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Abstract. In this paper, we develop a symmetric accelerated stochastic Alternating
Direction Method of Multipliers (SAS-ADMM) for solving separable convex optimiza-
tion problems with linear constraints. The objective function is the sum of a possibly
nonsmooth convex function and an average function of many smooth convex func-
tions. Our proposed algorithm combines both ideas of ADMM and the techniques of
accelerated stochastic gradient methods possibly with variance reduction to solve the
smooth subproblem. One main feature of SAS-ADMM is that its dual variable is sym-
metrically updated after each update of the separated primal variable, which would al-
low a more flexible and larger convergence region of the dual variable compared with
that of standard deterministic or stochastic ADMM. This new stochastic optimization
algorithm is shown to have ergodic converge in expectation with O(1/T) convergence
rate, where T denotes the number of outer iterations. Our preliminary experiments
indicate the proposed algorithm is very effective for solving separable optimization
problems from big-data applications. Finally, 3-block extensions of the algorithm and
its variant of an accelerated stochastic augmented Lagrangian method are discussed in
the appendix.
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1 Introduction

We consider the following structured composite convex optimization problem with linear
equality constraints:

min{f(x)+g(y)|xeX,ye), Ax+By=b}, (1.1)

where X CR™, Y CIR™ are closed convex subsets, AcR"*", B€R"*"2, b R" are given,
g: Y —RU{+o0} is a convex but possibly nonsmooth function, and f is an average of N
real-valued convex functions:

We assume that each f; defined on an open set containing & is Lipschitz continuously
differentiable on X'. Problem (1.1) is also referred as the regularized empirical risk mini-
mization in big-data applications [26,35], including classification and regression models
in machine learning, where N denotes the sample size and f; corresponds to the empir-
ical loss. A major difficulty for solving (1.1) is that the sample size N can be very large
such that it is often computationally prohibitive to evaluate either the full function value
or the gradient of f at each iteration of an algorithm. Hence, it is essential for an effective
algorithm, e.g., a stochastic gradient method, to explore the summation structure of f in
the objective function.
The augmented Lagrangian function of (1.1) is

Lg (x,y,A)zﬁ(x,y,A)+§ | Ax+ By —b|?, (1.2)

where >0 is a penalty parameter, A is the Lagrange multiplier and the Lagrangian of
(1.1) is defined as

L(x,y,A)=f(x)+g(y)—AT (Ax+By—b). (1.3)

Although the Augmented Lagrangian Method (ALM) can be applied to solve (1.1), it does
not take full advantage of the separable structure of (1.1). As a splitting version of ALM,
the standard Alternating Direction Method of Multipliers (ADMM, [11, 12]) exploits the
separable structure of the objective function and performs the following iterations:

k+1 : k 2k
X Gargirélérvl Lg(x,y",A"),

k+1 : k+1 k
cargmin Lg(x* ", y,A"),
y gmin Lp(¥,y,A7)

/\k-i-l :/\k—Sﬁ (Axk+l+Byk+l_b),

where s € (0, 1+2\/§) is the stepsize for updating the dual variable A.
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If the Peaceman-Rachford Splitting Method (PRSM, [27]) is applied to the dual of
(1.1), then we obtain a variation of ADMM, whose iteration reads

k+1 . k K
X Earggcrg)r(lﬁ,g(x,y, ),

AR+2 :Ak_ﬁ(AkaJrByk_b)/

k+1 : k+1 k+3
CargminLg(x*,y,A"72),
y gminlp(x™ Ly, A7)

Ak+l :Ak+% —,B (Axk+1+Byk+l —b> )

PRSM is also called Symmetric ADMM (S-ADMM) since the Lagrange multipliers are
symmetrically updated twice in each loop. Note that both updates of dual variable in
PRSM use the same constant stepsize 1. Recently, Luo-Yang [25] proposed a fast S-
ADMM for solving (1.1) with only equality constraints, where the Nesterov’s acceleration
technique was applied for an additional update of A*"! and the y variable was updated

again by solving

R R k+1(1 _ gk
ming(y)— (/\k+1)TBy with A=Ak % (AR K
Y
and 651 =2/ (k+1). Motivated from the ideas of enlarging the dual stepsize in [18], Gu,
et al. [14] proposed a symmetric proximal ADMM whose dual variable is updated twice
with different stepsizes. Meanwhile, the following extension of SSADMM was developed
by He, et al. [19]:
k+1 : k Ak

x e argirg)rgﬁﬁ(x,y A5,
ARtIZ k78 (Axk+l +Byt —b) ,

(1.4)
ytle argmi)r}ﬁﬂ(xkﬂ,y,/\“% ),
ye

AR A k3 —sp (Axk+1+Byk+1—b),

where, for the sake of convergence, the stepsize pair (7,s) is required to belong to the
following region:

Aoz{(r,s)y s€(0,(14+5)/2), T+s>0, T€(—1,1), ]T|<1+s—sz}.

Bai etal. [1] further designed a Generalized Symmetric ADMM (GS-ADMM) for solving a
multi-block separable convex optimization and enlarged the above region Aj to A defined
in (3.1). Numerical experiments show that symmetrically updating the dual variable in
a more flexible way often improves the algorithm performance [1,14,19]. The sublinear
convergence rate of GS-ADMM in the nonergodic sense and its linear convergence rate
were shown in [2]. To our knowledge, A is currently the largest convergence region
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of the dual stepsizes for symmetric ADMM-type algorithms and has been used in the
logarithmic-quadratic proximal based ADMM for solving the 2-block problems [17,29]
and the grouped multi-block problems [4].

Another line of developing ADMM is to apply relaxation techniques such as using
X =a A (1—-a) (b—By")

to replace Ax**! during the updates of y**! and A1 where « € (0,2) is a relaxation
factor. This leads to the classical Generalized ADMM (G-ADMM, [8]):

k+1 . k 4k
X Gargirélérvlﬁﬁ(x,y A5,

2
y ! cargming(y) - (Ak)TBy+§ Hx"“+By—b ,

AL Ak g <Xk+1 + By~ —b) .

Clearly, G-ADMM with a« =1 would reduce to the standard ADMM with unit dual step-

size. ADMM using some additional proximal terms in their subproblems is also called

G-ADMM. For instance, the x-subproblem in [9] was proposed as mi{gﬁ B (x,y%,A%) +3lx—
xe

x||%, where G is a symmetric positive definite matrix. For more recent G-ADMMs using

possibly indefinite proximal terms, one may refer to the references [21,30].

For convergence rate of ADMV,, it is well-known that most of deterministic ADMM
algorithms [1,6,7,9, 15, 16,18, 19, 21, 28, 31, 32] enjoy a global O(1/T) ergodic conver-
gence rate for separable convex optimization, where T is the iteration number. Under
the assumption that the subdifferential of each component objective function is piece-
wise linear, Yang-Han [34] established linear convergence rate of ADMM for two-block
separable convex optimization. Assuming that an error bound condition holds, the dual
stepsize is sufficiently small and the coefficient matrices in the equality constraint have
full column ranks, Hong-Luo [20] showed a linear convergence rate of their multi-block
ADMM. Zhang et al. [36] developed a majorized ADMM with indefinite proximal terms
(iPADMM) for a class of composite convex optimization problems, and the authors ana-
lyzed the convergence of this iPADMM with a linear convergence rate under a local error
bound condition. Moreover, Chang et al. [6] proposed a linearized symmetric ADMM
with indefinite proximal regularization and optimal proximal parameter for solving the
multi-block separable convex optimization. More recently, Yuan-Zeng-Zhang [33] showed
that the local linear convergence of ADMM can be guaranteed by a partial error bound
condition. For more details about linear convergence rate under strongly convexity as-
sumption, we refer interested readers to [3,5,13,23,24] and the references therein.
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2 Preliminaries

2.1 Notations and assumptions

Let R, R", and R"*! be the sets of real numbers, #n dimensional real column vectors, and
n x 1 dimensional real matrices, respectively. The I and 0 denote the identity matrix and
the zero matrix/vector, respectively. For any symmetric matrices A and B of the same
dimension, A > B (A > B) means A—B is a positive definite (semidefinite) matrix. For
any symmetric matrix G, define ||x||2 :=x"Gx and ||x| ¢ := VxTGx if G = 0. We use
||-|| to denote the standard Euclidean norm equipped with inner product (-,-), V f(x) to
represent the gradient of f at x, and E[-] to denote mathematical expectation of a random
variable. We also define

x —ATA
w=\|vy |, J(w)= —BTA , (2.1)
A Ax+By—b

xk —ATAK
A Ax*4+ByF—b

For convenience of analysis, we simply denote F(w) = f(x)+g(y).
We make the following two assumptions:

and

Assumption 2.1. The primal-dual solution set QO* of problem (1.1) is nonempty, and the problem
mi)r} {¢(y)+3y"B"By+z"y} has a minimizer for any z € R™.
ye

Assumption 2.2. For any H -0, there exists a constant v>0 such that the gradients V f; satisfy
the Lipschitz condition

[V £i(x1) =V fi(x2) [l Sl — 22 (2.3)
for every x1,x, € X and j=1,2,--- ,N.

The first assumption is a basic assumption to ensure the solvability of the problem.
Under Assumption 2.2, it holds that for every x,y € X', we have

Fl) < f ) (V) s = 22) 45 v =

2.2 Variational characterization of (1.1)

Denote () =X x Y xRR". It's well-known in convex optimization that any saddle-point
of the Lagrangian (1.3) corresponds to a primal-dual solution of problem (1.1). A point
w*:=(x";y*;A") € N is called a saddle-point of £ (x,y,A) if it satisfies

L(x*y" AN <L(x*y* A)<L(xy,A"), YweQ, (2.4)
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which is equivalent to
f) = f) + (x=x)T (- ATA") 20,
s -8 +(y-y")T(-BTA") 20,
Ax*+By* —b=0.

Rewriting these inequalities as a more compact form, it gives

F(w)—F(w*)+(w—w*)"J (w*) >0, YweQ. (2.5)
Notice that the affine mapping 7 (-) is skew-symmetric. So, we have
(w—)" [T (w)— T (@)]=0, Yw@Q. (2.6)
Hence, (2.5) is also equivalent to
F(w)—F(w*)+(w—w*)" T (w) >0, YwecQ. (2.7)

The above discussion shows that the saddle-point w* can be also characterized by the
variational inequality (2.7).

3 The proposed algorithm

Motivated from the stochastic AS-ADMM developed in [3] and the deterministic GS-
ADMM proposed in [1], we now propose a Symmetric Accelerated Stochastic ADMM
(SAS-ADMV, i.e., Algorithm 1), which has the similarly dual stepsize region A to that of
GS-ADMM defined as

A={(t,5)] T+s>0, <1, —T?—s*—Ts+T+s+1>0}. (3.1)
The main features of SAS-ADMM are summarized as follows:

(i) SAS-ADMM has many analogous advantages to AS-ADMM developed in [3]. Specif-
ically, SAS-ADMM has low memory requirement since there is no need to save
previous stochastic gradients and iterates. The subroutine xsub is a variant of de-
terministic accelerated gradient method where the full gradient is replaced by a
stochastic gradient. In addition, users have the flexibility of choosing a zero mean
random vector e; to reduce the variance of g,. A simple choice is e; =0, while faster
convergence is observed in the numerical experiments when a variance reduction
technique is employed (see (5.3) in Section 5). Under our blanket assumption that g
is a proper convex function, the proximal y-subproblem is solvable. Also, under the
assumption that the projection onto the constraint set X is simple, the iterations in
subroutine xsub can be performed efficiently when both Mj and H are multiples
of identity matrix'.

tAs explained in Remark 4.1 and experiments, both M, and H could be chosen as multiples of identity
matrix. So the ¥;;1-subproblem is equivalent to a projection onto X'
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Algorithm 1 Symmetric accelerated stochastic ADMM (SAS-ADMM)

Parameters: >0, 7 >0, L0 and (7,5)€A given by (3.1).
Initialization: (x,4°,A%) € X x Y xR", ¥ =20,
For k=0,1,---

Choose m;>0, ;>0 and Mj such that M;—BATA>0.

W= —AT [Ak—ﬁ(Aquyk—b)} .
(21,241 = xsub (xk, %5, HF).
A2 — Ak 1B (Axk+1 4 ByF—b) .
Yoz Eafgfyrgjf}ﬁﬁ (xk+1,y,}tk+%) +1 Hy_kai_
AR+ :/\k+% —s/%(Axk+1+Byk+1—b).

end

(xT,x7)= xsub (x1, ¥, h).

For t=1,2,---,my
Randomly select {;€{1,2,---,N} with uniform probability.
Br=2/(t+1), vi=2/(tn), %=PeXs+(1—Ps)x:.
di=g,+e;, where g, =V fs(%X;) and e; is a random vector

satisfying E[e;]=0.

5ct+1:argmin{<dt+h,x>+%Hx—ictH%{—k%Hx—kaiAk:xEX}.
Xpr1= PeXer1+(1—Be)x:.

end

Return (xt,%") = (X 41,%m,+1) -

(i) Unlike the classical ADMM and AS-ADMM [3], the dual variable of SAS-ADMM
is symmetrically updated twice and allowed to use the large stepsize region (3.1).
SAS-ADMM will reduce to the aforementioned PRSM if the x-subproblem is solved
deterministically as in SSADMM, L =0 and (7,5) = (1,1) € A. When the stepsize

T=0and L =0, SAS-ADMM reduces to AS-ADMM with stepsize s € (0,%] (the
half-open interval). Compared with the standard stepsize region (O,%) for the

dual variable of ADMM, this symmetric updates of dual variable is more balanced,
flexible and often lead better numerical performance.

(iii) If m=1,N=1, then SAS-ADMM degrades to a linearized symmetric ADMM. When
my>1,N =1, SAS-ADMM is a multi-step deterministic inexact symmetric ADMM.
Hence, the convergence properties developed in this paper also apply to these de-
terministic algorithms as special cases. Moreover, by taking L=-I—BBT B for some
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v >0, the y-subproblem would become the following proximal mapping problem:

2
, (3.2)

8 (1K) - — : T, Lk
prox; (y,) :=argming(y) + ZHy Ye

where y*=y*—BBT(Ax**1+Byk—b— Akt /B) /. In this case, the Assumption 2.1
is not required since strong convexity of the y-subproblem implies a unique global
solution and a closed-form solution may exist when g has certain structure.

(iv) With the aid of variational analysis, we show that SAS-ADMM has the worst-case
O(1/T) ergodic convergence rate in terms of the expectation of both the objective
value gap and the constraint violation, where T is the number of the outer itera-
tions. Preliminary experiments and results show that SAS-ADMM performs com-
petitively well and often slightly better than AS-ADMM [3] for solving a family of
separable convex optimization problems arising from big-data applications.

4 Convergence analysis
To establish the convergence of Algorithm 1, we first need the following lemma about the

iterates generated by the xsub routine in Algorithm 1. The lemma was given in [3] and
thus we omit its proof.

Lemma4.1. [3, Lemma 3.2] Let §;=V f(X;)—d;. Suppose i€ (0,1/v) and Assumption 2.2
holds. Then, the iterates generated by Algorithm 1 satisfy

f(x) _f(xk+1)+ <x—xk+1,—ATXk> > <xk+1 —x,Dk(xk“ _xk)>+€k 4.1)
for all x& X, where

A=Ak p (A¥1+By*~b), Di=M—paTA 4.2)

=t (I “k“H )

—Zt<5h5€t—x> 4(1 17 m ZtZH‘SfH’Hl

and

(4.3)

Based on the above lemma, we can immediately establish the following result.

Lemma 4.2. Suppose 1jx € (0,1/v). Then, the iterates generated by Algorithm 1 satisfy

F(w) — F(@") + (w0, 7 (w) ) > (w—@") T Qe(w* ~ @) + ¢* (4.4)
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for all w € Q, where ¥ and A are defined in (4.3) and (4.2),

=k k+1

X X Dk
~ 1
A A Bl

Proof. By the first-order optimality condition of the y-subproblem, we have
8@) =g )+ (y—yp) 20, Wyey, (4.6)
where p, is the gradient of the smooth terms in the objective function of the y-subproblem:

pk:_BT/\k-i-%_'_‘BBT (Axk+l_|_Byk+1_b)_|_L(yk+l_yk)

—BTAN 24 BBT (AX T 4 By* —b) + [L+BBTB| (v —yF)

)

=—BTA +7BT (A = 2")+ [L+pBTB] (51 —¢").
The above last equality uses the following relation
AkrE Ak Ak 3, 4.7)

By the definition of Xk, we have
(Aaz"+B’gk—b) _B (yk—yk>+% (Xk —A") —0. 4.8)

Taking inner product of the above equality with A — Xk, we get

5k sk Y AT VL

(A-2", 4% +B7 b)) = </\ A-B(y y)+ﬁ(A A>> 4.9)
Then, the inequality (4.4) is achieved by combining (4.1), (4.6), (4.9) together with the
property in (2.6). O

4.1 More technical results

We show the following corollary and lemmas for establishing the main convergence the-
orem of our Algorithm 1.
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Corollary 4.1. Suppose 1 € (0,1/v). Then, the iterates generated by Algorithm 1 satisfy

F(W)—F(ﬁfk)ﬂw—ﬁfk)TJ(W)

1 k 2
>_ — k! k k .
s e (4.10)
for all w € Q, where {* is defined in (4.3) and
- Dy
ka L+( _r—&-s)ﬁBTB _T+5BT ,
_ T 1
L T+5B 'B(T+S)I (4'11)
- D,
Gr= L+(1-s)BBTB (s—1)BT
(s—1)B 1
Proof. By (4.7) and the way of generating A*™, we have
—sBB (yk—y") +(T+s) (A"—X") =AF AR (4.12)
which, by the definition of @" in (4.5), further shows
I
wk— w1 =p (wk—ﬁJk) with P= I . (413)
—sBB  (t+s9)I

Hence, the relation Qj(w* —@") = QP (wk —w* 1) holds and

Dy
QP 1= L+(1 _TT)ABBTB —T;BT = Ok
_TB ﬁ(r+s)1

For any w € (), it follows from (4.4) and the above relation that

F(w) - F(@") + (w—a@")" T (w)
2@" +(w —Nk)T@k(wk—wk“)
o -

where the equality uses the identity

2
N —Hwk“—w

d

? 4.14
@k}’ @14

2a—b)"Ge(c—d) = lla—d|%, ~lla—c|% +llc—bl% —llb—d|,



J. Bai et al. / CSIAM Trans. Appl. Math., x (2022), pp. 1-32 11

with specifications a:=w, b:=@", c:=w*, d:= w1,

Now, by (4.13) again, we deduce

2 2
Hwk ~k‘ _Hw +1 ~k‘ | T N_Hwk+1_wk+wk_z~vk‘N
Qk
2 2
= ||w* —@F|| _ —Hwk—ﬁ)k—P(wk—ﬁ)k)‘ N
Qk
2
= ||k — @~ _,
Gy

where we uses the relation Gy = PTQ;+ QxP— PTQP to obtain the last equality. Then,
(4.10) follows from (4.14). O

In the above Corollary 4.1 and its proof, since Qy is not necessarily positive semidefi-
nite for any parameter T, we abuse the notation ||w* Hz(j := (w®) TQrw*. Next, we provide
k

a sufficient condition to ensure the positive semidefiniteness of Qy.

Lemma 4.3. Let L > (T1—1)BBTB. Then, the matrix Qy given by (4.11) is symmetric positive
semidefinite for any (T,s) € A.

Proof. Clearly, we just need to check the lower-upper 2-by-2 block of Qy, i.e.,

~L [ L+( _T+S)IBBTB _TisBT
L r+s T+s)
- (T_T+s)ﬁBTB _T:(FSBT
N L r+sB T+s

o] [ 0
| B ==l piI

is positive semidefinite. Notice that

I oz = I 0
i :
I 1 | T+51 I 1 LI

So, Q,% is positive semidefinite since T+s >0 for any (7,s) €A. O

To show the global convergence of Algorithm 1, we need to further establish a useful
lower bound on the term ||w* — w* Hék, since Gy is not necessarily positive definite for any

(7,5) €A. In the following lemma, we assume L =0, which implies L = (t—1)BBT B since
7<1, and as a consequence, Lemma 4.3 holds.
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Lemma 4.4. Let L= 0. Then, for any (T,s) € A defined in (3.1), we have

e~

2
B Eka—xk'H‘
Gy

2D +wy HAka—I—Bka—sz
k
+wi <HAx’<+1+Byk+l—bH2— HAxk+Byk—bH2>

ol o)

where w; >0,1=0,1,2, are given as

oy (1-s)? ~ (1-s)? 1-7
w0—<2 T—S 1_’_71_ 'B, w1 = 11t 'B and CL)2—1_+_—T. (416)

Proof. For any (7,s) €}, we have 147 >0. By the structure of Gy in (4.11), L>0and (4.8),
we have

L+(1—s)BBTB
+2(s—1) (Ak—X")TB (v ~y) +? HA"—X"HZ

’ +(2—r—s)/3HAxk+1+Byk+1—bH2

Zka—ka‘

Dy

+(1—r)/3HB(y"—yk+1)H2+2(1—r)5(Ax"+1+Byk+1—b)TB(yk—yk+1>. (417)

We now estimate the last crossing term in (4.17). Taking y=y* in the first-order optimality
condition (4.6) yields

1
g(yk)_g(yk+1)+<yk_yk+1,_BT/\k+2+ﬁBT(Axk+1+Byk+1_b)+L(yk+1_yk)>20_

Similarly, letting y = y**! in the first-order optimality condition of the y-subproblem at
the (k—1)-th iteration gives

~1 -
2y _g(yk)+<yk+1 —yf —BTAK 14 8BT (Axk+Byk_b> FL(yf—y 1)> >0.
Summing up the above two inequalities together with the relation

Akf%_AIGF%:T’B (Axk+1+Byk+l_b) +Sﬁ <Axk+Byk_b)+T’3B(yk_yk+l)/
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and noticing that 147 >0, we obtain

( A4 Byt b)T <yk_yk+1>
S ) ) )|
+ [3(11+r) <yk_yk+1>TL Kyk_yk+1> _ (ykfl_yk)]
2 a0 ) - )|

tagare (ol

Then, combining (4.17) and (4.18) we have

2

2

2
>
Gk

i ko k+1]?

Hw —w X —x
Dy

+(2—1—s) ;3”Ax’<+1+3yk+1—bH2
+%(1 7)(1—s) (A +By* b) B(y*—y*")

O O [ e |

+1+—T<Hy o)
>ka kar1 (2—1’—5—(11:_1_ >,BHAxk+1+Byk+1 b”
T ( ey o4ty

1+r<” kHH H _kaD

n (1_T_ (11+122 B 2T1(:_TT >5HB yk_ka)HZ

ka xk+1

(
+1+T<Hy L)

1+7

k+1+Byk+1—bH —HAx +By —bH >

(2—7—5—(1 °) ),BHAka—I—B kot sz

13

(4.18)
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where the second inequality follows from the Cauchy-Schwartz inequality

2(1-s)(1-1) (Axk+3yk_b)TB (=)

L e

So, (4.15) holds with w;, i=0,1,2, defined as in (4.16). Moreover, for any (7,5) €A, we can
derive w; >0 for i=0,1,2. This completes the whole proof. O

4.2 Iteration complexity in expectation

We now analyze the global ergodic convergence and the iteration complexity of Algo-
rithm 1.

Theorem 4.1. Suppose L= 0 and (T,s) € A defined in (3.1). If for some integers x,T >0, the fol-
lowing conditions hold for all k€ [x,x+T]: (I) nx € (0,1/(2v)] and the sequence {mmy(m+1)}
is nondecreasing; (II) Dy = Dy.11 > 0 and IE(H(StH%i_l) < 0? for some o >0, where &§; and Dy, are
defined in Lemma 4.1. Then, for any w € ), we have

E [F(wT) —F(w)+(wT—w)Tj(w)]
K+T 4
<377 Lt g I B oI,

2
) } (4.19)

where wr = %Zf*gwk w1 >0 and wy >0 are defined in (4.16).

x—1__ . x

+ w1 || AX*+By* —b|]* +wo y

Proof. By the assumption, Dy = Dy 1 =~ 0 implies Q- Qkﬂ 0 for the matrix O given in
(4.11). Substituting (4.15) into (4.10) and utilizing the relation Qk = Qk+1/ it follows from
Lemma 4.4 that

F(@") —F(w) +(@" ~w)"J (w)

<] o

+% <HAxk+Byk—bH2— HAx"+1+Byk+1—bH2>

(o)

where w1,w, are defined in (4.16). Summing the above inequality over k between x and

k+1‘

-
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xk+T, we deduce by Lemma 4.3 that

k+T

)y F(@") = T{F(w)+(wr—w)" J (w) }
K+T 2 2
— Z k4= {Hw—w"\%K—l—wl | Ax* +By* —b||" +w, ||y* ! —y* L}. (4.20)
Then, it follows from convexity of F and the definition of wr that
1 x+T
Z F(w (4.21)

Dividing (4.20) by T and using (4.21), we obtain

F(WT)—F(WH(WT—W)TJ(W)

k—1__ K

xk+T
e {nw W |, +aon || Ax By —b|+w2 y

2
L} )

Let us focus on the terms involving ¢*. By assumption, the sequence {m (m;+1)7;} is
nondecreasing for k € [k,k+T] and H > 0, thus we have

"iT;(H B

my(my+1) 1

2 2 2 — %< ||
—Hx—’“"‘“H )SM, (4.23)
H H My (M +1) 17,

Note that
01=Vf(x;)—di=Vf(x:) =V fz,(X;) —e;

only depends on the index ;. So we have E[d;] = 0 since the random variable &; €
{1,2,---,N} is chosen with uniform probability and E[e;] =0. Also, since ¥; depends
on i1, o, ---, we have E[(d;,% —x)] =0. By the assumption that IE(HfStH%_ﬁ) <02, we

have
2

o
S?’“%(’”k"‘l)

il 2my (mp+1)(2m+1
E ZtZHJtH%{l]S k(M 6)( k+1)

since m; > 1. Combining these bounds for the terms in ¥ with the condition 7, <1/ (2v)
is to get

k+T . 0.2 k+T
vK
Zg m +1) Hx HH+ Zﬁkmk

Finally, applying the expectation operator to (4.22) and substituting this bound into the
¥ term complete the proof. O
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By properly setting the algorithm parameters, the following theorem shows the con-
vergence rate of Algorithm 1 in the expectation of both the objective function value gap
and the constraint violation.

Theorem 4.2. Suppose the conditions in Theorem 4.1 hold. Let

Uk:min{ﬁ,cz} and m=max{[c3k?],m}, (4.24)

where c1,c2,c3>0, 0> 1 are constants and m >0 is a given integer. Then, for every w* € (0", we
have

|E[F(wr)—F(w*)]|=Eo(T)=E[||Axr+By;—b||], (4.25)
where Eo(T)=O(1/T) for 0>1and E,(T)=O(T 'ogT) for 0=1.
Proof. The proof is same as that of [3, Theorem 4.2] and thus is omitted here. O

Remark 4.1. (I) In practice, the matrix My in Algorithm 1 could be adaptively adjusted
as My =piI, where p, = max{pmin,ﬁélg/éll‘} with pmin >0,

ok = ka—xk’lu2 and &= HA(xk—xk’l)Hz.

Since 8% /5% is an underestimate of the largest eigenvalue of AT A, to ensure convergence,
the safeguard lower bound pmin should be increased during the optimization if necessary.
One may see [3, Remark 4.2] for more details.

(IT) When the set ) is bounded, we may even use a positive-indefinite proximal matrix
L=txI-BB"B, where B|B'B||[<xy<+oc and t€[-1,1],

in the update of y-subproblem. In this case, denoting Ny =sup{ ||y, —y,||:y;,y, €V} <oo,
analogous to Theorem 4.1 we can show

E [F(wT) —F(w)+(wT—w)Tj(w)]

K+T 4
—2T{ an e e [ +lw—wlig,
+w1 ||Ax"+By* —b ||2+w2c0nst}, (4.26)
where , ) -
N3 (BB =7x), if Te[-1,0],
const= -
BNy |IBII)? Ly, if T(0,1].

This means that the results of Theorem 4.2 could still hold even when the proximal matrix
L is positive-indefinite.

(IIT) Similar ideas of Algorithm 1 can be further generalized to solve separable convex
optimization with one or multi-block structures. For content focus of the paper, we leave
these discussions in the Appendix.
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5 Numerical experiments

In this section, we apply the proposed algorithm to solve the following graph-guided
fused lasso problem in machine learning:

1Y
rrgnﬁ;ﬁ(x)wllflxlhf

where fj(x) =log (1 —l—exp(—bjaij)) denotes the logistic loss function on the feature-label
pair (a;,b;) €R!x {—1,1}, N(>1) is the data size, 1 >0 is a given regularization parameter,
and A =[G;I] is a matrix encoding the feature sparsity pattern. Here, G is the sparsity
pattern of the graph that is obtained by sparse inverse covariance estimation [10]. Intro-
ducing an auxiliary variable y, the above problem is equivalent to the problem

N
min P(x,y):zﬁzlfj(X)wHylh
" j=

st. Ax—y=0,

(5.1)

which has the format of our model (1.1). In addition, it can be easily verified that the
Assumptions 2.1-2.2 hold. Since the coefficient matrix of the y variable in the constraints
of (5.1) is —I, the y-subproblem will have a closed-form solution by simply setting L =0
in Algorithm 1. Otherwise, the linearization techniques discussed in (3.2) on choosing
L can be applied to obtain a closed-form solution of the y-subproblem. With L =0, the
subproblems in Algorithm 1 would have the following closed-form solution:

%= [y HAM] ! [7tH5Ct+Mka —d; —hk] ,

y**1=Shrink <%,Axk+l — ATJZ’) .

Here, Shrink(-,-) denotes the soft shrinkage operator and can be evaluated using the
MATLAB built-in function “wthresh”.

In the numerical experiments, the penalty parameter in SAS-ADMM is taken as f =
0.001, the matrices My are updated adaptively by the strategy explained in Remark 4.1
(I) with initial values pg =1, Pmin = 1075 and H =2x107°1I. The other parameters as well
as the vector e; in SAS-ADMM (i.e. Algorithm 1) are chosen the same way as that used
in [3, Section 7.1], that is

o { Vf(xe1)= Ve (1), if m>1,

5.3
0, otherwise, (®3)

where x; is the ergodic mean of the x-iterates. Motivated from Theorem 4.2, we use

Obj_err= [F(x,y) —F"|

W and Equ_err: HAx—yH
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to denote the relative objective value error and the constraint violation error. Here, F* is
the approximate optimal objective function value obtained by running Algorithm 1 for
more than 10 minutes. To measure the performance of a algorithm, we plot the maximum
of the relative objective error and the constraint error, that is

Opt_err =max(Obj_err,Equ_err),

against the CPU time used. All experiments are implemented in MATLAB R2018a (64-bit)
with the same starting point (xO,yO,/\O) =(0,0,0) and performed on a PC with Windows
10 operating system, with an Intel i7-8700K CPU and 16GB RAM.

We compare the numerical performance of the proposed algorithm SAS-ADMM? us-
ing stepsizes (7,5) =(0.9,1.09), which is suggested in [1] for GS-ADMM, and AS-ADMM
[3] for solving problem (5.1) on the dataset mnist (including 11,791 samples and 784 fea-
tures, thatis, (N,l)=(11791,784)) downloaded from LIBSVM website. The regularization
parameter y in (5.1) is set as 10~°. For both SAS-ADMM and AS-ADMM, we plot the er-
ror associated with the iterates over the first 1/3 of the total CPU time budget, followed
by the error associated with the ergodic iterates over the last 2/3 of the budget. We make
10 and 20 successive runs of each algorithm under the CPU time budgets 120s and 200s,
respectively. The average comparison results on Opt_err are shown in Fig. 1, and the
comparison of the finally obtained iterative solution x**! and hist(x**!) are shown in
Figs. 2-3. Here, we only compare SAS-ADMM with AS-ADMM since in [3] AS-ADMM
was shown competitive or better than other state-of-the-art deterministic and stochastic
methods. Note that Opt_err has a big drop at around 1/3 of the CPU time budget, the
point where the ergodic iterates are started to use for reporting the objective value. From
Fig. 1, we can see that SAS-ADMM initially performs worse than AS-ADMM at the be-
ginning iterations. But after the first 1/3 of the total CPU time budget, the SAS-ADMM
eventually seems to perform better than AS-ADMM. Finally, Figs. 2-3 show that both the
comparison algorithms indeed get sparse solutions.

6 Conclusion

We proposed a symmetric accelerated stochastic alternating direction method of multi-
pliers, called SAS-ADMM, whose dual variables are symmetrically updated. We gave the
specific dual stepsizes region ensuring the global convergence, which is larger than those
in the literature. Under proper choice of the algorithm parameters, we proved the con-
vergence of SAS-ADMM in expectation with the worst-case O(1/T) convergence rate,
where T represents the number of iterations. Our preliminary experiments showed that
by symmetrically updating the dual variables using a more flexible region, SAS-ADMM
could outperform AS-ADMM, which only updates the dual variable once, for solving
some structured optimization problems arising in machine learning.

All codes are available at https:/ / github.com /bjc1987 /bjc1987.github.io
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Figure 1: Comparison of Opt_err vs CPU time for Problem (5.1) on the mnist dataset
after 10 successive runs; (a3)-(a4) are the results after 20 successive runs.
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subfigures correspond to (al); the right two subfigures correspond to (a2).

0 0
+ bl . il . el
X T ‘ | x T | X LI |
El 2 2
0 200 400 600 800 0 200 400 600 800 0 200 400 600
40 40
.
k) ) 30
20
2 Zm )
g G G
<150 < <
10 100 10
50
0
o1 05 0 0 o

cessive runs: the left two



20 J. Bai et al. / CSIAM Trans. Appl. Math., x (2022), pp. 1-32
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Figure 3: Comparison of the finally obtained iterate x**1 and hist(ka) after 20 successive runs: the left two
subfigures correspond to (a3); the right two subfigures correspond to (a4).
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Appendix: Further discussions

In this section, we discuss 3-block extensions of Algorithm 1 and its variance of a stochas-
tic augmented Lagrangian method.

A.1 A stochastic ALM

We first consider a stochastic augmented Lagrangian method, a variant of SAS-ADMM,
to solve
min{f(x)| Ax=b, x€ X'}, (A1)

where X CIR™ is a closed convex subset, and f is an average of N smooth convex func-
tions as defined in (1.1). Now, the augmented Lagrangian of (A.1) is

Lg(x,A) :zﬁ(x,A)—Fg |Ax—b|?,

where £ (x,A) = f(x) —AT(Ax—Db). Then, based on Algorithm 1, we can propose the fol-
lowing Accelerated Stochastic ALM (AS-ALM), Algorithm 2). Similar to SAS-ADMM, we
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Algorithm 2 Accelerated Stochastic ALM (AS-ALM)

Parameters: B>0,5€(0,2] and H>0.

Initialization: (x%,A°) € X xR":=Q and ¥’ =x".

For k=0,1,---
Choose my>0, ;>0 and Mj such that M;—BATA>0.
W= —AT [Ak—ﬁ(Axk—b)} .
(xF1,%41) = xsub (x,%F,h*) with xsub given in Algorithm 1.
A=Ak 5B (Ax*1 —b).

end

can easily establish the following lemmas on AS-ALM. However, in this case, the conver-
gence region for the dual stepsize can be enlarged from (0,(v/5+1) /2] of AS-ADMM [3]
to (0,2].

Lemma A.1. Let {x*} be generated by Algorithm 2 and . € (0,1/v). Then, the inequality (4.1)
holds with

A=Ak_p (Axk+1 —b) . (A2)

For the iterates generated by Algorithm 2, in this subsection let w* = (xk;AF) and

Wk = (xF1 ;Xk), where A" is defined in (A.2). Then, we have the following lemma.

Lemma A.2. Let {w*} be generated by Algorithm 2 and 1y € (0,1/v). Then, we have w" € )
and

f) = FE) + (=", () ) = (w—@") T Qu(w — @)+

for all w € Q, where I is given by (4.3),

—AT D
j(T/U):< Af—)l; > and Qk:[ k %I ]

Proof. Combining the inequality (4.1) and the relation Ax**!1—b = %(Ak —Xk) gives the
results. 0

Lemma A.3. Let {w*} be generated by Algorithm 2 and . € (0,1/v). Then, for any w € Q, we

have
Fx) = f(E) + (w—@")" T (w)
1 2 2 2
e I s e L MRS
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where I~ is given by (4.3),

~ Dy ~ Dy
Or= [ 1 and Gp= 2—s ] .
pl Bl
Proof. The proof is similar to that of Corollary 4.1 and is omitted. O

Finally, under the conditions of Theorem 4.2, by Lemma A.3 and a similar proof of
Theorem 4.2, we can deduce that for any wr:= HLT Z;;Tﬁ)k and x>0, it has

[E[f(x) = f(x")]| = Eo(T) =E[ || Axr—b]|],
where Eo(T)=0(1/T) for ¢>1and E,(T)=O(T 'logT) for g=1.

A.2 Three-block extensions

Consider a 3-block extension of problem (1.1)

min F(w):=f(x)+g(y)+1(2)
st. Kw:=Ax+By+Cz=b, (A.3)
XEX, yey/ ZEZ/

where [ is a closed convex function, C € R"*" is a given matrix, Z C R™ is a simple
closed convex subset, and the other functions and variables remain the same definitions
as those in problem (1.1). Here, the additional function / can be possibly used to promote
some data structure different from the structure promoted by g. For convenience, in this
subsection, let us define Kw:= Ax+ By+Cz, denote w= (z;x;y;A),

k k+1

» 'yEk x —ATA
k ~ k+1 T
_ y y —B /\
wk — Zk , wk e Ek = Zk+l and j(m) = —CT/\ 7 (A4)
/\k Xk Xk /Cw—b

where A" will be specified differently in the following two discussion cases.

A.2.1 Extension in Gauss-Seidel update

For this case, we need an assumption that CTA=0. Then SAS-ADMM can be directly ex-
tended to Algorithm 3 for solving the 3-block problem (A.3), where the variable updating
order is zF1 — xk+1 — yk+1 A1 in a Gauss-Seidel scheme. Now, let

A=Ak B (2414 Axt 1Byt —b), (A5)
oFtl = (xk+1;yk+l;/\k+l) and o= (%k;yk}xk)- (A.6)

Then, we have the following main lemma for the convergence of Algorithm 3.
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Algorithm 3 Extension of SAS-ADMM in Gauss-Seidel update

Parameters: >0, >0, L>0 and (7,5)€A.
Initialization: (x%,5°,2°,A%) € X x Y x ZxR":=Q, ¥ =x0.
For k=0,1,---

Choose my>0, x>0 and Mj such that M;—BATA>0.
2

k+1 - B k ko Af
z Eargrzrélgl(z)—kz Cz+Ax'+By —b—4

W= —AT A= B(CH + Ax By ).
(2L, %1 = xsub (xk,%%,h) with xsub given in ALG.1.

AFFE Ak 1B (C2HH 4 Axk 1 4 By —b) .
2

2
+3lly—y;-

1

k+4
Czk—&-l_’_Axk—&-l_’_By_b_A‘;z

k+1 ; B
y e argryrgjr}g(y) +5 ‘
AFFL= AR 5B (AxFH1 4 ByFH1 - C2FH —p).

end

Lemma A.4. Assume CTA=0and n; € (0,1/v). Then, the iterates generated by Algorithm 3
satisfy @* € Q) and

F(w)~F(@) +(w-a) 7 (w)

1 |2 2
> = _ +1‘ K
—2{“” v ak}%

- Hv—vk(
or any w € ), where Qk,ék and (¥ are ¢iven in Corollary 4.1 and (4.3), respectively. Moreover,
y 8 Y 4 Y

2
.+ Hvk —%k‘
Qk Qk

we have

2 2
k_:(}k‘ i _|_w0HAxk+1_|_Byk+l_bH
k

2
B Zka_xk-i—l‘
Gy

|-
2 2
+w; (HAka + Byft1 —b” - HAxk—FByk—bH >
2 2

(T R T

where wo,w1,wr >0 are given in (4.16).
~k

Proof. By the updates of h* and A" in Algorithm 3, it is easy to derive (4.1) as before. Then,
according to the first-order optimality condition of z-subproblem and the assumption

that CT A =0, we have

ez, l(z)—l(zk+1)—|—<z—zk+1,p];>20, Vze Z, (A.7)
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where

ph=—CTA 4+pCT (cZk+1 + Axk 4 ByF — b)

— CTA BCT A k)= —CTA".

Similarly, we have by the y-update that

yey, gy)-gy )+ <y—y"“,p’;> >0, Vye, (A.8)
where
pI; — _BTAk*2 +BBT (]kaﬂ —b) Ly —yb)
= —BTAME 4 BT (AF —Xk) +[L+BBTB| (! —y¥)

=—BTA +7BT (A 2"+ [L+pBTB (51 —¢).
Besides, it follows from the updates of )Ntk that

</\—Xk,lCzT/‘—b+% (A=) B (7-v") > —0, VAER". (A.9)

Combining the above inequalities (A.7), (A.8), (A.9) with (4.1), we can get

Fw)—F(@")+ (w-") J(@)2 (0~ Q" -3+ (A1)

where ZF,Qy are given by (4.3) and (4.5), respectively. Then, the rest proof will be similar
to that of Corollary 4.1 and Lemma 4.4. O

Based on the above Lemma A 4, the ergodic convergence of Algorithm 3 with a sub-
linear convergence rate can be similarly established under the conditions of Theorem 4.2.
Here, we omit the detailed proof. Note that, if the z-subproblem is not easily solvable,
one could also add a positive semidefinite proximal term to linearize it. However, the re-
quirement CT A =0 is quite strict in applications. In the next subsection we will propose
a partially Jacobi update for the primal variables, for which CT A =0 is not required.

A.2.2 Extension in partially Jacobi update

Now, let us consider Algorithm 4, where the block variables y and z are updated in a
Jacobi fashion.
To establish the global convergence of Algorithm 4, we first have the following obser-

vations. Denoting

A=A —p(Ax 14 By +C2 ) (A11)
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Algorithm 4 Extension of SAS-ADMM in partially Jacobi update
Parameters: B>0,(7,s)€A, L; and L, satisfy (A.22).
Initialization: (xo,yo,zo,/\o) EXXYXZxR":=Q, ¥'=x0.

For k=0,1,---
Choose my>0, ;>0 and Mj such that M;—BATA>0.

W= —AT [Ak—ﬁ(Axk+Byk+cZk—b)] .
(xF1 %) = xsub (xF,%") with xsub given in ALG.1.
A3 = AF 1B (Axk1 4 ByF+-C2F ).

K+ )2 5
AN+ 5=y, -

yktle argmijr}g(y) +§ HAkar1+By+Czk_b— B
yc

1
2

k+1 k M
Ax™ + By +Cz—b— 25

2
+3[z==3,-

k+1 . B
€ l 5
z argmin (2)+5

ARy kg —sﬁ(Axk+1+Byk+1+Czk+1—b).
end

and using the first-order optimality condition of the y-subproblem, we have
ey, oly) -y + <y_yk+1,p1;> >0, Vyel, (A.12)
where
pl; — _BTpk+3 +,BBT (Axk+1+Byk+1 +Czk—b) I, (yk+1 _yk>
= —BTA* 24 BBT (Axk+1+Byk +Czk—b> +(L,+BBTB) (yk+1 —yk>
=—B"A +7BT (A 1"+ (Li+$B7B) (1 —y"),

and we use the relationship
AkrE Ak Ak 3, (A.13)

Combining (A.12) and the definition of p’;, we have
gy)—gy* ™)+ <y—yk+1,_BT,\k+% +BBT (Kwh+! —b)
—BBTC(Z =)+ Ly (! _yk)> >0, (A1)
Similarly, by the first-order optimality condition of the z-subproblem, we have
I(z)—1(zZF)+ <z_zk+1,_BTAk+% +BCT (Kwh+! —b)

—BCTB(y —yk) 4 Ly (! —zk)> >0. (A.15)
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Adding the above two inequalities (A.14) and (A.15), we can see (yk“,zk“) satisfies the
first-order optimality condition, hence is a solution, of the following problem

s+ + 3 ="z =)||;

(yk+1/zk+l)earg min w12 7, (A.16)
yed,zeZ +§HAxk“+By+Cz—b—/\ﬁ2
where T
- L —BB'C
L:{ g ﬂLZ } (A.17)

Hence, by considering (y,z) as one block variable, Algorithm 4 is essentially a particular
version of Algorithm 1 for solving a 2-block problem with L and B being replaced by L
and (B,C), respectively.

From the above observations, we can directly establish the following properties of
Algorithm 4.

Lemma A.5. The iterates generated by Algorithm 4 satisfy
F(w) —F(@") + (w0, (w) ) > (w0~ }) T Quaw ~ ) +¢*

for any w € Q), where ¥ is given by (4.3),

Dy
Li+BB™B —1BT
Qk: ‘B LQ—I—ﬁCTC —CT (A~18)
—B —C %1
Proof. Notice that
- Li+BBTB
L+B(B,C)"(B,C)=| 1P Lo+ pCTC |

So, replacing L and B in Lemma 4.2 by L and (B,C), respectively, this lemma directly
follows from Lemma 4.2. O

Similarly, identifying L and B in (4.11) with L and (B,C), respectively, it follows from
Corollary 4.1 that

™

(w) ~F(@")+ (w—@",7 (w) )

S

+Hwk—z~vk‘

‘w—wk ( ;k ;}%", (A.19)

o
o
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where ¥ is given by (4.3) and

Dy
G, — Li+(1-Z£5)BB'B —Z=BBTC — =BT (A20)
—=BCTB Ly+(1—-Z£)pCTC —=CT |’
T—Ti-sB T—Ti-sc (TJ:S)/%I
Dy
_ Li+(1—s)BB™B —sBBTC (s—1)BT
Cr= —spCTB Ly+(1—s)BCTC (s—1)CT | (A21)
(s—1)B (s—1)C S|

Then, we have the following estimate on a lower bound of Hwk — ﬁJkH G,
Lemma A.6. Suppose there exist 1 >0 and y» >0 with 172 > 1 such that
Li=71BB"B and L,>=7,BC'C. (A.22)

Then, for any (T,s) € A defined in (3.1), we have Q. defined in (A.20) is positive semidefinite
and

2

2 2
_ Zka—ka‘ +onlek+1—bH
k Dy

+wl<ufcwk“—b1r—uw—bm

(|55 )[I(5280)

where wo,w1,wy >0 is defined in (4.16) and L is defined in (A.17).

2
) ) (A.23)

L

Proof. First, since L1 > 'h,BBTB and L, > ’yzﬁCTC, it follows from 1 >0,72>0and y17,>1

that - Ly —BBTC 11B'™B  —B'C
L:[ _BCTB L, ]tﬁ[ “CTB yCTC ] =0. (A.24)
By Lemma 4.3, we have Qy defined in (A.20) is positive semidefinite if

L= (t—1)B(B,C)"(B,C). (A.25)

Since T <1 for any (7,s) € A, we have 0 > (T—l)‘B(B,C)T(NB,C). Therefore, we have
from (A.24) that (A.25) holds automatically and therefore, Qy defined in (A.20) is pos-
itive semidefinite. Furthermore, it follows from Lemma 4.4 that (A.23) holds as long as
L =0 which is verified by (A.24). O
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Now, defining wr := %EZ*E @* for some integers T > 0 and x>0, under the same

conditions in Theorem 4.1, by Lemma A.6 and similar to the proof of Theorem 4.1, we
can obtain

E|F(wr) —F(w)+(wr—w)"J (w)]
<i UZKi:T m +$Hx—i"\\2 +||w—w"||%
=217 & e+ 1), " Or

2
+ar ||[Kw" —b|*+w> H( y yK ) ) }
L

where w; >0 and w, >0 given in (4.16). So, by the choice of the parameters (7, 7y) chosen
in Theorem 4.2, we can obtain

|E[F(wr)—F(w*)]|=Eo(T)=E[||Axr+By;+Czr—b||],
where E,(T)=0O(1/T) for the parameter ¢ >1 and E,(T) =O(T 'logT) for o=1.

Remark A.1. Observing from the above analysis, Algorithm 4 could be in fact general-
ized to Algorithm 5 for solving the multi-block separable convex optimization:

min F(w)::f(x)-Fiégi(yi)

9
st. Kw:=Ax+ Y By,=b, (A.26)
i=1

xEX/ yzeyl/ i:1/2/"‘/q/

where f has the same definition as in (1.1), g;: Vi — RU{+4o0} is a convex but possibly
nonsmooth function, B; € R"*" and ); C IR" is a closed convex subset.

The convergence of Algorithm 5 can be analogously established with proper modi-
fications on the Convergence proof of Algorithm 4. Here, we only give a very brief ex-

planatlon Denote g(y) = Zl 18i(y;),B=(B1,---,By), y= (yl;---;yq), ]/kz (y’{;--';y’;) and
Y=Y1x:--xY;. Then, by the first-order optimality condition of y;-subproblem, we have

k“ €); and

8i(y) =& )+ (y =y} BT A 14 BBT (Ko —b) -

q
B Y. BIBi(y™' —y))+ Ly - yi-‘)>20, Vy, €Y.
14i]=1

After adding the above inequality from i=1 to g, we can see y**! satisfies the first-order
optimality condition, hence is a solution, of the following problem:

k+3
k+1

y Eargmmg 2Hy yH —|— AxX 4 By—b—
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Algorithm 5 Multi-block extension of SAS-ADMM in partially Jacobi update
Parameters: S>0,(7,s)€A and L;>(q—1)BB'B; for all i=1,---,q.
Initialization: (x,4°,A°) € X x Y xR", ¥ =x0.

For k=0,1,---
Choose m;>0, x>0 and Mj such that M;—BATA>=0.

W= —AT [Ak—ﬁ(Aquyk—b)} .

(xF1 %) = xsub (xF,%") with xsub given in ALG.1.
A2 Ak 1B (Axk 1 4 Byk—b) .

For i=1,2,--- 4,

9 k+d
k . 2 2
yﬁleargngjr;gi(yi)% Axk“JrBiyﬂrl#; 1Bzy5‘—b—A5 +3llyi v, -
i©JVi Li=
end
AR+ :/\k+% —s/%(Axk+1+By"+1—b).
end
where
LlT —BB{B, - —,BBqu
_ —BBJ B, Ly .-~ —BBJB
I= 5,2 , , 2 (A.27)
—BB;B1 —BB By - L,
So, by a similar analysis to Algorithm 4, the inequality (A.19) holds with
- D, -
Ly+(1—Z)BB] By — <= BB B, — I BBB, — LB
5 T+sﬁBTB1 L2+< T+S)ﬁBTB2 T+SIBBTBq _TL—Q—SB;—
Qk_ 7
r+sﬁBTB1 T—«—sﬁBTBZ LW—'_( T+s)ﬁBTBq _TL-FSB;—
I —wrb —7rs B2 —7rsBg ol |
- D, -
L1+ (1—s)BB] By —sBB[ B, —sBB B, (s—1)B]
—sBBJ By Ly+(1—s)BBJBy - —sBB, By (s—1)B)
Gr=
—spB, By —spB] By - Lg+(1-5)BB; By | (s—1)B;
(s—1)B; (s—1)B, (s—1)B, %1
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If L;>=(q—1)BB] B; fori=1,-- g, then for any (7,s) €A defined by (3.1), the above matrix
Qy is positive semidefinite and

2ka_xkﬂ‘

2 2
+onIka“—bH
Dy

2
Hwk—ka‘ _
Gy

ot —off o]
(T T}

where w,w1,w; >0 is defined in (4.16) and L is defined in (A.27). The above discussions
imply that Algorithm 5 has the same convergence properties as Algorithm 4 and can be
also considered as a stochastic extension of the deterministic GS-ADMM [1] for solving
the grouped multi-block separable convex optimization problem.
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