi (\tau /(\varphi \tau n - 1\mu 
j))\rfloor 

= \lfloor log\varphi (\tau /(\tau n - 1\mu 
j))\rfloor \leq 

\biggl\lfloor 
j + 1

2
log\varphi (1/\mu )

\biggr\rfloor 
\leq j log\varphi (1/\mu ).(71)

Let \scrZ + := \{ 1, 2, 3, . . .\} be the set of positive integers. Given two integers i1 \leq i2,
let interval [i1, i2] := \{ i \in \scrZ + : i1 \leq i \leq i2\} and interval [i1,\infty ) := \{ i \in \scrZ + : i1 \leq 
i < \infty \} . Then, based on properties (68), (69) and the assumption \tau 1 \geq \tau , there

exist a set of positive integers \scrK := \cup | \scrK | 
i=1\{ ki\} \subseteq \scrZ + and an associated integer set

\scrM := \cup | \scrK |  - 1
i=1 \{ mi\} \subseteq \scrZ +, where | \scrK | \geq 1 denotes the cardinality of \scrK that is either a

finite number or infinity, such that they partition \scrZ +, i.e., \scrZ + = \cup \infty i=1[ki, ki+1  - 1]

if | \scrK | = \infty or \scrZ + = \cup | \scrK |  - 1
i=1 [ki, ki+1  - 1] \cup [k| \scrK | ,\infty ) if | \scrK | < \infty , and the following

properties hold:
(a) k1 = 1 and ki < mi < ki+1 for all i.
(b) \tau k \geq \tau for all k \in [ki,mi  - 1] and \tau k < \tau for all k \in [mi, ki+1  - 1]; see the

diagram below

. . . , ki  - 1,

\tau k\geq \tau , (mi - ki) times\underbrace{}  \underbrace{}  
ki, . . . , mi  - 1,

\tau k<\tau , (ki+1 - mi) times\underbrace{}  \underbrace{}  
mi, . . . , ki+1  - 1, ki+1, . . . .

(c) If | \scrK | < \infty , \tau k \geq \tau for all k \geq k| \scrK | ; otherwise, | \scrK | = \infty and \scrZ + =
\cup \infty i=1[ki, ki+1  - 1].

(d) \tau ki < \varphi \tau by property (68) for all ki \in \scrK \setminus \{ k1\} .
(e) \tau mi - 1 > \tau \mu  - (j - 1)/2 by (70) and ki+1 - mi = \ell (\tau mi

)+1 \leq j log\varphi (1/\mu ) by (71)
for all mi \in \scrM and some j \geq 1 depending on mi.

Consider [ki, l], where l \in [ki,mi  - 1]. Since \tau l = \tau ki - 1

\prod l
j=ki

\delta j , \tau ki - 1 < \tau , and

\tau l \geq \tau , we have
\prod l
j=ki

\delta j \geq 1. Then, it follows from \delta j \leq \varphi for all j that
\bigm| \bigm| \{ ki \leq j \leq 

l : \delta j \geq 1/\varphi \} 
\bigm| \bigm| \geq \bigl\lfloor l - ki+1

2

\bigr\rfloor 
+ 1, and thus

(72)
\bigm| \bigm| \{ ki \leq j \leq l : \tau j \geq \tau and \delta j \geq 1/\varphi \} 

\bigm| \bigm| \geq \Bigl\lfloor l  - ki + 1

2

\Bigr\rfloor 
+1 for all l \in [ki,mi - 1].

Now, we consider any interval [ki, ki+1  - 1] = [ki,mi  - 1] \cup [mi, ki+1  - 1]. Let j \geq 1
be the integer associated with mi such that property (e) holds. Since \tau k+1 \leq \varphi \tau k
for all k, we have \tau mi - 1 < \tau ki\varphi 

mi - 1 - ki . Then, by properties (d) and (e), for ki \not =
k1 = 1, we have \tau ki < \varphi \tau and \tau mi - 1 \geq \tau \mu  - (j - 1)/2, which together with the above
inequality gives \tau \mu  - (j - 1)/2 \leq \tau mi - 1 < \tau ki\varphi 

mi - 1 - ki < \tau \varphi mi - ki , which is equivalent
to (j  - 1) log\varphi (1/

\surd 
\mu ) < mi  - ki. For ki = k1 = 1, we have \tau \mu  - (j - 1)/2 < \tau 1\varphi 

mi - 2, or

(j - 1) log\varphi (1/
\surd 
\mu ) \leq log\varphi 

\bigl( 
\tau 1/\tau 

\bigr) 
+mi - 2. So, there exists an integer constant \=j \geq 1,

which does not depend on either ki or mi, such that

(73) mi  - ki \geq j
4 log\varphi (1/\mu ) whenever j \geq \=j.
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1608 XIAO-KAI CHANG, JUNFENG YANG, AND HONGCHAO ZHANG

Next, we show that there exists a constant \=c > 0, which does not depend on mi or
[ki, ki+1  - 1], such that

(74) mi  - ki \geq \=c (ki+1  - mi).

Noticing that by property (e), we have ki+1  - mi \leq j log\varphi (1/\mu ). Hence, it follows
from (73) that if j \geq \=j, we have

mi  - ki \geq 
log\varphi (1/\mu )

4 log\varphi (1/\mu )
(ki+1  - mi) =

1

4
(ki+1  - mi).

On the other hand, if 1 \leq j < \=j, we have from ki+1  - mi \leq j log\varphi (1/\mu ) that

mi  - ki \geq 1 > j/\=j \geq ki+1  - mi

\=j log\varphi (1/\mu )
.

Hence, (74) holds with \=c = min\{ 1/(\=j log\varphi (1/\mu )), 1/4\} > 0.
It follows from (74) that mi  - ki \geq \~c (ki+1  - ki) with \~c := \=c/(1 + \=c) \in (0, 1). If

| \scrK | = \infty , given any N \geq 1, it follows from property (c) that N \in [ki, ki+1  - 1] for
certain i \geq 1. Hence, by the definition of \scrK N = \{ 1 \leq n \leq N : \tau n \geq \tau , \delta n \geq 1/\varphi \} , we
have \scrK N = \cup ij=1 (\scrK N \cap [kj , kj+1  - 1]). Then, it follows from (72), (74), and property
(b) that

| \scrK N | =
i\sum 

j=1

| \scrK N \cap [kj , kj+1  - 1]| \geq 
i\sum 

j=1

| \scrK N \cap [kj ,mj  - 1]| 

\geq 
\Bigl\lfloor min\{ N,mi  - 1\}  - ki + 1

2

\Bigr\rfloor 
+ 1 +

i - 1\sum 
j=1

\Bigl( \Bigl\lfloor mj  - kj
2

\Bigr\rfloor 
+ 1
\Bigr) 

\geq 1

2

\biggl( 
min\{ N,mi  - 1\}  - ki + 1 +

i - 1\sum 
j=1

(mj  - kj)
\biggr) 

\geq \~c

2

\biggl( 
N  - ki + 1 +

i - 1\sum 
j=1

(kj+1  - kj)
\biggr) 

= \v cN,(75)

where \v c = \~c/2 \in (0, 1) and the last ``\geq "" is becausemi - ki \geq \~c (ki+1 - ki), ki+1 \geq N+1,
and \~c < 1. If | \scrK | < \infty , by property (c), for all n \geq k| \scrK | we have \tau n \geq \tau , and by

following the same arguments as for (72) we have
\bigm| \bigm| \{ k| \scrK | \leq j \leq n : \tau j \geq \tau and \delta j \geq 

1/\varphi \} 
\bigm| \bigm| \geq \bigl\lfloor n - k| \scrK | +1

2

\bigr\rfloor 
+1. This property, together with (75), implies that for all N \geq 1

we have | \scrK N | \geq \^cN for some \^c > 0.

Appendix B. Proof of Lemma 4.1.

Proof. (i) This conclusion follows almost from an identical proof of conclusion (i)
in Lemma 3.1 except by replacing \beta by \beta n and setting \sigma = 1.

(ii) Let h(\tau ) := 1+
(\psi  - \varphi )\gamma g\tau 
\psi +\varphi \gamma g\tau 

. Since h(\tau ) is strictly increasing with respect to \tau > 0,

we have that 1 < 1 + \gamma g\omega n\tau n - 1 = h(\tau n - 1) < \varsigma := \psi /\varphi . So, by (44), \beta n - 1 < \beta n =

\beta n - 1h(\tau n - 1) < \varsigma \beta n - 1. Therefore, for any
\sqrt{} 
\beta n - 1\tau n - 1 \leq 1/L, we have

\surd 
\beta n\tau n - 1 \leq \sqrt{} 

\varsigma \beta n - 1\tau n - 1 \leq 
\surd 
\varsigma /L = 1

L

\sqrt{} 
\psi 
\varphi , which by the linesearch procedure in Step 2 implies

that the initial trial \tau n = \varphi \tau n - 1 will satisfy (45) and be accepted by the linesearch.
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GOLDEN RATIO PRIMAL-DUAL ALGORITHM WITH LINESEARCH 1609

Hence, analogous to property (68), we have the following property.

If
\surd 
\beta n\tau n <

1
L , then there exists an integer \ell n \geq 0 such that k\prime := n+ \ell n satisfies

\surd 
\beta k\tau k <

1
L and \tau k+1 = \varphi \tau k for all k = n, n+ 1, . . . , k\prime , and

\sqrt{} 
\beta k\prime +1\tau k\prime +1 \geq 1

L ,(76)

which, by \beta n < \beta n+1 < \varsigma \beta n and \tau n+1 \leq \varphi \tau n for all n \geq 1, also implies

(77) \ell n \leq \vargamma 
\bigl( \sqrt{} 

\beta n\tau n
\bigr) 

and
\sqrt{} 
\beta k\prime +1\tau k\prime +1 <

\sqrt{} 
\varsigma \beta k\prime \varphi \tau k\prime =

\sqrt{} 
\psi \varphi 
\sqrt{} 
\beta k\prime \tau k\prime < \theta ,

where \vargamma (t) := \lfloor log\varphi (1/(Lt))\rfloor for t < 1/L and \theta :=
\surd 
\psi \varphi /L.

Analogous to property (69), we show the following property:

(78) For any
\sqrt{} 
\beta n - 1\tau n - 1 \geq 1

L and
\surd 
\beta n\tau n <

1
L , we have that (79) and (80) hold.

Since \beta n > \beta n - 1 and
\surd 
\beta n\tau n <

\sqrt{} 
\beta n - 1\tau n - 1, by the linesearch procedure in Step 2,

we have \tau n = \varphi \tau n - 1\mu 
j with j \geq 1 and

\sqrt{} 
\beta n\varphi \tau n - 1\mu j - 1L >

\sqrt{} 
\psi /\tau n - 1, which gives

(79)
\sqrt{} 
\beta n\tau n - 1 \geq 

\sqrt{} 
\psi 

\varphi 

\mu  - j - 1
2

L
and

\sqrt{} 
\beta n - 1\tau n - 1 >

\sqrt{} 
\beta n/\varsigma \tau n - 1 \geq 

\mu  - j - 1
2

L
.

It follows from (77), \psi > \varphi > 1, j \geq 1, and (79) that

1 + \ell n \leq 1 + \vargamma (
\sqrt{} 
\beta n\tau n) = 1 +

\Bigl\lfloor 
log\varphi 

\bigl( 
1/(L

\sqrt{} 
\beta n\tau n)

\bigr) \Bigr\rfloor 
= 1 +

\Bigl\lfloor 
log\varphi 

\bigl( 
1/(L

\sqrt{} 
\beta n\varphi \tau n - 1\mu 

j)
\bigr) \Bigr\rfloor 

=
\Bigl\lfloor 
log\varphi (1/(L

\sqrt{} 
\beta n\tau n - 1\mu 

j))
\Bigr\rfloor 

\leq 
\biggl\lfloor 
j + 1

2
log\varphi (1/\mu ) +

1

2
log\varphi (\varphi /\psi )

\biggr\rfloor 
\leq j log\varphi (1/\mu ).(80)

Let \scrZ + := \{ 1, 2, . . .\} be the set of positive integers. Given two integers i1 \leq i2,
let [i1, i2] := \{ i \in \scrZ + : i1 \leq i \leq i2\} and [i1,\infty ) := \{ i \in \scrZ + : i1 \leq i < \infty \} . To
show this lemma, without loss of generality, by property (76), we can simply assume\surd 
\beta 1\tau 1 \geq 1/L. Then, based on properties (76) and (78), there exist a set of positive

integers \scrK := \cup | \scrK | 
i=1\{ ki\} \subseteq \scrZ + and an associated integer set \scrM := \cup | \scrK |  - 1

i=1 \{ mi\} \subseteq 
\scrZ +, where | \scrK | \geq 1 denotes the cardinality of \scrK that is either a finite number or
infinity, such that they partition \scrZ +, i.e., \scrZ + = \cup \infty i=1[ki, ki+1  - 1] if | \scrK | = \infty or

\scrZ + = \cup | \scrK |  - 1
i=1 [ki, ki+1  - 1] \cup [k| \scrK | ,\infty ) if | \scrK | <\infty , and the following properties hold:

(a) k1 = 1 and ki < mi < ki+1 for all i.
(b)
\surd 
\beta k\tau k \geq 1/L for all k \in [ki,mi - 1] and

\surd 
\beta k\tau k < 1/L for all k \in [mi, ki+1 - 1].

(c) If | \scrK | < \infty ,
\surd 
\beta k\tau k \geq 1/L for all k \geq k| \scrK | ; otherwise, | \scrK | = \infty and \scrZ + =

\cup \infty i=1[ki, ki+1  - 1].
(d)

\sqrt{} 
\beta ki\tau ki < \theta by (77) for all ki \in \scrK \setminus \{ k1\} , where \theta =

\surd 
\psi \varphi /L.

(e)
\sqrt{} 
\beta mi - 1\tau mi - 1 > \mu  - (j - 1)/2/L by (79) and ki+1 - mi = \ell mi

+1 \leq j log\varphi (1/\mu )
by (80) for all mi \in \scrM and some j \geq 1 depending on mi, where \ell mi

is defined
in property (76) associated with

\sqrt{} 
\beta mi

\tau mi
.

Now, we consider any interval [ki, ki+1  - 1] = [ki,mi  - 1] \cup [mi, ki+1  - 1]. Let j \geq 1
be the integer associated with mi such that property (e) holds. Since

\sqrt{} 
\beta k+1\tau k+1 <\surd 

\varsigma \beta k\varphi \tau k =
\surd 
\psi \varphi 
\surd 
\beta k\tau k for all k, we have\sqrt{} 

\beta mi - 1\tau mi - 1 <
\sqrt{} 
\beta ki\tau ki\rho 

(mi - 1 - ki)/2,
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1610 XIAO-KAI CHANG, JUNFENG YANG, AND HONGCHAO ZHANG

where \rho := \psi \varphi > 1. By properties (d) and (e), for ki \not = k1 = 1, we have
\sqrt{} 
\beta ki\tau ki < \theta 

and
\sqrt{} 
\beta mi - 1\tau mi - 1 \geq \mu  - (j - 1)/2/L, which together with the above inequality gives

\mu  - (j - 1)/2/L < \theta \rho (mi - 1 - ki)/2 \Leftarrow \Rightarrow j log\rho (1/\mu ) < log\rho 
\bigl( 
(\theta L)2/(\mu \rho )

\bigr) 
+mi  - ki

= log\rho 
\bigl( 
1/\mu 

\bigr) 
+mi  - ki.

For ki = k1 = 1, we have j log\rho (1/\mu ) \leq log\rho 
\bigl( 
(\theta 1L)

2/(\mu \rho )
\bigr) 
+mi - 1, where \theta 1 :=

\surd 
\beta 1\tau 1.

So, there exists an integer constant \=j \geq 1, which does not depend on either ki or mi,
such that

(81) mi  - ki \geq j
2 log\rho (1/\mu ) whenever j \geq \=j.

Next, we show that there exists a constant \=c > 0, which does not depend on mi, such
that

(82) mi  - ki \geq \=c (ki+1  - mi + 1).

Notice that by property (e), we have

(83) ki+1  - mi + 1 \leq j log\varphi (1/\mu ) + 1 \leq j (log\varphi (1/\mu ) + 1).

Hence, it follows from (81) and (83) that whenever j \geq \=j we have

mi  - ki \geq 
log\rho (1/\mu )

2(log\varphi (1/\mu ) + 1)
(ki+1  - mi + 1).

On the other hand, if 1 \leq j < \=j, then by (83) we have

mi  - ki \geq 1 > j/\=j \geq ki+1  - mi + 1
\=j
\bigl( 
log\varphi (1/\mu ) + 1

\bigr) .
Hence, (82) holds with \=c = min\{ 1/(\=j(log\varphi (1/\mu )+1)), log\rho (1/\mu )/(2(log\varphi (1/\mu )+1))\} >
0.

Now, by (44) we have \beta n+1 = \beta nh(\tau n) = \beta n(1+tn), where tn =
(\psi  - \varphi )\gamma g\tau n
\psi +\varphi \gamma g\tau n

. Then,

we have \sqrt{} 
\beta n+1  - 

\sqrt{} 
\beta n =

\beta n+1  - \beta n\sqrt{} 
\beta n+1 +

\surd 
\beta n

=
tn\beta n\sqrt{} 

\beta n+1 +
\surd 
\beta n

(84)

\geq tn\beta n

(
\surd 
\varsigma + 1)

\surd 
\beta n
\geq \~cmin\{ \tau n, 1\} 

\sqrt{} 
\beta n,

where \~c > 0 is some constant. Consider any k \in [ki, ki+1 - 1] = [ki,mi - 1]\cup [mi, ki+1 - 
1]. If k \in [mi, ki+1  - 1], by (82) we have

(85)
mi  - ki

ki+1  - ki + 1
=

mi  - ki
(mi  - ki) + (ki+1  - mi + 1)

\geq 1

1 + 1/\=c
=

\=c

1 + \=c
,

and it thus follows from (84), property (b), \beta n \geq \beta 0 > 0, and (85) that

\sqrt{} 
\beta k  - 

\sqrt{} 
\beta ki =

k - 1\sum 
n=ki

\Bigl( \sqrt{} 
\beta n+1  - 

\sqrt{} 
\beta n

\Bigr) 
\geq \~c

k - 1\sum 
n=ki

min\{ \tau n, 1\} 
\sqrt{} 
\beta n

\geq \~c

mi - 1\sum 
n=ki

min\{ \tau n, 1\} 
\sqrt{} 
\beta n \geq \~c

mi - 1\sum 
n=ki

min\{ 1/L,
\sqrt{} 
\beta 0\} 

= \~c(mi  - ki)min\{ 1/L,
\sqrt{} 
\beta 0\} \geq \^c(ki+1  - ki + 1) \geq \^c (k  - ki + 1),(86)
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where \^c := \~c \=cmin\{ 1/L,
\surd 
\beta 0\} /(1+\=c) > 0, and \=c and \~c are constants given in (82) and

(84), respectively. On the other hand, if k \in [ki,mi  - 1], similar to (86) we can show

(87)
\sqrt{} 
\beta k  - 

\sqrt{} 
\beta ki \geq \~cmin\{ 1/L,

\sqrt{} 
\beta 0\} (k  - ki) \geq \^c (k  - ki).

If | \scrK | = \infty , given any n \geq 1, it follows from property (c) that n \in [ki, ki+1  - 1] for
certain i \geq 1. Hence, by (86), (87), and 0 < \beta j < \beta j+1 for any j \geq 1, we have

\sqrt{} 
\beta n =

\sqrt{} 
\beta n  - 

\sqrt{} 
\beta ki +

i - 1\sum 
j=1

\Bigl( \sqrt{} 
\beta kj+1

 - 
\sqrt{} 
\beta kj

\Bigr) 
+
\sqrt{} 
\beta k1

=
\sqrt{} 
\beta n  - 

\sqrt{} 
\beta ki +

i - 1\sum 
j=1

\Bigl[ \Bigl( \sqrt{} 
\beta kj+1 - 1  - 

\sqrt{} 
\beta kj

\Bigr) 
+
\Bigl( \sqrt{} 

\beta kj+1
 - 
\sqrt{} 
\beta kj+1 - 1

\Bigr) \Bigr] 
+
\sqrt{} 
\beta k1

\geq 
\sqrt{} 
\beta n  - 

\sqrt{} 
\beta ki +

i - 1\sum 
j=1

\Bigl( \sqrt{} 
\beta kj+1 - 1  - 

\sqrt{} 
\beta kj

\Bigr) 

\geq \^c

\biggl[ 
(n - ki) +

i - 1\sum 
j=1

(kj+1  - kj)
\biggr] 
= \^c (n - 1).(88)

If | \scrK | < \infty , by property (c), for any k \geq k| \scrK | we have
\surd 
\beta k\tau k \geq 1/L and thus\surd 

\beta k  - 
\sqrt{} 
\beta k| \scrK | \geq \^c(k  - k| \scrK | ). This together with (86) and property (c) also implies

(88) holds for n \geq 1, and thus conclusion (ii) follows.
(iii). Note that for any

\sqrt{} 
\beta p\tau p \geq 

\sqrt{} 
\beta q\tau q with p \leq q, we have from \beta p \leq \beta q that

\tau p \geq \tau q. So, based on property (b) in (ii) and (82), we have from (82) the property

(b\prime ) \tau p \geq \tau qz for all p \in [ki,mi  - 1], q \in [mi, ki+1  - 1]

and therefore

mi - 1\sum 
n=ki

\tau n \geq \=c

ki+1 - 1\sum 
n=mi

\tau n.

Let \scrK \subset \scrZ + be the set given in the proof of (ii). If | \scrK | =\infty , then for any N \geq 1
it follows from property (c) that N \in [kj , kj+1  - 1] for certain j \geq 1 = k1. Hence, we
have from property (b\prime ) that

N\sum 
n=1

\tau n =

N\sum 
n=kj

\tau n +

j - 1\sum 
s=1

ks+1 - 1\sum 
n=ks

\tau n =

N\sum 
n=kj

\tau n +

j - 1\sum 
s=1

\left(  ms - 1\sum 
n=ks

\tau n +

ks+1 - 1\sum 
n=ms

\tau n

\right)  
\leq (1 + 1/\=c)

min\{ N,mj - 1\} \sum 
n=kj

\tau n +

j - 1\sum 
s=1

\Biggl( 
ms - 1\sum 
n=ks

\tau n + 1/\=c

ms - 1\sum 
n=ks

\tau n

\Biggr) 

= (1 + 1/\=c)

\left(  min\{ N,mj - 1\} \sum 
n=kj

\tau n +

j - 1\sum 
s=1

ms - 1\sum 
n=ks

\tau n

\right)  = (1 + 1/\=c)
\sum 
n\in \scrS N

\tau n.

When | \scrK | < \infty , we can also similarly prove that
\sum N
n=1 \tau n \leq (1 + 1/\=c)

\sum 
n\in \scrS N

\tau n for

any N \geq 1, because
\surd 
\beta n\tau n \geq 1/L for all n \geq k| \scrK | . The proof is completed by letting

\~c = 1 + 1/\=c.
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