
20

Algorithm 1035: A Gradient-based Implementation of the

Polyhedral Active Set Algorithm

WILLIAM W. HAGER, University of Florida, USA

HONGCHAO ZHANG, Louisiana State University, USA

The Polyhedral Active Set Algorithm (PASA) is designed to optimize a general nonlinear function over a

polyhedron. Phase one of the algorithm is a nonmonotone gradient projection algorithm, while phase two is

an active set algorithm that explores faces of the constraint polyhedron. A gradient-based implementation is

presented, where a projected version of the conjugate gradient algorithm is employed in phase two. Asymp-

totically, only phase two is performed. Comparisons are given with IPOPT using polyhedral-constrained

problems from CUTEst and the Maros/Meszaros quadratic programming test set.

CCS Concepts: • Theory of computation→ Mathematical optimization; Nonconvex optimization;

Additional Key Words and Phrases: Nonlinear optimization, polyhedral-constrained optimization, active set

method, gradient projection method, projection on polyhedron, conjugate gradient method, PASA, PPROJ,

CG_DESCENT, NAPHEAP

ACM Reference format:

William W. Hager and Hongchao Zhang. 2023. Algorithm 1035: A Gradient-based Implementation of the

Polyhedral Active Set Algorithm. ACM Trans. Math. Softw. 49, 2, Article 20 (June 2023), 13 pages.

https://doi.org/10.1145/3583559

1 INTRODUCTION

The polyhedral active set algorithm PASA is designed to solve the problem

min f (x) subject to x ∈ Ω, (1)

where f : Rn → R and Ω is a polyhedron. Throughout the article, it is assumed that

Ω = {x ∈ Rn : Ax ≤ b}, (2)

where A ∈ Rm×n and b ∈ Rm . The PASA software, however, utilizes the representation

Ω = {x ∈ Rn : bl ≤ Ax ≤ bu, lo ≤ x ≤ hi}, (3)

The assistance of Nicholas Gould and Dominique Orban in configuring CUTEst to enable its operation with PASA was

greatly appreciated. An initial draft of the PASA MATLAB interface by James Diffenderfer is gratefully acknowledged. The

authors gratefully acknowledge support by the National Science Foundation under grants 1819002, 1819161, 2031213, and

2110722, and by the Office of Naval Research under grants N00014-15-1-2048, N00014-18-1-2100, and N00014-22-1-2397.

Authors’ addresses: W. W. Hager, University of Florida, Department of Mathematics, P.O. Box 118105, Gainesville, FL,

32611-8105, USA; email: hager@ufl.edu; H. Zhang, Louisiana State University, Department of Mathematics, 303 Lockett

Hall, Baton Rouge, LA, 70803-4918, USA; email: hozhang@math.lsu.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0098-3500/2023/06-ART20 $15.00

https://doi.org/10.1145/3583559

ACM Transactions on Mathematical Software, Vol. 49, No. 2, Article 20. Publication date: June 2023.

https://www.acm.org/publications/policies/artifact-review-and-badging-current#reusable
https://www.acm.org/publications/policies/artifact-review-and-badging-current#available
https://orcid.org/0000-0003-3132-7017
https://orcid.org/0000-0003-2518-6975
https://doi.org/10.1145/3583559
mailto:permissions@acm.org
https://doi.org/10.1145/3583559
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3583559&domain=pdf&date_stamp=2023-06-15

20:2 W. W. Hager and H. Zhang

with bl and bu ∈ Rm and lo and hi ∈ Rn ; any of the inequalities could be vacuous. The software
is designed to exploit sparsity in A.

The algorithms implemented in PASA have been developed over more than 20 years. In one
series of papers [13, 18–20, 23], Timothy Davis and William Hager developed techniques for modi-
fying a sparse Cholesky factorization of a matrix of the form AAT after adding or deleting columns
and rows from A. These update/downdate techniques are optimal in the sense that their running
time is proportional to the number of nonzeros in the Cholesky factorization that change. In a
series of papers [21, 22, 35–40], Hager developed the Dual Active Set Algorithm (DASA), first
in a general context, and then with Donald Hearn, it was applied to quadratic network optimiza-
tion; later, with Timothy Davis [21, 22], it was applied to linear programming using the newly
developed update/downdate techniques. More recently, in Reference [48] both DASA and the up-
date/downdate techniques were used in an algorithm, PPROJ, to project a point onto a polyhedron.

In another series of papers [41, 42, 45], William Hager and Hongchao Zhang developed a fast
version of the conjugate gradient method known as CG_DESCENT, since the search directions
were always descent directions, independent of the line search. In Reference [46], CG_DESCENT
was enhanced using limited memory techniques. As an application of CG_DESCENT, an active
set method for purely bound-constrained problems was developed in References [43, 44]. This ac-
tive set algorithm had two phases: In phase one, the gradient projection algorithm and a cyclic
Barzilai/Borwein [4, 17] step was used to identify active constraints, and in phase two, an un-
constrained solver, such as CG_DESCENT, optimized the objective over faces of the polyhedral
constraint. Whenever a new constraint in the polyhedron became active, the optimization was
restricted to the resulting smaller face of the polyhedron.

The polyhedral active set algorithm PASA in Reference [47] is a generalization of the two-phase
algorithm in Reference [43] from bound constraints to polyhedral constraints. Under nondegen-
eracy type assumptions, only the second phase is executed asymptotically; consequently, the as-
ymptotic convergence speed coincides with that of the algorithm used to optimize the objective
over the faces of a polyhedron. For a general polyhedron, the projected gradients of phase one
are computed using PPROJ, while in the special case where the polyhedron is a knapsack-type
constraint

{x ∈ Rn : bl ≤ aTx ≤ bu, lo ≤ x ≤ hi}, a ∈ Rn ,

the projection is computed using the Newton/heap-based algorithm NAPHEAP of Reference [24].
The current version of PASA uses a projected conjugate gradient iteration in phase two to optimize
over a shrinking series of faces of the polyhedron.

2 LITERATURE REVIEW

We briefly summarize continuous nonlinear optimization algorithm development during the past
30 years. Early codes in this timeframe include MINOS [51], NPSOL [29], OPTPACK [33, 36], and
LANCELOT [16]. Murtagh and Saunders’ MINOS is based on Robinson’s algorithm [52], which is
locally quadratically convergent. The Lagrangian in Robinson’s algorithm is replaced by an aug-
mented Lagrangian, and the subproblem associated with the linearized constraints are solved by
a reduced gradient algorithm combined with a quasi-Newton method as described in References
[49, 50]. Gill, Murray, Saunders, and Wright’s NPSOL is a sequential quadratic programming

method (SQP) where a positive definite quasi-Newton approximation to the true Lagrangian Hes-
sian is utilized. The resulting quadratic programming problem is solved by codes in the LSSOL
package [28], which employs active set methods and dense linear algebra to solve constrained
linear least-squares problems and convex quadratic programming problems. OPTPACK [33, 36]
alternates between a constraint step based on Newton’s method and an optimization step based

ACM Transactions on Mathematical Software, Vol. 49, No. 2, Article 20. Publication date: June 2023.

A Gradient-based Implementation of the Polyhedral Active Set Algorithm 20:3

on the minimization of an augmented Lagrangian over linearized constraints. The combined steps
are locally quadratically convergent, and the implementation employs dense linear algebra. Conn,
Gould, and Toint’s LANCELOT treats nonlinear constraints using an augmented Lagrangian that
is minimized within a region defined by the bound constraints. The bound-constrained problem
is solved by an algorithm that combines projected gradient techniques [14] and special structures
to exploit the group partially separable structure of a problem [15].

More recently, NPSOL was the starting point for SNOPT (Sparse Nonlinear Optimizer) [27]
and DNOPT (Dense Nonlinear Optimizer) [30]. Again, a positive definite quasi-Newton approx-
imation to the true Lagrangian Hessian is employed. However, in SNOPT, sparse linear algebra is
used to solve the resulting quadratic program, while DNOPT employs dense linear algebra. A dif-
ferent SQP algorithm is developed by Fletcher and Leyffer in References [25, 26], where a trust
region approach is applied to the quadratic programming problem, and the accepted iterates are
chosen using a filter method. The authors of the augmented Lagrangian-based code LANCELOT
changed their focus to efficient quadratic programming (QP) solvers that could be used in the
implementation of SQP methods. The new software formed the package GALAHAD. Further de-
velopment of reliable augmented Lagrangian techniques for general nonlinear optimization were
continued by Birgin, Martínez, and others in the ALGENCAN [1] package, with the theoretical
basis for the algorithms detailed in the book cited in Reference [5]. After the success of interior
point methods for linear programming, interior point algorithms were also developed for general
nonlinear programming including Vanderbei and Shanno’s LOQO [53] (a merit line-search inte-
rior point method based on a quadratic program solver also named LOQO), Waltz and Nocedal’s
KNITRO [55] (an interior point approach based on sequential quadratic programming and trust
regions [11, 12]), and Biegler and Wächter’s IPOPT [54], which employs an interior point method
with a filter line-search. IPOPT has been adopted as a COIN-OR project (Computational In-

frastructure for Operations Research), which is managed by the COIN-OR Foundation.
Performance data often shows IPOPT is among the best-performing NLP solvers. For example,

in Reference [6] Birgin and Martínez provide performance data showing that ALGENCAN and
IPOPT are competitive with each other. Although ALGENCAN was more robust in the experi-
ments, IPOPT had slightly better CPU time performance on a set of 688 problems from CUTEst

(Constrained and Unconstrained Testing Environment with Safe Threads) [31], where both
codes found equivalent solutions. In Chapter 21 of Reference [2], Andrei observed that for a set
of 93 test problems, KNITRO and IPOPT had similar performance in terms of number of itera-
tions [2, Figure 21.1], while KNITRO had somewhat better performance in terms of CPU time
[2, Figure 21.2]. In Reference [54], Biegler and Wächter found that an early version of IPOPT had
better performance than an early version of KNITRO on a test set consisting of 979 CUTE problems.
In Reference [56] Wan and Biegler observed that in a set of 227 problems from CUTEst, KNITRO
and IPOPT were very similar in performance. KNITRO was faster than IPOPT before incorporating
regularization techniques, but slower after using regularization.

3 OVERVIEW OF PASA

As discussed in the introduction, PASA has two phases: gradient projection iterations over the
entire polyhedron in phase one and projected (conjugate) gradient iterations in phase two to opti-
mize over faces of the polyhedron. To choose between the two phases, we compare the violation
of the local optimality conditions for the global problem (1) to the violation in the local optimality
conditions on the current face of the polyhedron (the local problem). An estimate of the violation
in the optimality conditions for the global problem is given by

E (x) = ‖PΩ (x − ∇f (x)) − x‖,

ACM Transactions on Mathematical Software, Vol. 49, No. 2, Article 20. Publication date: June 2023.

20:4 W. W. Hager and H. Zhang

Fig. 1. Global error E (x) versus local error e (x).

where PΩ denotes the Euclidean norm projection given by

PΩ (x) := arg min
y
{‖x − y‖2 : y ∈ Ω}. (4)

Recall [43, P7] that E (x) = 0 if and only if x is a stationary point for the global problem (1). After
a change of variables, we obtain

E (x) = ‖y(x)‖ where y(x) = arg min
y
{‖y + ∇f (x)‖ : y ∈ Ω − x}. (5)

Thus, the global error at x is the projection of the negative gradient −∇f (x) onto the shifted
polyhedron Ω − x.

Suppose that Ω is expressed in the form (2), and for any feasible point x, let A (x) denote the
active (binding) constraints:

A (x) = {i : (Ax − b)i = 0}.
The active manifold at x is

M (x) = x +N (AB), B = A (x),

where AB is the submatrix of A corresponding to row indices inA (x), andN (AB) is the null space
of AB . The local problem corresponding to the active manifold at x is

min f (z) subject to z ∈ M (x). (6)

By Equation (5), with Ω replaced byM (x), x is a stationary point for the local problem (6) if and
only if e (x) = 0 where

e (x) = ‖yB (x)‖, yB (x) = arg min
y
{‖y + ∇f (x)‖ : ABy = 0}.

Thus, the local error bound at x is the projection of the negative gradient −∇f (x) onto N (AB).
A simple illustration of the local and global errors is given in Figure 1. The set Ω is the upper

half-space and the point x lies on the boundary of Ω. Since the negative gradient at x points into
Ω, E (x) is simply the norm of the negative gradient. The active manifold is the horizontal axis, and
e (x) is the projection of the negative gradient onto the horizontal axis.

In implementing PASA, we choose a parameter θ ∈ (0, 1) and then operate in either phase one
or phase two, as indicated in Algorithm 1. As seen in Algorithm 1, the branching between the two
phases of PASA is based on a comparison between E and e at the current iterate xk . It is shown in
Reference [47] that

lim inf
k→∞

E (xk) = 0,

whenever the algorithm in phase two satisfies the following conditions:

P1. For each k , xk ∈ Ω and f (xk+1) ≤ f (xk).
P2. For each k , A (xk) ⊂ A (xk+1).
P3. If A (xj+1) = A (xj) for j ≥ k , then lim inf j→∞ e (xj) = 0.

ACM Transactions on Mathematical Software, Vol. 49, No. 2, Article 20. Publication date: June 2023.

A Gradient-based Implementation of the Polyhedral Active Set Algorithm 20:5

ALGORITHM 1: Sketch of Polyhedral Active Set Algorithm (PASA)

Parameters: θ ∈ (0, 1), τ ∈ (0,∞), start guess x0 ∈ Rn

Initialization: x1 = PΩ (x0), k = 1
Phase one: While E (x) > τ, execute phase one

Possibly reduce θ
If e (xk) ≥ θE (xk), goto phase two;
else k ← k + 1.

End

Phase two: While E (x) > τ, execute phase two
Possibly reduce θ
If e (xk) < θE (xk), goto phase one;
else k ← k + 1.

End

Moreover, under either a nondegeneracy condition or a strong second-order sufficient optimality
condition with linear independence of the active constraint gradients, the iterates of PASA are
only generated by phase two when k is sufficiently large. To achieve this stronger property, an
adjustment is made in Reference [47] of the form θ ← μθ , μ ∈ (0, 1), whenever the “undecided
index set was empty” in phase one. The undecided indices corresponded to constraints for which
the associated multiplier is sufficiently positive and the constraint is sufficiently inactive. By the
first-order optimality conditions, large multipliers are associated with active constraints. Hence,
an inactive constraint and a large multiplier contradict the first-order optimality conditions, which
leads us to classify the constraint as undecided.

Determining whether the undecided index set is empty requires an additional projection that
detracts from the efficiency of PASA. However, any update to θ in phase one that drives it to zero
guarantees that the phase two iterates are asymptotically generated by phase two under either the
nondegeneracy condition or the strong second-order sufficient optimality condition. Since phase
one often branches to phase two after a single iteration, a practical approach for driving θ to
zero when too much time is spent in phase one is to decrease θ when more than one iteration is
performed in phase one.

The rules for branching between phases one and two are based on the following considerations:
First note that phase one, by itself, is typically globally convergent, as established in Reference
[43, Theorem 2.2]. The convergence rate, however, is at best linear. The purpose of phase two is
to improve efficiency by using a superlinearly convergent algorithm to find an optimum over the
manifold defined by the active constraints. Nonetheless, efficiency is lost if the optimum over the
manifold is computed with too much precision. Since the default value for θ is 0.01, we would
branch from phase two to phase one if the local error e (xk) is less than 0.01 times the global error
E (xk). In phase one, typically only one iteration is performed, some constraints that were active
become inactive, and the iterate moves to a new manifold. In the previous iteration, the inequality
e (xk) < θE (xk) was satisfied. After performing a single gradient projection step in phase one and
moving to a new active manifold, we usually find that e (xk) > θE (xk), so PASA branches back to
phase two and begins to explore a new active manifold.

4 PHASE ONE

The version of the gradient projection algorithm that we utilize is depicted in Figure 2. At the
current iterate xk , a step of length αk is taken along the negative gradient −gk = −∇f (xk) to

ACM Transactions on Mathematical Software, Vol. 49, No. 2, Article 20. Publication date: June 2023.

20:6 W. W. Hager and H. Zhang

Fig. 2. Sketch of the gradient projection algorithm.

reach a point xk , whose projection onto the polyhedron Ω is PΩ (xk). A line search is performed
along the search direction dk = PΩ (xk) − xk to obtain the next iterate xk+1. Our choice for the
step size αk is based on the BB formula [4] with a cyclic implementation that is explained in
Reference [17]. In a cyclic implementation, the step size is kept fixed in some iterations (that is,
αk+1 = αk), while in other iterations, it is given by the BB formula. As shown in Reference [17], a
cyclic implementation can lead to better performance.

Our version of the gradient projection algorithm is similar to the version in SPG [7], since the
line search is along the line segment connecting xk to the projection point PΩ (xk). There is another
version of the gradient projection method in which xk+1 = PΩ (xk −sk∇f (xk)),where the step size
sk is chosen to satisfy both a descent condition and a condition to ensure the sk is not too small; for
example, see References [8–10] and the references therein. For this scheme, the active constraints at
a minimizer can be identified in a finite number of iterations under suitable assumptions; however,
multiple projections may be needed to determine an acceptable step, unlike the version of the
gradient projection scheme used by PASA that only uses one projection in each iteration. Although
the gradient projection algorithm implemented in PASA may not identify the active constraints,
we show in Reference [47, Lemma 6.2] that the level of constraint inactivity is on the order of the
squared error in the iterate xk .

The line search implemented in PASA, shown in Algorithm 2, is of Armijo type [3]. If
f r
k
= f (xk), then this is an ordinary Armijo line search restricted to the feasible set Ω. However,

the implemented line search is nonmonotone, such as in Reference [32], but with a more sophisti-
cated choice of f r

k
, based on the procedure given in the appendix of Reference [43]. Also, to avoid

potential breakdown of the line search in a neighborhood of an optimum, an approximate (but
more accurate) line search is used near a local minimizer; see the approximate Wolfe line search
in Reference [41].

5 PHASE TWO

According to the theory developed in Reference [47], any algorithm with the properties (P1)–(P3)
can be used in phase two. The current gradient-based implementation of PASA combines an active

set gradient projection algorithm with a projected version of the conjugate gradient method. Let
us define the set

Ωk = {x ∈ Ω : (Ax − b)i = 0 for all i ∈ A (xk)}.

ACM Transactions on Mathematical Software, Vol. 49, No. 2, Article 20. Publication date: June 2023.

A Gradient-based Implementation of the Polyhedral Active Set Algorithm 20:7

ALGORITHM 2: Phase one (gradient projection algorithm)

Parameters: δ and η ∈ (0, 1), αk ∈ (0,∞)

While E (xk) > max {τ, e (xk)/θ}

1. dk = PΩ (xk − αk gk) − xk

2. sk = η
j where j ≥ 0 is smallest integer such that

f (xk + sk dk) ≤ f r
k
+ skδ∇f (xk)dk

3. xk+1 = xk + sk dk and k ← k + 1

End

By an active set gradient projection algorithm (A-GP), we mean that

xk+1 = xk + sk dk , where dk = PΩk
(xk − αk gk) − xk , 0 < sk ≤ 1.

This is the gradient projection step of Algorithm 2 except that Ω is replaced by Ωk . Since the con-
straints that are active at xk are also active at PΩk

(xk − αk gk), all the constraints active at xk are
also active at xk+1. Potentially, when sk = 1, additional constraints could be active at xk+1. As long
asA (xk) is strictly contained inA (xk+1) and phase two does not reach one of the termination con-
ditions in Algorithm 1, A-GP continues to operate. At any iterate xk whereA (xk) = A (xk−1), we
switch in phase two from A-GP to a conjugate gradient scheme. This switch is done to exploit the
faster convergence of the conjugate gradient method when compared to gradient descent. When
the active set is growing, it is pointless to switch to conjugate gradients, since CG needs to be
restarted whenever a new constraint becomes active. Hence, the switch to CG is not attempted
until A (xk) = A (xk−1) in A-GP.

Our implementation of conjugate gradients in phase two is now explained. Let Ak be the sub-
matrix of A associated with the active constraint gradients at xk , and let bk denote the associated
right side of the constraint. During phase two, the constraint Ak x ≤ bk is enforced as an equal-
ity, while the remaining constraints are strict inequalities at xk . Since Ak xk = bk , the change of
variables x = xk + z yields the equation Ak z = 0. After this change of variables, the optimization
problem in phase two is written

min f (xk + z) subject to Ak z = 0, z ∈ Ω − xk . (7)

If Pk ∈ Rn×n denotes the orthogonal projection onto the null space N (Ak), then the change of
variables z = Pk y in Equation (7) yields the locally unconstrained problem

min f (xk + Pk y) subject to xk + Pk y ∈ Ω. (8)

This problem is locally unconstrained, since xk + Pk y lies in Ω for y near 0. Hence, the conjugate
gradient algorithm can be applied to Equation (8) generating iterates yj , j ≥ 0, starting from y0 = 0.

Each conjugate gradient iteration involves a search direction dj and a line search along dj . If α
is the step size along dj , the line search enforces the constraint

xk + Pk (yj + αdj) ∈ Ω. (9)

Assuming xk + Pk y lies in Ω for y near yj , we let αmax denote the largest α such that the inclusion
(9) holds. With this notation, the conjugate gradient line search focuses on the optimization
problem

min f (xk + Pk (yj + αdj)) subject to 0 ≤ α ≤ αmax.

ACM Transactions on Mathematical Software, Vol. 49, No. 2, Article 20. Publication date: June 2023.

20:8 W. W. Hager and H. Zhang

If the solution of this problem isα = αmax, then one or more constraints are activated and we return
to A-GP. Otherwise, the projected conjugate gradient iteration continues. Phase two is summarized
in Algorithm 3.

ALGORITHM 3: Phase two (A-GP and CG_DESCENT)

While e (xk)/θ ≥ E (xk) > τ

1. Perform A-GP until A (xk) = A (xk−1), then branch to step 2.

2. Apply limited memory CG_DESCENT to (8); branch to

step 1 when reaching xk+1 = xk + Pk (yj + αmaxdj) on the

boundary of Ω.

End

A stability issue arises when applying the conjugate gradient method to the unconstrained prob-
lem (8). Theoretically, the projection can be expressed as

Pk = I − AT
k

(Ak AT
k

)−1Ak ,

where the inverse should be replaced by a pseudoinverse when the rows of Ak are linearly depen-
dent, and Pk is a positive semidefinite matrix. The routine PPROJ, used in phase one, computes
the factorization

Ak AT
k
+ σ I = LDLT,

where σ > 0 is relatively small, L is lower triangular with ones on the diagonal, and D is diagonal.
This leads us to replace Pk in Equation (8) by its approximation

˜Pk = I − AT
k

(Ak AT
k
+ σ I)−1Ak = I − AT

k
(LDL)−TAk ,

a positive definite matrix.
Since our goal is to optimize the objective over x = xk + Pk y, it is convenient to formulate the

algorithm for solving Equation (8) in terms of x rather than in terms of y. In particular, when the
iterates are given by the CG_DESCENT family parameterized by η > 1/4, the search directions
are (see Reference [46, Section 2])

d0 = −˜P2
k

g0, dk+1 = −˜P2
k

gk+1 + βk dk for k ≥ 0, (10)

where gk = ∇f (xk) and

βk =
yT

k
˜P2

k
gk+1

dT
k

yk

− η ‖
˜Pk yk ‖2

dT
k

yk

dT
k

gk+1

dT
k

yk

, yk = gk+1 − gk . (11)

Even though˜Pk is an approximation to Pk and P2
k
= Pk , the replacement of˜P2

k
by˜Pk leads to very

poor performance. Moreover, when we compute the search directions by Equation (10), the iterates
quickly lose feasibility. The reason is that the component of the error in dk pointing out ofN (Ak)
is added into dk+1 in Equation (10), and these errors in the search direction can accumulate. The
following iteration is equivalent to Equation (10) and numerically stable, since dk+1 is the product

of an intermediate vector Dk+1 with ˜Pk , which removes error components orthogonal to the null
space of Ak :

D0 = −˜Pk g0, Dk+1 = −˜Pk gk+1 + βk Dk , dk+1 = ˜Pk Dk+1 for k ≥ 0. (12)

ACM Transactions on Mathematical Software, Vol. 49, No. 2, Article 20. Publication date: June 2023.

A Gradient-based Implementation of the Polyhedral Active Set Algorithm 20:9

6 RESULTS

We compare the performance of PASA Version 2.0.0 to the performance of IPOPT Version 3.14.5
using the CUTEst platform [31] and polyhedral-constrained optimization problems from CUTEst
along with the Maros/Meszaros quadratic programming test set. IPOPT can operate in a gradient-
based mode, where the Hessian of the Lagrangian in the KKT system is approximated by a limited

memory quasi-Newton method (L-BFGS), and a Hessian-based mode when both the gradient
and Hessian of the objective and the constraints are provided, and a direct solver is used for the
linear systems. We installed both of the recommended linear solvers: MUMPS 5.4.1 and the HSL
software, which includes MA57, Version 3.11.0. When IPOPT was run, it always chose the MUMPS
linear solver. In comparisons between the gradient and Hessian-based IPOPT, the Hessian-based
version performed much better. Hence, our comparisons are with Hessian-based IPOPT. Note that
comparisons between the Hessian-based PASA (currently under development) and the gradient-
based PASA also indicate that Hessian-based PASA is superior to gradient-based PASA.

In selecting the problem set for the numerical experiments, 42 of the QPs from CUTEst were
excluded. The names of these problems begin with the letter A followed by either 0 or 2 or 5.
There were two issues with this subset of the CUTEst test set. First, in many cases, the starting
point is essentially a stationary point, and gradient-based PASA immediately terminates. Second,
these problems have between 15,000 and 20,000 linear constraints and a small number of dense
columns. Due to the dense columns, the matrix AAT is dense with dimension between 15,000 and
20,000. To handle these problems efficiently, the dense columns need to be removed and processed
using a Woodbury update [34]. We have not yet had time to incorporate Woodbury updates in
PASA. Moreover, if the Woodbury updates were incorporated in the code, then termination may
occur at the starting point, and the problem would be excluded by the rules given in the next
paragraph.

After these exclusions, we start with 655 problems that we tried to solve to the accuracy tol-
erance 1.e−6. If the objective values computed by each solver agreed to four significant digits,
then we accepted the problem. If four-digit agreement was not achieved, then we examined the
computed solutions. If the solvers were converging to different solutions, then we removed the
problem from the test set; in other words, we focused on problems where both solvers started
from the same initial guess and reached the same solution. There were 75 problems where the
solvers converged to different solutions. In 38 cases, the solution computed by IPOPT had a bet-
ter objective value, and in 37 cases, the solution computed by PASA had a better objective value.
Note that among the 38 cases where IPOPT had a better objective value, it was observed that in a
number of these cases, the starting guess was essentially a stationary point, and PASA stopped im-
mediately, while the Hessian-based IPOPT did not stop at the starting point. Both solvers, however,
are only guaranteed to converge to a stationary point.

After pruning the 75 problems where the solvers converged to different solutions, there were
580 remaining test problems. If the objective values disagreed by more than four significant digits
but the solvers were converging to the same solution, we then adjusted the accuracy tolerance
of the less accurate solver to achieve comparable accuracy to that of the more accurate solver. In
these cases where one solver was more accurate than the other, we found that the PASA estimate
E (x) for the solution tolerance resulted in a more accurate objective value in most cases. When the
accuracy tolerance of IPOPT was adjusted to match the accuracy of PASA, often just one or two
more iterations were needed. When a solver was unable to achieve the accuracy tolerance 1.e−6
for a problem, its computing time was set to∞.

The performance of the gradient-based PASA and Hessian-based IPOPT are compared using
wall time. Note that Hessian-based algorithms such as either IPOPT or the Hessian-based PASA
typically require fewer iterations and evaluations (function and gradient) when compared to the

ACM Transactions on Mathematical Software, Vol. 49, No. 2, Article 20. Publication date: June 2023.

20:10 W. W. Hager and H. Zhang

Fig. 3. Wall time performance profiles for general, bound, and unconstrained programs.

Fig. 4. Wall time performance profiles for linear, quadratic, and composite programs.

gradient-based PASA. The tradeoffs between convergence rate of an algorithm and evaluation time
are not studied in this article; instead, we focus on wall time. The run data is available at:

https://people.clas.ufl.edu/hager/files/IPOPTresults.txt,
https://people.clas.ufl.edu/hager/files/PASAresults.txt.

Both solvers exploit multiple processors when matrices are factored and linear systems are
solved. The software was run on a Lenovo ThinkPad with eight Intel i7-865U CPUs operating
at 1.90 GHz (four CPU cores) with 8,192 KB cache and 16 GB memory. The operating system was
Ubuntu Linux with Intel’s MKL (Math Kernel Library) BLAS. PASA used the timer gettimeofday

with microsecond accuracy, while IPOPT appears to use the timer ftime with millisecond accuracy
(embedded inside the function IpCoinGetTimeOfDay).

Figures 3 and 4 plot the wall time performance profiles for the two codes. The vertical axis gives
the fraction P of problems for which any given method is within a factor τ (horizontal axis) of the
best time. The top curve is the method that solved the most problems in a time that was within a
factor τ of the best time. The percentage of the test problems for which a method is fastest is given
on the left axis of the plot. The right side of the plot gives the percentage of the test problems
that were successfully solved by each of the methods. In essence, the right side is a measure of an
algorithm’s robustness.

In preparing the plots, the problems in the test set were partitioned into five groups: linear and
quadratic programs denote polyhedral-constrained problem for which the objective is linear or
quadratic, respectively. General problems have nonquadratic nonlinear objectives with additional
linear and possibly bound constraints. Bound-constrained problems have nonquadratic nonlinear
objectives and only bound constraints. Unconstrained problems have nonquadratic nonlinear ob-
jectives without constraints. The composite problems are the union of all five groups. Based on
the plots, gradient-based PASA performed relatively well on this collection of test problems where
function and gradient evaluations are relatively cheap; the cost of the linear algebra in IPOPT for
solving the linear systems of equations outweighed the savings associated with a lower number
of evaluations.

ACM Transactions on Mathematical Software, Vol. 49, No. 2, Article 20. Publication date: June 2023.

https://people.clas.ufl.edu/hager/files/IPOPTresults.txt
https://people.clas.ufl.edu/hager/files/PASAresults.txt

A Gradient-based Implementation of the Polyhedral Active Set Algorithm 20:11

When a problem is unconstrained, E (x) = e (x) and, since θ < 1, PASA immediately branches to
phase two, where it remains until the convergence tolerance is satisfied. Hence, the performance
on unconstrained problems essentially reflects the performance of limited memory CG_DESCENT
[46], Version 8.0.0. For bound-constrained problems, PASA’s local and global error estimators e (x)
and E (x) reduce to the same estimators that were used in the algorithm [43] for bound-constrained
problems. Hence, the performance on bound-constrained problem essentially reflects the perfor-
mance of the active set algorithm [43]. Linear programs are solved in PASA by a series of gradient
projection steps, where the step size choice is crucial. The performance corresponds to the first-
order algorithm in Reference [22]. Details will be provided in a separate paper.

7 CONCLUSION

A gradient-based implementation of the Polyhedral Active Set Algorithm (PASA) was pre-
sented. The algorithm was composed of two phases: The gradient projection algorithm was used
in phase one, while phase two optimized the objective over faces of the polyhedron. Branching be-
tween phases was determined by the relationship between local and a global error estimators e and
E, respectively. At a feasible point x for the polyhedron, we branch from phase one to phase two
when e (x) ≥ θE (x), where θ ∈ (0, 1) is a given parameter; we branch from phase two to phase one
when e (x) < θE (x). With suitable adjustments to θ , the iterates perform phase two asymptotically.
It was found that PASA had significantly better wall time performance when compared to IPOPT
using a collection of 580 test problems taken from both CUTEst and the Maros/Meszaros quadratic
programming test set. Even though Hessian-based IPOPT used significantly fewer evaluations of
the objective and gradient when compared to gradient-based PASA, the time for the linear algebra
in IPOPT outweighed the savings derived from the fewer evaluations in the test set.

REFERENCES

[1] Roberto Andreani, Ernesto G. Birgin, J. Mario Martínez, and Maria L. Schuverdt. 2007. On augmented Lagrangian

methods with general lower-level constraints. SIAM J. Optim. 18, 4 (2007), 1286–1309.

[2] Neculai Andrei. 2017. Continuous Nonlinear Optimization for Engineering Applications in GAMS Technology. Springer.

[3] Larry Armijo. 1966. Minimization of functions having Lipschitz continuous first partial derivatives. Pacif. J. Math.

16 (1966), 1–3.

[4] Jonathan Barzilai and Jonathan M. Borwein. 1988. Two point step size gradient methods. IMA J. Numer. Anal. 8 (1988),

141–148.

[5] Ernesto G. Birgin and J. Mario Martínez. 2014. Practical Augmented Lagrangian Methods for Constrained Optimization.

Society for Industrial and Applied Mathematics, Philadelphia, PA.

[6] Ernesto G. Birgin and J. Mario Martínez. 2020. Complexity and performance of an augmented Lagrangian algorithm.

Optim. Meth. Softw. 35 (2020), 885–920.

[7] Ernesto G. Birgin, J. Mario Martínez, and Marcos Raydan. 2001. Algorithm 813: SPG—Software for convex-constrained

optimization. ACM Trans. Math. Softw. 27 (2001), 340–349.

[8] James V. Burke and Jorge J. Moré. 1988. On the identification of active constraints. SIAM J. Numer. Anal. 25 (1988),

1197–1211.

[9] James V. Burke and Jorge J. Moré. 1994. Exposing constraints. SIAM J. Optim. 25 (1994), 573–595.

[10] James V. Burke, Jorge J. Moré, and Gerardo Toraldo. 1990. Convergence properties of trust region methods for linear

and convex constraints. Math. Progam. 47 (1990), 305–336.

[11] Richard H. Byrd, Mary E. Hribar, and Jorge Nocedal. 1999. An interior point method for large scale nonlinear pro-

gramming. SIAM J. Optim. 9 (1999), 877–900.

[12] Richard H. Byrd, Jorge Nocedal, and Richard A. Waltz. 2006. KNITRO: An integrated package for nonlinear optimiza-

tion. In Large-scale Nonlinear Optimization, G. di Pillo and M. Roma (Eds.). Springer-Verlag, 35–59.

[13] Yanqing Chen, Timothy A. Davis, William W. Hager, and Sivasankaran Rajamanickam. 2009. Algorithm 887:

CHOLMOD, supernodal sparse Cholesky factorization and update/downdate. ACM Trans. Math. Softw. 35, 3 (2009),

22:1–14.

[14] Andrew R. Conn, Nicholas I. M. Gould, and Philippe L. Toint. 1988. Global convergence of a class of trust region

algorithms for optimization with simple bounds. SIAM J. Numer. Anal. 25 (1988), 433–460.

ACM Transactions on Mathematical Software, Vol. 49, No. 2, Article 20. Publication date: June 2023.

20:12 W. W. Hager and H. Zhang

[15] Andrew R. Conn, Nicholas I. M. Gould, and Philippe L. Toint. 1990. An introduction to the structure of large scale non-

linear optimization problems and the LANCELOT project. In Computing Methods in Applied Sciences and Engineering,

R. Glowinski and A. Lichnewsky (Eds.). SIAM, Philadelphia, PA, 42–54.

[16] Andrew R. Conn, Nicholas I. M. Gould, and Philippe L. Toint. 1992. LANCELOT: A Fortran Package for Large-scale

Nonlinear Optimization (Release A). Springer.

[17] Yu-Hong Dai, William W. Hager, Klaus Schittkowski, and Hongchao Zhang. 2006. The cyclic Barzilai-Borwein method

for unconstrained optimization. IMA J. Numer. Anal. 26 (2006), 604–627.

[18] Timothy A. Davis and William W. Hager. 1999. Modifying a sparse Cholesky factorization. SIAM J. Matrix Anal. Appl.

20, 3 (1999), 606–627.

[19] Timothy A. Davis and William W. Hager. 2001. Multiple-rank modifications of a sparse Cholesky factorization. SIAM

J. Matrix Anal. Appl. 22 (2001), 997–1013.

[20] Timothy A. Davis and William W. Hager. 2005. Row modifications of a sparse Cholesky factorization. SIAM J. Matrix

Anal. Appl. 26, 3 (2005), 621–639.

[21] Timothy A. Davis and William W. Hager. 2008. Dual multilevel optimization. Math. Program. 112, 2 (Apr. 2008), 403–

425.

[22] Timothy A. Davis and William W. Hager. 2008. A sparse proximal implementation of the LP dual active set algorithm.

Math. Program. 112, 2 (Apr. 2008), 275–301.

[23] Timothy A. Davis and William W. Hager. 2009. Dynamic supernodes in sparse Cholesky update/downdate and trian-

gular solves. ACM Trans. Math. Softw. 35, 4 (2009), 27:1–23.

[24] Timothy A. Davis, William W. Hager, and James T. Hungerford. 2016. An efficient hybrid algorithm for the separable

convex quadratic knapsack problem. ACM Trans. Math. Softw. 42 (2016), 22:1–22:25.

[25] Roger Fletcher and Sven Leyffer. 2002. Nonlinear programming without a penalty function. Math. Program. 91 (2002),

239–270.

[26] Roger Fletcher, Sven Leyffer, and Philippe L. Toint. 2002. On the global convergence of a filter-SQP algorithm. SIAM

J. Optim. 13 (2002), 44–59.

[27] Philip E. Gill, Walter Murray, and Michael A. Saunders. 2005. SNOPT: An SQP algorithm for large-scale constrained

optimization. SIAM Rev. 47 (2005), 99–131.

[28] Philip E. Gill, Walter Murray, Michael A. Saunders, and Margaret H. Wright. 1986. User’s Guide for LSSOL (Version 1.0).

Technical Report. Report No. 86-1. Stanford University, Department of Operations Research, Stanford, CA.

[29] Philip E. Gill, Walter Murray, Michael A. Saunders, and Margaret H. Wright. 1986. User’s Guide for NPSOL (Version 4.0):

A Fortran Package for Nonlinear Programming. Technical Report. Report No. 86-2. Stanford University, Department of

Operations Research, Stanford, CA.

[30] Philip E. Gill, Michael A. Saunders, and Elizabeth Wong. 2016. An SQP Method for Medium-scale Nonlinear Program-

ming. Technical Report CCoM 16-2. Center for Computational Mathematics, Department of Mathematics, University

of California, La Jolla, CA.

[31] Nicholas I. M. Gould, Dominique Orban, and Philippe L. Toint. 2015. CUTEst: A constrained and unconstrained testing

environment with safe threads for mathematical optimization. Comput. Optim. Appl. 60 (2015), 545–557.

[32] Luigi Grippo, Francesco Lampariello, and Stefano Lucidi. 1986. A nonmonotone line search technique for Newton’s

method. SIAM J. Numer. Anal. 23 (1986), 707–716.

[33] William W. Hager. 1987. Dual techniques for constrained optimization. J. Optim. Theory Appl. 55 (1987), 37–71.

[34] William W. Hager. 1989. Updating the inverse of a matrix. SIAM Rev. 31, 2 (1989), 221–239.

[35] William W. Hager. 1992. The dual active set algorithm. In Advances in Optimization and Parallel Computing, P. M.

Pardalos (Ed.). North Holland, Amsterdam, 137–142.

[36] William W. Hager. 1993. Analysis and implementation of a dual algorithm for constrained optimization. J. Optim.

Theor. Appl. 79 (1993), 427–462.

[37] William W. Hager. 1998. The LP dual active set algorithm. In High Performance Algorithms and Software in Nonlinear

Optimization, R. De Leone, A. Murli, P. M. Pardalos, and G. Toraldo (Eds.). Kluwer, Dordrecht, 243–254.

[38] William W. Hager. 2002. The dual active set algorithm and its application to linear programming. Comput. Optim.

Appl. 21 (2002), 263–275.

[39] William W. Hager. 2003. The dual active set algorithm and the iterative solution of linear programs. In Novel Ap-

proaches to Hard Discrete Optimization, Vol. 37, P. M. Pardalos and H. Wolkowicz (Eds.). Fields Institute Communica-

tions, 95–107.

[40] William W. Hager and Donald W. Hearn. 1993. Application of the dual active set algorithm to quadratic network

optimization. Comput. Optim. Appl. 1 (1993), 349–373.

[41] William W. Hager and Hongchao Zhang. 2005. A new conjugate gradient method with guaranteed descent and an

efficient line search. SIAM J. Optim. 16 (2005), 170–192.

ACM Transactions on Mathematical Software, Vol. 49, No. 2, Article 20. Publication date: June 2023.

A Gradient-based Implementation of the Polyhedral Active Set Algorithm 20:13

[42] William W. Hager and Hongchao Zhang. 2006. Algorithm 851: CG_DESCENT, A conjugate gradient method with

guaranteed descent. ACM Trans. Math. Softw. 32 (2006), 113–137.

[43] William W. Hager and Hongchao Zhang. 2006. A new active set algorithm for box constrained optimization. SIAM J.

Optim. 17 (2006), 526–557.

[44] William W. Hager and Hongchao Zhang. 2006. Recent advances in bound constrained optimization. In System Model-

ing and Optimization, Proceedings of the 22nd IFIP TC7 Conference, Turin, Italy, July 18–22, 2005, Turin, Italy, F. Ceragioli,

A. Dontchev, H. Furuta, K. Marti, and L. Pandolfi (Eds.). Springer, 67–82.

[45] William W. Hager and Hongchao Zhang. 2006. A survey of nonlinear conjugate gradient methods. Pacif. J. Optim.

2 (2006), 35–58.

[46] William W. Hager and Hongchao Zhang. 2013. The limited memory conjugate gradient method. SIAM J. Optim.

23 (2013), 2150–2168.

[47] William W. Hager and Hongchao Zhang. 2016. An active set algorithm for nonlinear optimization with polyhedral

constraints. Sci. China Math. 59 (2016), 1525–1542.

[48] William W. Hager and Hongchao Zhang. 2016. Projection onto a polyhedron that exploits sparsity. SIAM J. Optim.

29 (2016), 1773–1798.

[49] Bruce A. Murtagh and Michael A. Saunders. 1978. Large-scale linearly constrained optimization. Math. Progam.

14 (1978), 41–72.

[50] Bruce A. Murtagh and Michael A. Saunders. 1982. A projected Lagrangian algorithm and its implementation for sparse

nonlinear constraints. Math. Progam. Stud. 16 (1982), 84–117.

[51] Bruce A. Murtagh and Michael A. Saunders. 1987. MINOS 5.0: User’s Guide. Technical Report. Report No. 83-20R.

Stanford University, Department of Operations Research, Stanford, CA.

[52] Stephen M. Robinson. 1972. A quadratically-convergent algorithm for general nonlinear programming problems.

Math. Progam. 3 (1972), 145–156.

[53] Robert J. Vanderbei and David F. Shanno. 1999. An interior-point algorithm for nonconvex nonlinear programming.

Comput. Optim. Appl. 13 (1999), 231–252.

[54] Andreas Wächter and Lorenz T. Biegler. 2006. On the implementation of a primal-dual interior point filter line search

algorithm for large-scale nonlinear programming. Math. Program. 106 (2006), 25–57.

[55] Richard A. Waltz and Jorge Nocedal. 2003. KNITRO user’s manual. Technical Report. Optimization Technology Center,

Northwestern University, Evanston, IL.

[56] Wei Wan and Lorenz T. Biegler. 2017. Structured regularization for barrier NLP solvers. Comput. Optim. Appl. 66 (2017),

401–424.

Received 17 February 2022; revised 4 August 2022; accepted 28 November 2022

ACM Transactions on Mathematical Software, Vol. 49, No. 2, Article 20. Publication date: June 2023.

