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Abstract. Convergence rates are established for an inexact accelerated alternating direction
method of multipliers (I-ADMM) for general separable convex optimization with a linear constraint.
Both ergodic and non-ergodic iterates are analyzed. Relative to the iteration number k, the conver-
gence rate is O(1/k) in a convex setting and O(1/k2) in a strongly convex setting. When an error
bound condition holds, the algorithm is 2-step linearly convergent. The I-ADMM is designed so that
the accuracy of the inexact iteration preserves the global convergence rates of the exact iteration,
leading to better numerical performance in the test problems.
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1. Introduction. We consider a convex, separable linearly constrained opti-
mization problem

min Φ(x) subject to Ax = b,(1.1)

where Φ : Rn → R ∪ {∞} and A is N by n. By a separable convex problem, we
mean that the objective function is a sum of m independent parts, and the matrix is
partitioned compatibly as in

Φ(x) =
m
∑

i=1

fi(xi) + hi(xi) and Ax =
m
∑

i=1

Aixi.(1.2)

Here fi is convex and Lipschitz continuously differentiable, hi is a proper closed convex
function (possibly nonsmooth), and Ai is N by ni with

∑m
i=1 ni = n. There is no

column independence assumption for the Ai. Constraints of the form xi ∈ Xi, where
Xi is a closed convex set, can be incorporated in the optimization problem by letting
hi be the indicator function of Xi. That is, hi(xi) = ∞ when xi 6∈ Xi. The problem
(1.1)–(1.2) has attracted extensive research due to its importance in areas such as
image processing, statistical learning, and compressed sensing. See the recent survey
[2] and its references.

It is assumed that there exists a solution x∗ to (1.1)–(1.2) and an associated
Lagrange multiplier λ∗ ∈ R

N such that the following first-order optimality conditions
hold: Ax∗ = b and for i = 1, 2, . . . ,m and for all u ∈ R

ni , we have

〈∇fi(x∗
i ) +AT

i λ
∗,u− x∗

i 〉+ hi(u) ≥ hi(x
∗
i ),(1.3)

where ∇ denotes the gradient.
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A popular strategy for solving (1.1)–(1.2) is the alternating direction method of
multipliers (ADMM) [16, 17]: For i = 1, . . . ,m,

{

xk+1
i ∈ arg min

xi∈Rni

Lρ(xk+1
1 , . . . ,xk+1

i−1 ,xi,x
k
i+1, . . . ,x

k
m,λ

k),

λk+1 = λk + ρ(Axk+1 − b),
(1.4)

where ρ is a penalty parameter and Lρ is the augmented Lagrangian defined by

Lρ(x,λ) = Φ(x) + 〈λ,Ax− b〉+ ρ

2
‖Ax− b‖2.(1.5)

Early ADMMs only consider problem (1.1)–(1.2) with m = 2 corresponding to a
2-block structure. In this case, the global convergence and complexity can be found
in [12, 28]. When m ≥ 3, the ADMM strategy (1.4) is not necessarily convergent [4],
although its practical efficiency has been observed in many recent applications [40, 41].
Many recent papers, including [3, 5, 6, 11, 18, 24, 26, 27, 32, 33], develop modifications
to ADMM to ensure convergence when m ≥ 3. The approach we have taken employs
a back substitution step to complement the ADMM forward substitution step. This
modification was first introduced in [26, 27].

Much of the CPU time in an ADMM iteration is associated with the solution of
the minimization subproblems. If m = 1, then ADMM reduces to the augmented
Lagrangian method, for which the first relative error criteria based on the residual
in an iteration emanates from [37], while more recent work includes [13, 39]. For
m = 2 or larger, inexact approaches to the ADMM subproblems have been based on
an absolute summable error criterion as in [9, 12, 19], a combined adaptive/absolute
summable error criterion [31], a relative error criteria [14, 15], proximal regularizations
[7, 25], and linearized subproblems and reduced multiplier update steps [30].

The approach taken in our I-ADMM emanates from our earlier work [10, 20,
21] on a Bregman Operator Splitting algorithm with a variable stepsize (BOSVS)
with application to image processing. In the current paper, the penalty term in
the accelerated gradient algorithm of [21] is linearized so as to make the solution of
the I-ADMM subproblem trivial; there is essentially no reduction in the size of the
multiplier update step. The I-ADMM is designed so that the accuracy of the inexact
solution of the ADMM subproblems is high enough to preserve the global convergence
rates of the exact iteration. The global convergence results for I-ADMM are similar to
those presented in [21]. However, there are no convergence rate analysis in [21]. In this
paper, we focus on studying the convergence rate of I-ADMM. In particular, relative
to the iteration number k, the convergence rate for I-ADMM is O(1/k) for ergodic
iterates in the convex setting and O(1/k2) for both ergodic and nonergodic iterates in
a strongly convex setting. When an error bound condition holds, I-ADMM is 2-step
linearly convergent. These convergence rates are consistent with those obtained for
ADMM schemes that solve subproblems exactly including the O(1/k) rates in [28,
35, 38] for ergodic iterates, and the linear rates obtained in [23] and [42] for a 2-block
ADMM, and in [30] for the multi-block case and a sufficiently small stepsize in the
multiplier update. For a more extensive review on linear convergence of ADMMs, one
may refer [43]. But again, almost all the sublinear or linear convergence rate analysis
is based on either only one linearization step is applied to solve the subproblem or
solving the subroblem (or the proximal subproblem) exactly. An advantage of our
inexact scheme is that when compared to the exact iteration, the computing time to
achieve a given adaptive error tolerance is reduced, while the global convergence as
well as the desired convergence rate are still maintained.
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The paper is organized as follows. Section 2 gives an overview of the inexact
ADMM (I-ADMM) that will be analyzed. Section 3 reviews the global convergence
results found in a companion paper [22]. These global convergence results are similar
to those established for the inexact ADMM of [21]. Section 4 establishes a O(1/k)
convergence rate of for ergodic iterates, and under a strong convexity assumption, an
O(1/k2) rate for both ergodic and nonergodic iterates. Section 5 gives 2-step linear
convergence results when an error bound condition holds. Finally, Section 6 shows
the observed convergence in some image recovery problems.

1.1. Notation. Throughout the paper, c denotes a generic positive constant
which is independent of parameters such as the iteration number k or the index
i ∈ [1,m]. Let W∗ denote the set of solution/multiplier pairs (x∗,λ∗) of (1.1)–(1.2)
satisfying (1.3), while (x∗,λ∗) ∈ W∗ is a generic solution/multiplier pair. L (without
the ρ subscript) stands for L0. For x and y ∈ R

n, 〈x,y〉 = xTy is the standard inner
product, where the superscript T denotes transpose. The Euclidean vector norm,
denoted ‖ · ‖, is defined by ‖x‖ =

√

〈x,x〉 and ‖x‖G =
√
xTGx for a positive definite

matrix G. For any matrix A, the matrix norm induced by the Euclidean vector norm
is the largest singular value of A. For a symmetric matrix, the Euclidean norm is
the largest absolute eigenvalue. In addition, A ≻ 0 and A � 0 means matrix A is
positive definite and positive semidefinite, respectively. For a differentiable function
f : Rn → R, ∇f(x) is the gradient of f at x, a column vector. More generally, ∂f(x)
denotes the subdifferential at x. A function h : Rn 7→ R is convex with modulus µ ≥ 0
if

h((1− θ)x+ θy) ≤ (1− θ)h(x) + θh(y)− θ(1− θ)(µ/2)‖x− y‖2

for all u and v ∈ R
n and θ ∈ [0, 1]. If µ > 0, then h is strongly convex. The prox

operator associated with h is defined by

proxh(y) = arg min
x∈Rn

(

h(x) +
1

2
‖x− y‖2

)

.

2. Algorithm Structure. The structure of our I-ADMM algorithm is given in
Algorithm 2.1.

The algorithm generates sequences xk, yk, zk, and Rk. Both xk and zk are
updated in Step 1, Rk is updated in Step 2, and yk is updated in Step 3. The error
is estimated in Step 2. The matrix Q in Step 3 is an m by m block diagonal matrix
whose i-th diagonal block is denoted Qi satisfying

Qi ≻ 0 and Qi := Qi −AT

i Ai � 0.(2.1)

Hence, M is nonsingular. For example, we could take Qi = γiI where γi ≥ ‖AT

i Ai‖.
Condition (2.1) is required for showing global convergence of our I-ADMM. But recent
studies show that for a 2-block case, i.e., m = 2, the requirement of Qi being positive
semidefinite for exact ADMM can be relaxed [8, 29]. The matrix M in Step 3 is the
m by m block lower triangular matrix defined by

Mij =







AT

i Aj if j < i,
Qi if j = i,
0 if j > i.

(2.2)

The solution yk+1 of the block upper triangular systemMT(yk+1−yk) = αQ(zk−yk)
can be obtained by back substitution.
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Parameters: ρ, δmin, θi > 0, α ∈ (0, 1), σ ∈ (0, 1)

Starting guess: x1 and λ1.

Initialize: y1 = x1, k = 1 and Γ0
i = 0, 1 ≤ i ≤ m, ǫ0 = ∞

Step 1: For i = 1, . . . ,m

Generate xk+1
i , zki , and rki by Algorithm 2.2.

End

Step 2: If ǫk := θ1‖zk − yk‖+ θ2‖Azk − b‖+ θ3
√
Rk is sufficiently

small, then terminate, where Rk =
∑m
i=1 r

k
i .

Step 3: Find yk+1 by solving Q−1MT(yk+1 − yk) = α(zk − yk)

λk+1 = λk + αρ(Azk − b), where Q and M are defined

in (2.1) and (2.2), respectively.

Step 4: k := k + 1, and go to Step 1.

Alg. 2.1. I-ADMM algorithm.

In Step 1 of Algorithm 2.1, we approximate the minimizer in the xi subproblem of
the ADMM algorithm (1.4) using the accelerated gradient method of Algorithm 2.2,
which was a modification of Alg. 5.1 develped in [22]. Compared with Alg. 5.1 in [22],
Algorithm 2.2 has a proximal term to generate uli in 1a and slight different stopping
conditions in 1b.

Inner loop of Step 1, an accelerated gradient method:

Initialize: a0i = u0
i = xki and α1 = 1.

For l = 1, 2, . . .

1a. Choose δl ≥ δmin and when l > 1, choose αl ∈ (0, 1) such that

fi(a
l
i)+ 〈∇fi(ali),ali − ali〉+ (1−σ)δl

2αl ‖ali − ali‖2 ≥ fi(a
l
i),

where ali = (1− αl)al−1
i + αluli, ali = (1− αl)al−1

i + αlul−1
i , and

uli = argmin{P (u) + ρ
2‖u− yki ‖2Q

i

+ hi(u) : u ∈ R
ni} with

P (u) = 〈∇fi(ali),u〉+ δl

2 ‖u− ul−1
i ‖2 + ρ

2‖Aiu− bki + λk/ρ‖2,
and bki being defined in (2.6).

1b. If γl = (1/δ1)

l
∏

j=2

(1− αj)−1 ≥ Γk−1
i , where γ1 = 1/δ1,

and ‖ali − xki ‖/
√

γl ≤ ψ(ǫk−1), then break.

Next

1c. Set xk+1
i = uli, zki = ali, Γki = γl, and rki = (1/Γki )

∑l
j=1 ‖u

j
i − u

j−1
i ‖2.

Alg. 2.2. Inner loop in Step 1 of Algorithm 2.1.

The termination condition for Algorithm 2.2 appears in Step 1b. In this step, ψ is
a nonnegative function for which ψ(0) = 0 and ψ(s) > 0 for s > 0 with ψ continuous
at s = 0. For example, ψ(t) = t. Two different ways are developed in [21] for choosing
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the parameters δl and αl in Step 1a. If a Lipschitz constant ζi of fi is known, then
we could take

δl =
1

(1− σ)

2ζi
l

and αl =
2

l + 1
∈ (0, 1],(2.3)

in which case, we have

(1− σ)δl

αl
=

(l + 1)ζi
l

> ζi.

This relation along with a Taylor series expansion of fi around ali implies that the
line search condition in Step 1a of Algorithm 2.2 is satisfied for each l.

A different, adaptive way to choose to choose δl and αl, that does not require
knowledge of the Lipschitz constant for fi, is the following: Choose δl0 ∈ [δmin, δmax],
where 0 < δmin < δmax <∞ are fixed constants, independent of k and l, and set

δl =
2

θl +
√

(θl)2 + 4θlΛl−1
and αl =

1

1 + δlΛl−1
, where(2.4)

Λl =

l
∑

i=1

1/δi, Λ0 = 0, and θl = 1/(δl0η
j) with η > 1.

Here the integer j ≥ 0 is chosen as small a possible while satisfying the inequality in
Step 1a. It can be shown that

δl

αl
=

1

θl
= δl0η

j .(2.5)

Since η > 1, the ratio δl/αl appearing in Step 1a tends to infinity as j tends to infinity;
consequently, the inequality in Step 1a is satisfied for j sufficiently large.

The stopping condition in Step 1b is elucidated using the following function:

L
k

i (u) = Lki (u) +
ρ

2
(u− yki )

TQi(u− yki ), where(2.6)

Lki (u) = fi(u) + hi(u) +
ρ

2
‖Aiu− bki + λk/ρ‖2,

bki = b−
∑

j<i

Ajz
k
j −

∑

j>i

Ajy
k
j .

As pointed by Lemma 3.1 in the next section, for either of the parameter choices (2.3)

or (2.4), the iterates ali of Algorithm 2.2 converge to the minimizer of the function L
k

i

at rate O(1/l), while the objective values converge at rate O(1/l2), which is optimal
for first-order methods applied to general convex, possibly nonsmooth optimization
problems. Moreover, for these two parameter choices, it has been shown [21, pp. 227–
228] that in Step 1b, γl ≥ l2Θ for some constant Θ > 0, independent of k and l.
Consequently, the conditions in Step 1b are satisfied for l sufficiently large. We let lki
denote the terminating value of l in Step 1b.

3. Global Convergence. The global convergence analysis of the accelerated
ADMM in this paper with a linearized penalty term is similar to the global convergence
analysis of the accelerated scheme in [21]. Hence, this section simply states the main
results, while a supplementary arXiv document [22] provides the detailed analysis.
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The first result concerns the convergence of the iterates in Step 1 of I-ADMM under
the assumption that the sequence

ξl := δlαlγl

is nondecreasing. For either of the parameter choices (2.3) or (2.4), it is shown in [21,
pp. 227–228] that ξl = 1.

Lemma 3.1. If the sequence ξl is nonincreasing, then for each i ∈ [1,m] and
L ≥ 1, we have

ρνi‖aLi − xki ‖2 +
µh,i
2

L
∑

l=1

‖xki − aLi ‖2 +
σ

γL

L
∑

l=1

ξl‖uli − ul−1
i ‖2 ≤ ‖xki − xki ‖2

γL
,(3.1)

where µh,i is the modulus of convexity of hi, νi > 0 is the smallest eigenvalue of Qi,
and

xki = argmin{Lki (u) : u ∈ R
ni}.(3.2)

Since L
k

i is strongly convex, it has a unique minimizer. The following decay
property plays an important role in the global convergence analysis.

Lemma 3.2. Let (x∗,λ∗) ∈ W∗ be any solution/multiplier pair for (1.1)–(1.2),
let xk, yk, zk, ulk, and λk be the iterates generated by Algorithm 2.1, and define

Ek = ρ‖yk − x∗‖2P +
1

ρ
‖λk − λ∗‖2 + α

m
∑

i=1

‖xki − x∗
i ‖2

Γki
and(3.3)

E−
k = ρ‖yk − x∗‖2P +

1

ρ
‖λk − λ∗‖2 + α

m
∑

i=1

‖xki − x∗
i ‖2

Γk−1
i

,

where P = MQ−1MT. If ξl := δlαlγl = 1 for each l, then

Ek − Ek+1 ≥ Ek − E−
k+1 ≥(3.4)

α

(

2∆k + σRk + ρ(1− α)(‖yk − zk‖2Q + ‖Azk − b‖2) +
m
∑

i=1

µh,i‖zki − x∗
i ‖2
)

,

where Rk is the residual defined in Step 2, µh,i is the modulus of convexity of hi, and

∆k = L(zk,λ∗)− Φ(x∗) ≥ 0.(3.5)

Recall that L = L0 is the ordinary Lagrangian associated with (1.1). This decay
property is used to obtain the following global convergence result for I-ADMM.

Theorem 3.3. Suppose the parameters δl and αl in Algorithm 2.2 are chosen ac-
cording to either (2.3) or (2.4). If I-ADMM performs an infinite number of iterations
generating yk, zk, and λk, then the sequences yk and zk both approach a common
limit x∗, λk approaches a limit λ∗, and (x∗,λ∗) ∈ W∗.

Theorem 3.3 considers the case of an infinite number of iterations. The following
lemma considers the case where ǫk = 0 within a finite number of iterations.
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Lemma 3.4. If ǫk = 0 in Algorithm 2.1, then xk+1 = xk = yk = zk solves
(1.1)–(1.2) and (xk,λk) ∈ W∗.

Proof. If ǫk = 0, then rki = 0 for each i. It follows that

xki = u0
i = u1

i = . . . = uli.(3.6)

By Step 1c, uli = xk+1
i . By the definitions ali = (1 − αl)al−1

i + αluli and ali =
(1 − αl)al−1

i + αlul−1
i where a0i = u0

i = xki , we have ali = ali = xki for each l due to
(3.6). Again, by Step 1c, zki = xki . Consequently, we have xk+1 = xk = zk.

Let x∗ denote xk. Then x∗ = xk+1 = xk = zk. Since ǫk = 0, Step 2 of
Algorithm 2.1 implies that yk = zk = x∗ and Ax∗ = b. Consequently, we have

bki = b−
∑

j<i

Ajz
k
j −

∑

j>i

Ajy
k
j = b−

∑

j<i

Ajx
∗
j −

∑

j>i

Ajx
∗
j = Aix

∗
i .

With this substitution in P (u) in Step 1a, it follows that uli = x∗
i minimizes over u

the function

〈∇fi(x∗
i ),u〉+

δl

2
‖u− x∗

i ‖2 +
ρ

2
‖Ai(u− x∗

i ) + λk/ρ‖2 + ρ

2
‖u− x∗

i ‖2Q
i

+ hi(u).

The first-order optimality condition for this minimizer x∗
i is the same as the first-order

optimality condition (1.3), but with λ∗ replaced by λk. Hence, (x∗,λk) ∈ W∗.
Remark 3.1. In this paper, we have focused on algorithms based on an inexact

minimization of L
k

i in Step 1 of Algorithm 2.1. In cases where fi and hi are simple

enough that the exact minimizer xki of L
k

i can be quickly evaluated, we could simply
set xk+1

i = zki = xki , and r
k
i = 0 in Step 1 of I-ADMM, and proceed to Step 2. The

global convergence results still hold.

4. Sublinear Convergence Rates. In this section, sublinear convergences rates
are established for I-ADMM. We first establish an O(1/t) convergence rate for the
ergodic iterates

zt =
1

t

t
∑

k=1

zk(4.1)

generated by I-ADMM.
Theorem 4.1. Let (x∗,λ∗) ∈ W∗ be any primal/dual solution pair for (1.1)–

(1.2) and let zk be generated by I-ADMM with δlαlγl = 1 for each l and k. Then, we
have

L(zt,λ∗)− Φ(x∗) ≤ E1

2αt
,

where zt is defined in (4.1) and Ek is defined in (3.3).
Proof. Discarding several nonnegative terms from (3.4), we have

2α∆k + Ek+1 ≤ Ek.

Adding this inequality over k between 1 and t yields

2α
t
∑

k=1

∆k + Et+1 ≤ E1.
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Hence, by the definition of ∆k in (3.5), we have

2α
t
∑

k=1

[

L(zk,λ∗)− Φ(x∗)
]

≤ E1.

By the convexity of Φ and the definition (4.1), it follows that

2αt
[

L(zt,λ∗)− Φ(x∗)
]

≤ E1.

This completes the proof.
Note that the minimum of L(x,λ∗) over x ∈ R

n is attained at x = x∗, and
L(x∗,λ∗) = Φ(x∗). Hence, Theorem 4.1 bounds the difference between L(zt,λ∗) and
the minimum of L(·,λ∗). We will strengthen the convergence rate to O(1/t2) when a
strong convexity assumption holds, and also obtain a convergence rate for nonergodic
iterates.

Assumption 4.1. If µf,i ≥ 0 and µh,i ≥ 0 are the convexity moduli of fi and hi
respectively, then

µ = min {µf,i + 3µh,i : i = 1, . . . ,m} > 0.(4.2)

In the following theorem, we suppose that at the k-th iteration, the penalty
parameter ρ is chosen in the following way:

ρk = (k0 + k)θ,(4.3)

where

θ =
αµ

8‖P‖ and k0 =
4‖Q−1/2PQ−1/2‖

α(1− α)
,(4.4)

with µ defined in Assumption 4.1, α ∈ (0, 1) is the parameter in Algorithm 2.1 and
P = MQ−1MT. We have the following theorem:

Theorem 4.2. Let (x∗,λ∗) ∈ W∗ be any solution/multiplier pair for (1.1)–(1.2),
let xk,yk, zk and λk be generated by I-ADMM, and assume that Assumption 4.1 holds
and δlαlγl = 1 for each l and k. Suppose that for every k, ρk is given by (4.3) and
Γki satisfies

k

Γki
≥ k + 1

Γk+1
i

, 1 ≤ i ≤ m.(4.5)

Then, for all t > 0, we have

L(z̃t,λ∗)− Φ(x∗) ≤ 2c

α[t(t+ 1) + 2k0t]
(4.6)

and

‖yt+1 − x∗‖2 ≤ c

(t+ k0)2θ
,(4.7)

where

z̃t =
2

t(t+ 1) + 2k0t

t
∑

k=1

((k0 + k)zk),(4.8)
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and

c =
1

θ
‖λ1 − λ∗‖2 + α(k0 + 1)

m
∑

i=1

‖x1
i − x∗

i ‖2
Γ1
i

+ k20θ‖y1 − x∗‖2P.(4.9)

Proof. By Assumption 4.1 and the definition (3.5) of ∆k, we have

∆k = L(zk,λ∗)− L(x∗,λ∗) ≥
m
∑

i=1

µf,i + µh,i
2

‖zki − x∗
i ‖2 =

m
∑

i=1

µf,i + µh,i
2

‖zke,i‖2,

where zke = zk − x∗. Notice that (3.4) essentially holds for ρ being the penalty
parameter used in the k-th iteration. Then, utilizing inequality (3.4) of Lemma 3.2
and the definition of µ in Assumption 4.1, we have

α
(

∆k +
µ

2
‖zke‖2 + ρk(1− α)‖yk − zk‖2Q

)

(4.10)

≤ ρk(‖yke‖2P − ‖yk+1
e ‖2P) +

1

ρk
(‖λke‖2 − ‖λk+1

e ‖2) + α
m
∑

i=1

‖xke,i‖2 − ‖xk+1
e,i ‖2

Γki
,

where xke = xk − x∗, yke = yk − x∗, and λke = λk − λ∗.
For any matrix P, it follows from an eigendecomposition that

xTx ≥ xTPx

‖P‖ and xTQx ≥ xTPx

‖Q−1/2PQ−1/2‖ .

The second inequality is deduced from the first when x is replaced by Q1/2x and P

is replaced by Q−1/2PQ−1/2. This yields the following lower bound for terms on the
left side of (4.10):

µ

2
‖zke‖2 + ρk(1− α)‖yk − zk‖2Q ≥ µ

2‖P‖‖z
k
e‖2P +

ρk(1− α)

‖Q−1/2PQ−1/2‖‖y
k − zk‖2P

≥ µ

2‖P‖
(

‖zke‖2P + ‖yk − zk‖2P
)

≥ µ

2‖P‖
(

2‖zke‖2P + ‖yke‖P − 2‖zke‖‖yke‖
)

≥ µ

4‖P‖‖y
k
e‖P =

2θ

α
‖yke‖P.(4.11)

The second inequality is due to the special form of ρk in (4.3) and (4.4), and the last
inequality is due to the relation

ab ≤ 1

2

(

2a2 +
1

2
b2
)

.

The inequality (4.11) is incorporated in the left side of (4.10). We multiply the
resulting inequality by K := k0+ k, substitute ρk = Kθ, exploit the assumption (4.5)
and the inequality K(K − 2) ≤ (K − 1)2 to obtain

αK∆k ≤ θ
(

(K − 1)2‖yke‖2P −K2‖yk+1
e ‖2P

)

+
1

θ
(‖λke‖2 − ‖λk+1

e ‖2)

+α

m
∑

i=1

(

K‖xke,i‖2
Γki

−
(K + 1)‖xk+1

e,i ‖2

Γk+1
i

)

.
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Summing this inequality for k between 1 and t, with K = k0 + k, yields

α

t
∑

k=1

(k0 + k)∆k + (k0 + t)2θ‖yt+1 − x∗‖2P ≤ c,(4.12)

where c is defined in (4.9). Substituting for ∆k using (3.5) and discarding the yt+1

term, we have

α

t
∑

k=1

(k0 + k)
[

L(zk,λ∗)− Φ(x∗)
]

≤ c.(4.13)

The convexity of Φ and the definition of z̃k in (4.8) yield

L(z̃k,λ∗)) ≤ 2

t(t+ 1) + 2k0t

t
∑

k=1

(k0 + k)L(zk,λ∗),

which together with (4.13) gives (4.6). In addition, since ∆k ≥ 0, (4.12) also implies
(4.7).

As noted at the end of Section 2, for either of the parameter choices (2.3) or (2.4),
γl ≥ l2Θ for some constant Θ > 0, independent of k and l. Hence, for l sufficiently
large, the requirement (4.5) at iteration k + 1 is satisfied.

5. Linear Convergence. For the analysis of linear convergence rate of I-ADMM,
we assume that ψ has the additional property that ψ(t) ≤ cψt for all t ≥ 0, where
cψ > 0 is a constant. Let us define

ei(y,λ) = ‖yi − proxhi
(yi −∇fi(yi)−AT

i λ)‖.(5.1)

We begin with the following lemma.
Lemma 5.1. If the parameters δl and αl in Algorithm 2.2 are chosen according

to either (2.3) or (2.4) and ψ(t) ≤ cψt, then for any k ≥ 2, we have

m
∑

i=1

ei(y
k+1,λk+1) ≤ c(dk + dk−1),(5.2)

where c > 0 is a generic constant which only depends on the problem data and algo-
rithm parameters such as ρ and cψ and

dk = ‖yk − zk‖+ ‖Azk − b‖+
√
Rk.(5.3)

Proof. For any pi and qi ∈ R
ni , i = 1, 2, it follows from the triangle inequality

and the nonexpansive property of the prox operator that

‖p1 − proxhi
(q1)‖

= ‖[p2 − proxhi
(q2)] + [p1 − p2] + [proxhi

(q2)− proxhi
(q1)]‖

≤ ‖p2 − proxhi
(q2)‖+ ‖p1 − p2‖+ ‖q1 − q2‖.(5.4)

We identify ‖p1−proxhi
(q1)‖ with ei(yk+1,λk+1) and ‖p2−proxhi

(q2)‖ with ei(zk,λk),
and use (5.4) to obtain the following bound for ei(y

k+1,λk+1) in terms of ei(z
k,λk):

ei(y
k+1,λk+1) ≤ ei(z

k,λk) + (2 + ζi)‖yk+1
i − zki ‖+ ‖AT

i (λ
k+1 − λk)‖,
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where ζi is the Lipschitz constant for ∇fi. The update formula for λk+1 implies that
λk+1 − λk = αρ(Azk − b) = αρrk, where rk = Azk − b. With this substitution, the
bound for ei(y

k+1,λk+1
i ) becomes

ei(y
k+1,λk+1) ≤ ei(z

k,λk) + (2 + ζi)‖yk+1
i − zki ‖+ αρ‖AT

i r
k‖.(5.5)

Let νi > 0 denote the smallest eigenvalue of Qi. The analysis is partitioned into two
cases:

Case 1. Γki > 4/(ρνi). Again, by property (5.4), we have

ei(z
k,λk) ≤ ei(x

k,λk) + (2 + ζi)‖zki − xki ‖,(5.6)

where xk is given in (3.2). The first-order optimality conditions for xki can be written

xki = proxhi

(

xki −∇fi(xki )− ρAT

i (Aiy
k
i − bki + λk/ρ)− ρQi(x

k
i − yki )

)

.

Using this formula for the first xki on the right side of the identity

ei(x
k,λ) = ‖xki − proxhi

(xki −∇fi(xki )−AT

i λ)‖,

along with the nonexpansive property of prox operator, we have

ei(x
k,λk) ≤ ρ

(

‖AT

i (Aiy
k
i − bki )‖+ ‖Qi(x

k
i − yki )‖

)

.

The definition of bki yields

Aiy
k
i − bki =

∑

j<i

Ajz
k
j +

∑

j≥i

Ajy
k
j − b

= Azk − b+
∑

j≥i

Aj(y
k
j − zkj )

= rk +
∑

j≥i

Aj(y
k
j − zkj ).

It follows that

‖AT

i (Aiy
k
i − bki )‖ ≤ c(‖rk‖+ ‖yk − zk‖),(5.7)

and

ei(x
k,λk) ≤ c(‖rk‖+ ‖yk − zk‖+ ‖xki − zki ‖).(5.8)

Combining this with (5.6) gives

ei(z
k,λk) ≤ c(‖rk‖+ ‖yk − zk‖+ ‖xki − zki ‖).

Now, by Lemma 3.1, we have

√
ρνi‖zki − xki ‖ ≤ ‖xki − xki ‖

√

Γki
≤ ‖xki − zki ‖+ ‖zki − xki ‖

√

Γki
.(5.9)

The stopping condition in Step 1b gives

‖xki − zki ‖
√

Γki
≤ ψ(ǫk−1) ≤ cǫk−1.(5.10)
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Hence, by (5.9) we have
(

−1 +
√

Γki ρνi
√

Γki

)

‖zki − xki ‖ ≤ ‖xki − zki ‖
√

Γki
≤ cǫk−1.

Therefore, the Case 1 condition Γki > 4/(ρνi) implies that

‖zki − xki ‖ ≤ cǫk−1,

and by (5.8), we have

ei(z
k,λk) ≤ c(ǫk−1 + ‖yk − zk‖+ ‖rk‖).(5.11)

Case 2. Γki ≤ 4/(ρνi). It is shown in [21, pp. 227–228] that when the parameters
δl and αl are chosen according to either (2.3) or (2.4), there exists a constant Θ > 0,
independent of k and l, such that γl ≥ l2Θ. Since the γl are increasing functions of
l and Γki is the final value of γl in Step 1, it follows from the uniform bound on Γki
in Case 2, and the quadratic growth in γl, that the final l value in Step 1, which we
denote lki , is uniformly bounded as a function of i and k. Also, it follows from the
quadratic growth of γl and equations (5.18) and (5.20) in [21] that δl is uniformly (in
k, l, and i) bounded.

By the definition of γl in Algorithm 2.2, we have (1−αl)γl = γl−1, or equivalently,
αlγl = γl − γl−1 (with the convention that γ0 = 0). Summing this identity over l
yields

γl =
l
∑

j=1

αjγj .(5.12)

Next, we multiply the definition a
j
ik = (1 − αj)aj−1

ik + αjujik by γj and sum over j
between 1 and l. Again, exploiting the identity (1− αj)γj = γj−1 yields

alik =
1

γl

l
∑

j=1

(γjαj)ujik.(5.13)

It follows from (5.12), that alik is a convex combination of ujik, 1 ≤ j ≤ l. If pjik ∈ [0, 1]
denotes the coefficients in the convex combination, we have

alik =
l
∑

j=1

pjiku
j
ik,(5.14)

Since zki = aLik for L = lki , Jensen’s inequality gives

ei(z
k,λk) ≤

lk
i
∑

l=1

plik‖ulik − proxhi
(zki −∇fi(zki )−AT

i λ
k)‖

≤
lk
i
∑

l=1

‖ulik − proxhi
(zki −∇fi(zki )−AT

i λ
k)‖.(5.15)

Now, by the formula for ulik in Alg. 2.2, we have ulik = proxhi
(q2), where

q2 = ulik −∇fi(alik)− δlik(u
l
ik − ul−1

ik )− ρAT

i (Aiy
k
i − bki + λk/ρ)− ρQi(u

l
ik − yki ).
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We utilize (5.4) with q1 = zki − ∇fi(zki ) −AT

i λ
k, with q2 as given above, and with

p1 = p2 = ulik. Hence, p2 − proxhi
(q2) = 0 and by (5.4), it follows that

‖ulik − proxhi
(zki −∇fi(zki )−AT

i λ
k)‖ ≤(5.16)

c
(

‖ulik − zki ‖+ ‖alik − zki ‖+ ‖ulik − ul−1
ik ‖+ ‖AT

i (Aiy
k
i − bki )‖+ ‖ulik − yki ‖

)

≤
c
(

‖ulik − zki ‖+ ‖alik − zki ‖+ ‖ulik − ul−1
ik ‖+ ‖AT

i (Aiy
k
i − bki )‖+ ‖yki − zki ‖

)

Each of the terms on the right side of (5.16) is now analyzed.
Based on (5.7), the trailing two terms in (5.16) have the bound

‖AT

i (Aiy
k
i − bki )‖+ ‖yki − zki ‖ ≤ c(‖rk‖+ ‖yk − zk‖).

The remaining terms in (5.16) are bounded by c
√

rki as will now be shown. The

bound ‖ulik − ul−1
ik ‖ ≤ c

√

rki is a trivial consequence of the definition of rki and the

uniform bound on Γki in Case 2. By the definition alik = (1−αl)(al−1
ik −ul−1

ik )+ul−1
ik ,

it follows that

‖alik − zki ‖ ≤ ‖al−1
ik − ul−1

ik ‖+ ‖ul−1
ik − zki ‖.

This inequality and the fact that zki = alik for l = lki implies that all the remaining
terms in (5.16) have the form ‖alik − utik‖ for some l ∈ [1, lki ] and some t ∈ [1, l].
Combine (5.14), Jensen’s inequality, the fact that l ≤ lki where l

k
i is uniformly bounded

in Case 2, and the Schwarz inequality to obtain

‖alik − utik‖ ≤
l
∑

j=1

∥

∥

∥
u
j
ik − utik

∥

∥

∥
≤ l

l
∑

j=1

∥

∥

∥
u
j
ik − u

j−1
ik

∥

∥

∥
≤ c
√

rki ,

These bounds for the terms in (5.16) combine to yield

‖ulik − proxhi
(zki −∇fi(zki )−AT

i λ
k)‖ ≤ c

(

‖rk‖+ ‖yk − zk‖+
√

rki

)

.

Moreover, by (5.15) and the Case 2 uniform bound on lki , we have

ei(z
k,λk) ≤ c

(

‖rk‖+ ‖yk − zk‖+
√

rki

)

.

Combine this with the Case 1 lower bound (5.11) gives

ei(z
k,λk) ≤ c

(

ǫk−1 + ‖rk‖+ ‖yk − zk‖+
√

rki

)

.(5.17)

Inserting this in (5.5) yields

ei(y
k+1,λk+1) ≤ c

(

ǫk−1 + ‖rk‖+ ‖yk − zk‖+
√

rki + ‖yk+1 − yk‖
)

.

Based on the back substitution formula yk+1 − yk = αM−TQ(zk − yk), this reduces
to

ei(y
k+1,λk+1) ≤ c

(

ǫk−1 + ‖rk‖+ ‖yk − zk‖+
√

rki

)

.



14 W. W. HAGER AND H. ZHANG

Since ǫk−1 ≤ cdk−1 and ‖rk‖+ ‖yk − zk‖+
√

rki ≤ dk, the proof is complete.
The expression Ek defined in (3.3) measures the energy between the current iterate

(xk,yk,λk) and a given (x∗,x∗,λ∗). Let E∗
k denote the minimum energy between the

iterate and all possible (x∗,λ∗) ∈ W∗. We will show that when an error bound
condition holds, there exists a constant κ < 1 such that E∗

k+2 ≤ κE∗
k .

The error bound condition relates the KKT error to the Euclidean distance to
W∗. The KKT error K is given by

K(x,λ) = ‖Ax− b‖+
m
∑

i=1

ei(x,λ).(5.18)

When K(x,λ) = 0, the first-order optimality conditions hold. The Euclidean distance
from (x,λ) to W∗ will be measured by

E(x,λ) = min

{

ρ‖x− x∗‖2P +
1

ρ
‖λ− λ∗‖2 : (x∗,λ∗) ∈ W∗

}1/2

.(5.19)

Note that P = MQ−1MT is positive definite since M is invertible. Also, by [1,
Prop. 6.1.2], every solution of (1.1) has exactly the same set of Lagrange multipliers.
IfX∗ andΛ∗ denote the set of solutions and multipliers for (1.1), thenW∗ = X∗×Λ∗ is
a closed, convex set, and there exists a unique (x̃, λ̃) ∈ W∗ that achieves the minimum
in (5.19). The local error bound assumption is as follows:

Assumption 5.1. There exist constants β > 0 and η > 0 such that E(x,λ) ≤
ηK(x,λ) whenever E(x,λ) ≤ β.

The local error bound condition is equivalent to saying that in a neighborhood of
W∗, the Euclidean distance to W∗ is bound by the KKT error, which is often used to
analyze linear convergence behaviors of an optimization algorithm. More recently, a
partial error bound condition based on the the iterates generated by ADMM in stead
of requiring conditions on the optimization problems is proposed in [34]. Under such
conditions, linear convergence is also established for a 2-block ADMM. A multivalued
mapping F is piecewise polyhedral if its graph Gph F := {(x,y) : y ∈ F (x)} is a union
of finitely many polyhedral sets. The local error bound condition (Assumption 5.1)
holds when ∇fi is affine and ∂hi is piecewise polyhedral for i = 1, . . . ,m [23, 36, 42].
Note that when (x,λ) is restricted to a bounded set, the requirement that E(x,λ) ≤ β
can be dropped. That is, when E(x,λ) > β, K(x,λ) is strictly positive, and by taking
the constant η large enough, the bound E(x,λ) ≤ ηK(x,λ) holds over the entire set.
In our analysis, the error bound condition is applied to the iterates (yk,λk) which lie
in a bounded set by Lemma 3.2, so the requirement that E(x,λ) ≤ β is unnecessary.

Theorem 5.2. If the parameters δl and αl in Algorithm 2.2 are chosen according
to either (2.3) or (2.4), ψ(t) ≤ cψt, and Assumption 5.1 holds, then there exists κ < 1
such that E∗

k+2 ≤ κE∗
k at every iteration of Algorithm 2.1.

Proof. Let (ỹk+1, λ̃k+1) ∈ W∗ be the unique minimizer in (5.19) corresponding
to (x,λ) = (yk+1,λk+1). Since Γki is nondecreasing in k by the stopping condition
1b of Algorithm 2.2, it follows from the triangle inequality and the back substitution
formula yk+1 − yk = αM−TQ(zk − yk) that for any i ∈ [1,m], we have

‖xk+1
i − ỹk+1

i ‖
√

Γk+1
i

≤ ‖xk+1
i − zki ‖+ ‖zki − yki ‖+ ‖yki − yk+1

i ‖+ ‖yk+1
i − ỹk+1

i ‖
√

Γk+1
i
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≤ ‖xk+1
i − zki ‖
√

Γki
+

‖zki − yki ‖+ ‖yki − yk+1
i ‖+ ‖yk+1

i − ỹk+1
i ‖

√

Γ1
i

≤ ‖xk+1
i − zki ‖
√

Γki
+ c

(

‖zk − yk‖+ ‖yk+1
i − ỹk+1

i ‖
)

,(5.20)

where c > 0 is a constant. In the later proof, we simply use c > 0 as a generic
constant.

As noted earlier, when the parameters δl and αl in Algorithm 2.2 are chosen
according to either (2.3) or (2.4), we have ξl = δlαlγl = 1. By equation (3.12) in the
supplementary material for this paper with L = lki , u = aLi = zki , u

L
i = xk+1, and

u0
i = xk, we obtain the relation

‖zki − xk+1
i ‖

√

Γki
≤ ‖zki − xki ‖

√

Γki
≤ ψ(ǫk−1),

where the last inequality is due to the stopping condition in Step 1b. Combining this
with (5.20) yields

‖xk+1
i − ỹk+1

i ‖
√

Γk+1
i

≤ ψ(ǫk−1) + c
(

‖zk − yk‖+ ‖yk+1
i − ỹk+1

i ‖
)

.(5.21)

Exploiting the error bound condition, we have

‖yk+1 − ỹk+1‖2 ≤
√

‖P−1‖‖yk+1 − ỹk+1‖P(5.22)

≤ cE(yk+1,λk+1) ≤ cK(yk+1,λk+1).

The constraint violation term in K is estimated as follows:

‖Ayk+1 − b‖ ≤ ‖A‖(‖yk+1 − yk‖+ ‖yk − zk‖) + ‖Azk − b‖ ≤ cdk,

where the last inequality is due to the back substitution formula and the definition
(5.3) of dk. Hence, Lemma 5.1 yields

K(yk+1,λk+1) ≤ c(dk + dk−1).(5.23)

Combine (5.21)–(5.23) to obtain

‖xk+1
i − ỹk+1

i ‖
√

Γk+1
i

≤ ψ(ǫk−1) + c(dk + dk−1) ≤ c(dk + dk−1)(5.24)

since ψ(t) ≤ cψt and ǫk−1 ≤ cdk−1. Since the energy E∗
k+1 corresponds to the

minimum of Ek+1 over all (x∗,λ∗) ∈ W∗ and since (ỹk+1, λ̃k+1) ∈ W∗, it follows that

E∗
k+1 ≤ ρ‖yk+1 − ỹk+1‖2P +

1

ρ
‖λk+1 − λ̃k+1‖2 + α

m
∑

i=1

‖xk+1
i − ỹk+1

i ‖2
Γk+1
i

.

The first two terms on the right are E2(yk+1,λk+1), while the last term in bounded
by (5.24). We have

E∗
k+1 ≤ E2(yk+1,λk+1) + c (dk + dk−1)

2
.
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Combine this with the error bound condition and (5.23) gives

E∗
k+1 ≤ c (dk + dk−1)

2
.(5.25)

Suppose that (x̂k, λ̂k) ∈ W∗ is the unique minimizing (x∗,λ∗) ∈ W∗ associated

with E∗
k . By Lemma 3.2 and the fact that (x̂k, λ̂k) ∈ W∗, we have

E∗
k ≥ ρ‖yk+1 − x̂k‖2P +

1

ρ
‖λk+1 − λ̂k‖2 + α

m
∑

i=1

‖xk+1
i − x̂ki ‖2

Γki

+ρα(1− α)(‖yk − zk‖2Q + ‖Azk − b‖2) + σα

m
∑

i=1

Rk.

The first three terms on the right side are bounded from below by E∗
k+1, while the last

three terms are bounded from below by cd2k by the definition of dk in (5.3). Hence,

E∗
k ≥ E∗

k+1 + cd2k.(5.26)

We replace k by k − 1 and then use again (5.26) followed by (5.25) to obtain

E∗
k−1 ≥ E∗

k + cd2k−1 ≥ E∗
k+1 + c(d2k + d2k−1) ≥ (1 + c)E∗

k+1,

which completes the proof.

Another linear convergence result is established when the objective Φ is strongly
convex, in which case the solution x∗ of (1.1) is unique. Our assumption is the
following:

Assumption 5.2. The objective Φ is strongly convex with modulus µ > 0 and
there exist constants β > 0 and η > 0 such that

‖λ− λ̃‖ ≤ η

m
∑

i=1

‖ei(x∗,λ)‖(5.27)

whenever ‖λ− λ̃‖ ≤ β.

The local error bound condition (5.27) holds when ∂hi is piecewise polyhedral for
i = 1, . . . ,m [23, 36, 42]. Similar to the comment before Theorem 5.2, the requirement
that ‖λ− λ̃‖ ≤ β can be dropped since it is applied to the iterates λk which lie in a
bounded set by Lemma 3.2.

Theorem 5.3. If the parameters δl and αl in Algorithm 2.2 are chosen according
to either (2.3) or (2.4), ψ(t) ≤ cψt, and Assumption 5.2 holds, then there exists κ < 1
such that E∗

k+2 ≤ κE∗
k at every iteration of Algorithm 2.1.

Proof. By the local error bound condition and by (5.4) with p1 − proxhi
(q1)

identified with ei(x
∗,λk+1) and p2 − proxhi

(q2) identified with ei(z
k,λk), we have

‖λk+1 − λ̃k+1‖ ≤ η

m
∑

i=1

ei(x
∗,λk+1)(5.28)

≤ c

(

‖zk − x∗‖+ ‖λk+1 − λk‖+
m
∑

i=1

ei(z
k,λk)

)

,
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where c > 0 is a constant. In the later proof, we again use c > 0 as a generic constant.
By (5.17), it follows that

m
∑

i=1

ei(z
k,λk) ≤ c

(

ǫk−1 + ‖rk‖+ ‖yk − zk‖+
√
Rk
)

.

Inserting this in (5.28) and recalling that λk+1 −λk = αρ(Azk −b) = αρrk, we have

‖λk+1 − λ̃k+1‖ ≤ c
(

ǫk−1 + ‖zk − x∗‖+ ‖rk‖+ ‖yk − zk‖+
√
Rk
)

.

Since ǫk−1 ≤ cdk−1 and ‖rk‖+ ‖yk − zk‖+
√
Rk ≤ dk, it follows that

‖λk+1 − λ̃k+1‖ ≤ c(dk + dk−1 + ‖zk − x∗‖).(5.29)

By (5.21) with ỹk+1 = x∗, we have

‖xk+1
i − x∗

i ‖
√

Γk+1
i

≤ c
(

ǫk−1 + ‖zk − yk‖+ ‖yk+1 − x∗‖
)

.(5.30)

The triangle inequality and the back substitution formula yield

‖yk+1 − x∗‖ ≤ ‖yk+1 − yk‖+ ‖yk − zk‖+ ‖zk − x∗‖(5.31)

≤ c‖yk − zk‖+ ‖zk − x∗‖.

The bounds ǫk−1 ≤ cdk−1 and ‖yk − zk‖ ≤ dk in (5.31) and (5.30) give

‖yk+1−x∗‖ ≤ cdk+‖zk−x∗‖ and
‖xk+1

i − x∗
i ‖

√

Γk+1
i

≤ c
(

dk−1 + dk + ‖zk − x∗‖
)

.(5.32)

Combine (5.29) and (5.32) to obtain

E∗
k+1 = ρ‖yk+1 − x∗‖2P +

1

ρ
‖λk+1 − λ̃k+1‖2 + α

m
∑

i=1

‖xk+1
i − x∗

i ‖2
Γk+1
i

≤ c(dk + dk−1 + ‖zk − x∗‖)2.(5.33)

On the other hand, by Lemma 3.2 and the fact that (x∗, λ̃k) ∈ W∗, we have

E∗
k ≥ ρ‖yk+1 − x∗‖2P +

1

ρ
‖λk+1 − λ̃k‖2 + α

m
∑

i=1

‖xk+1
i − x∗

i ‖2
Γki

(5.34)

+ρα(1− α)(‖yk − zk‖2Q + ‖Azk − b‖2) + σαRk + 2α∆k

≥ E∗
k+1 + cd2k + µ‖zk − x∗‖2,

where the last inequality is due to the definition (5.3) of dk and the strong convexity
of Φ:

∆k := Φ(zk)− Φ(x∗) + (λ̃k,Azk − b) ≥ µ

2
‖zk − x∗‖2.

Finally, we replace k by k − 1 in (5.34), and then use again (5.34) followed by (5.33)
to obtain

E∗
k−1 ≥ E∗

k + cd2k−1 ≥ E∗
k+1 + c(d2k + d2k−1) + µ‖zk − x∗‖2 ≥ (1 + c)E∗

k+1,

which completes the proof.
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6. Numerical Experiments. In this section, we compare the performance of
I-ADMM to that of two different algorithms: (a) linearized ADMM with one lineariza-
tion step for each subproblem and (b) exact ADMM where the subproblems are solved
either by the conjugate gradient method or by an explicit formula. The conjugate
gradient method was well suited for the quadratic subproblems in our test set. We
tried using a small number of conjugate gradient iterations to solve a subproblem,
such as 5 iterations starting from the solution computed in the previous iteration, but
found that the scheme did not converge. Instead we continued the CG iteration until
the norm of the gradient was at most 10−6. The one-step ADMM algorithm that we
used in (a) for the experiments was the generalized BOSVS algorithm from [21]. This
algorithm is globally convergent, and although the penalty term was not linearized, it
was possible to quickly solve the subproblems that arise in the imaging test problems
using a fast Fourier transform, as explained in [10].

The problems in our experiments were the same image reconstruction problems
used in [21]. One image employs a blurred version of the well-known Cameraman
image of size 256× 256, while the second set of test problems, which arise in partially
parallel imaging (PPI), are found in [10]. The observed PPI data, corresponding to 3
different images, are denoted data 1, data 2, and data 3. These image reconstruction
problem can be formulated as

min
u

1

2
‖Fu− f‖2 + α‖u‖TV + β‖ΨTu‖1,(6.1)

where f is the given image data, F is a matrix describing the imaging device, ‖ · ‖TV
is the total variation norm, ‖ · ‖1 is the ℓ1 norm, Ψ is a wavelet transform, and α > 0
and β > 0 are weights. The first term in the objective is the data fidelity term, while
the next two terms are for regularization; they are designed to enhance edges and
increase image sparsity. In our experiments, Ψ is a normalized Haar wavelet with
four levels and ΨΨT = I. The problem (6.1) is equivalent to

min
(u,v,w)

1

2
‖Fu− f‖2 + α‖w‖1,2 + β‖v‖1 subject to Bu = w, ΨTu = v,(6.2)

where Bu = ∇u and (∇u)i is the vector of finite differences in the image along the

coordinate directions at the i-th pixel in the image, ‖w‖1,2 =
∑N
i=1 ‖(∇u)i‖2, and N

is the total number of pixels in the image.
The problem (6.2) has the structure appearing in (1.1)–(1.2) with h1 := 0, f1(u) =

1/2‖Fu− f‖2, h2(w) = ‖w‖1,2, f2 := 0, h3(v) = ‖v‖1, f3 := 0,

A1 =

(

B

ΨT

)

, A2 =

(

−I

0

)

, A3 =

(

0

−I

)

, and b =

(

0

0

)

.

The algorithm parameters αl and δl were chosen as in (2.4). Since f2 = f3 = 0, the
second and third subproblems are solved in closed form, due to the simple structure of
h2 and h3. Only the first subproblem is solved inexactly. At iteration k, the solution
of this subproblem approximates the solution of

min
u

1

2
‖Fu− f‖2 + ρ

2
‖Bu−wk + ρ−1λk‖2 + ρ

2
‖ΨTu− vk + ρ−1µk‖2,

where λk and µk are the Lagrange multipliers at iteration k for the constraints Bu =
w and ΨTu = v respectively. Details of the experimental setup can be found in [21].
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Fig. 6.1. Base-10 logarithm of the relative objective error versus CPU time for the test problems.

The i-th block diagonal element of Q was taken to be a multiple γi of the identity
I. According to the assumptions of IADM, γ1 should be chosen large enough that
γ1I−AT

1A1 is positive semidefinite, where

AT

1A1 = BTB+ΨΨT.

However, a closer inspection of the global convergence proof reveals that for conver-
gence, it is sufficient to have

γ1‖zk − yk‖2 ≥ ‖A1(z
k − yk)‖2(6.3)

in each iteration. Instead of computing the largest eigenvalue of AT

1A1, we simply
start with γ1 = 4 and multiply it by a constant factor (3 in the experiments) whenever
the inequality (6.3) is violated. Within a finite number of iterations, γ1 is large enough
that (6.3) always holds.

Figure 6.1 plots the logarithm of the relative objective error versus the CPU time
for the four test problems and the three methods. Note that the first few iterations
of the exact ADMM for Data 3 have error greater than one, so they missing from
the plot. Observe that I-ADMM performed better than the exact ADMM and the
exact ADMM was generally better than the single linearization step, except possibly
in the initial iterations where the high accuracy of the exact ADMM was not helpful.
I-ADMM gave better performance both initially and asymptotically.

7. Conclusion. We propose an inexact alternating direction method of multi-
pliers, I-ADMM, for solving separable convex linearly constrained optimization prob-
lems, where the objective is the sum of smooth and relatively simple nonsmooth
terms. The nonsmooth terms could be infinite, so the algorithms and analysis include
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problems with additional convex constraints. This I-ADMM emanates for our earlier
work [10, 20, 21] on a Bregman Operator Splitting algorithm with a variable stepsize
(BOSVS). The subproblems are solved using an accelerated gradient algorithm that
employs a linearization of both the smooth objective and the penalty term. We estab-
lish an O(1/k) ergodic convergence rate for I-ADMM, where k is the iteration number.
Under a strong convexity assumption, the convergence rate improves to O(1/k2) for
both ergodic and nonergodic iterates. When an error bound condition holds, 2-step
linear convergence is established for nonergodic iterates. The convergence rates for
I-ADMM are consistent with convergence rates obtained for exact ADMM schemes
such as those in [23, 28, 30, 35, 38, 42]. As observed in the numerical experiments, an
advantage of the inexact scheme is that the computing time to achieve a given error
tolerance is reduced, when compared to the the exact iteration, since the accuracy of
the subproblem solutions are adaptively increased as the iterates converge so as to
achieve the same convergence rates as the exact algorithms.
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