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Abstract

In this paper, we study the linear convergence of several well-known first-order primal-
dual methods for solving a class of convex-concave saddle point problems. We first
unify the convergence analysis of these methods and prove the O (1/N) convergence
rates of the primal-dual gap generated by these methods in the ergodic sense, where N
counts the number of iterations. Under a mild calmness condition, we further establish
the global Q-linear convergence rate of the distances between the iterates generated
by these methods and the solution set, and show the R-linear rate of the iterates in
the nonergodic sense. Moreover, we demonstrate that the matrix games, fused lasso
and constrained TV-¢, image restoration models as application examples satisfy this
calmness condition. Numerical experiments on fused lasso demonstrate the linear rates
for these methods.

Keywords First-order primal-dual algorithm - Saddle point problem - Convex
optimization - Linear convergence rate
1 Introduction

In this paper, we study the linear convergence rates of several primal-dual algorithms
for solving the following convex-concave problem:

min max L(x,y) = f(x)+ h(x) + (Kx, y) — g(y), (1.1)
xeX ye)

where A" and ) are two finite-dimensional real Euclidean spaces each equipped with
the inner product (-, -) and its induced norm || - || = /(-,:), K : X — Yisa
bounded linear operator with the operator norm L = ||K ||, f : X — (—o00, c0] and
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g 1Y — (—o00, o0] are proper closed convex functions, # : X — R is a smooth
convex function with Lj-Lipschitz continuous gradient. It is well known that (1.1) is
equivalent to the primal problem

min f(x) + h(x) + g*(Kx) (1.2)
xeX
and the dual problem
Ivléilr}(f +h)*(=K*y) + (), 1.3)

where g* is the Fenchel conjugate (see the definition in Sect. 2) of the function g. (1.1)
captures a wide spectrum of applications in statistics and machine learning, imaging
and data processing [10,35,36,41].

We firstly discuss some algorithms for the special cases of (1.1) with only two
functions. When f or 4 is missing, many splitting methods have been proposed and
studied in the literature. One benchmark is the alternating direction method of multipli-
ers [12,13], which can be obtained by applying the Douglas-Rachford splitting method
(DRSM) to the dual problem (1.3) [11]. Another group is the primal-dual methods,
such as primal-dual hybrid gradient method (PDHG, also known as Chambolle-Pock)
[3,16], primal-dual fixed-point algorithm based on the proximal operator (PDFP2Q)
[5], proximal alternating predictor-corrector (PAPC) [9,22]. Recently, [28] showed the
equivalence of DRSM and PDHG. Many variants of PDHG have been well studied
and the references are there in [1,2,17,23,30]. Besides, there are also many novel
papers studying a more general saddle point problem, such as [24,25].

When comes to the case with three functions, a primal-dual algorithm, which known
as Condat-Vu, was independently proposed by Condat [7] and Vu [38]:

xktl = prox, s (xk — ‘L’K*yk — th(xk)> , (1.4a)
@
Y+ = prox,, (yk +oKQx ! - xk)) : (1.4b)

By casting the scheme (1.4) in the form of forward-backward splitting, the con-

vergence can be proved under the condition ToL? 4+ tL;/2 < 1. Actually, this
Condat-Vu scheme is the generation of Chambolle-Pock. As a generalization of PAPC
and PDFP20, the primal-dual fixed-point algorithm (PDFP) was proposed in [6]:

FH = prox, 7 (xF = Tk = 2VR(H), (1.5a)
a ¥+ = prox,, (yk n ch)Ek“) : (1.5b)
xktl = prox, s (xk — TKF k- th(xk)> } (1.5¢)

The assumptions that to L?> < 1 and tL; < 2, which guarantee the convergence of
PDFP, are less restrictive than that for Condat-Vu. This advantage comes at the cost
of calculating an additional proximal operator of f in each iteration. Another primal-
dual algorithm named asymmetric forward-backward-adjoint (AFBA) splitting was

@ Springer



Unified linear convergence of first-order primal-dual algorithms. .. 1677

proposed in [20]. It is a general operator splitting method and can be applied to solve
the primal problem (1.2):

F = prox,  (+F — K = V() (1.6a)
(D § e+t prox (yk + aK)Ek'H) , (1.6b)
xk+l — ik'H _ ‘L’K*(yk+l _ yk)_ (1.6¢)

The updates of x**! and y**! are the same in AFBA and PDFP, while (1.6¢) is much
simpler than (1.5c), which involves an additional proximal operator. However, the
condition o L?/24++/t0 L2/24 1L}, /2 < 1, to guarantee the convergence of AFBA
(1.6), is more conservative than Condat-Vu and PDFP. More recently, [39] proposed a
primal-dual three-operator splitting (PD30), which also involves two proximal opera-
tors in each iteration. It can be seen as a generalization of Chambolle-Pock and PAPC.
The relations of these algorithms mentioned above have been well studied in [39].

The convergence rates of these algorithms are also considered under some addi-
tional conditions. For the Condat-Vu scheme (1.4), Chambolle and Pock [4] proved
the primal-dual gap of the ergodic sequence converges with an O (1/N) convergence
rate, where N counts the iteration number. When partial and complete strong con-
vexity is considered, O(1/N?) convergence rate and linear rate can be achieved. By
introducing a combination parameter in (1.4b) and updating t and o in every iteration,
the convergence rate for primal-dual gap of the ergodic sequence can be accelerated
to O(1/N?) when f or g is strongly convex. When f and g are both strongly convex,
linear convergence rate for primal-dual gap of the ergodic sequence can be yielded by
replacing 2x*t1 — xK by (1 4+ 0)xk+t! — 6x¥ in (1.4b), where 6 € (0, 1). As to PDFP,
Chen et al. [6] showed that the sequence generated by PDFP converges linearly to
a saddle point of (1.1) when h and g are both strongly convex. Very recently, Jiang
et al. [19] proposed an inexact Chambolle-Pock algorithm and established the global
Q-linear convergence rate of the distance between the iterates and the solution set, and
the R-linear convergence speed of the nonergodic iterates under a calmness condi-
tion. However, most existing linear convergence results are based on strong convexity,
which can not be satisfied for many practical problems. Besides, existing results except
[19] only establish the R-linear convergence rate [4,5], which is weaker than the Q-
linear convergence rate that we will develop for Condat-Vu, PDFP and AFBA in this
paper.

In this paper, we aim to establish the linear convergence rates for Condat-Vu (1.4),
PDFP (1.5) and AFBA (1.6) under an associated mild condition. More precisely, (i) we
provide unified analysis to show the global Q-linear convergence rate for the distance
between iterates generated by these three methods and the solution set, and the R-
linear convergence for the nonergodic iterates under a calmness condition. We show
that the fused LASSO and constrained TV-{, problems actually satisfy the calmness
condition, but either f or g or both functions in these models is not strongly convex;
(i) since Chambolle-Pock [3,4], PDFP20 [5] and PAPC [9,22] are special cases of
Condat-Vu (1.4) or PDFP (1.5), their linear convergence rates follows directly; (iii)
the range of acceptable parameters in AFBA can be expanded to the same with PDFP.
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The rest of this paper is organized as follows: in Sect. 2, we introduce some basic
concepts and summarize some useful results for further analysis. We unify the con-
vergence rates of Condat-Vu, PDFP and AFBA under a mild calmness condition in
Sect. 3. In Sect. 4, we provide some practical examples in applications that satisfy the
calmness condition. In Sect. 5, numerical experiments on fused lasso model show
the superiority of the larger stepsizes for AFBA and the linear convergence of three
methods. Finally, we draw some conclusions in Sect. 6.

2 Preliminary

In this section, we summarize some basic concepts that will be useful in the subsequent
sections and recall the first-order optimality condition of problem (1.1).

2.1 Basic concepts and optimality conditions

Let X and ) be two finite-dimensional Euclidean spaces. For a function f : X —
(—00, 00], the domain of f is defined by domf := {x € X | f(x) < oo}. The
epigraph of f is defined by epif := {(x, )| f(x) < t}. f is closed if epif is a closed
set and f is proper if domf # (. The conjugate function of f, denoted by f*, is
defined by
o) = sup{(v,x) = ().
xeX

For a proper convex function f : X — (—o0, o], the subdifferential of f at x €
dom f isdefined by 0 f (x) = {d | f(z) = f(x)+(z—x,d), Yz € X'}. By convention,
df(x) = @ when x ¢ domf. Recall that for a proper, closed and convex function
f:X — (—o0,00],y € X and t > 0, the proximal operator [29] of T f, denoted by
prox, ¢, is given by

. 1 2
prox, ¢ (y) = arg)r{rél)I}{f(x) + EHX =yl }

If f is the indicator function §¢ of the closed convex set C C X, then prox f(-) =
II¢ (+), the projection operator to C.

For the finite-dimensional real vector spaces X and ), the adjoint operator of the
linear operator K : X — ) isdenoted by K*.If S is a self-adjoint and positive definite
linear operator, we denote (x, Sx) by ||x ||§. Let C be a nonempty closed convex set
of X, the notation of

dist(x, C) := min{||x — z||}
zeC

denotes the Euclidean distance from any x € X to the set C, while

distg (x, C) := min{|lx — z| ¢}
zeC
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denotes the distance in the terms norm | - || for a self-adjoint and positive definite
linear operator G.

A sequence {u*} is said to converge to & Q-linearly in terms of G-norm, if there
exist a scalar & € (0, 1) such that for sufficiently large k, it has

k+1 _ ~ k_
! — g < &llu* —dllG.

Moreover, a sequence {u*} is said to converge to i R-linearly in terms of G-norm, if
there exists a nonnegative scalar sequence {wy} such that

koA
lu® —ullc < wr,

where {wy} converges to zero Q-linearly.
Throughout the paper, we will assume that the following conditions are satisfied.

Assumption 1 The functions f and g are proper closed convex functions, % is a smooth
convex function with Lj-Lipschitz continuous gradient. The solution set of (1.1) is
nonempty.

Now, we recall an elementary identity which will be used later.

Lemma 1 For any vectors a, b, c and d in the finite-dimensional real vector space X,
and the self-adjoint and positive definite linear operator S : X — X, the following
identity holds

1 2 2 1 2 2
(a=b,S(c—d))=(la—dlls—lla =clis) + 7 (b = clls = b = dlI).

In the following, we present the first-order optimality condition of (1.1). Denote
u:= (x,y)forx € Xandy € ), and let 4 := X x ). The pair (x, y) defined on
X x ) is called a saddle point of (1.1) if it satisfies the inequalities

L(x,y) < L(Ex,9) <L(x,)), YVxeX, Vye).

Alternatively, we can rewrite these inequalities as
Pi5(x) = f(x) — f(X) + (x =X, VA(X) + K*y) >0, Vxedk, @)
D;5() =8 —g@ +{y—39,—Kx)>0, Vyel. '

Then wehave O; 5(x, y) := P; 5(x)+D; 5(y) > Oforall (x, y) € X'x). When there
is no confusion, we will omit the subscriptin P, D and @, i.e., ® (x, y) := O; 5(x, y),
P(x) := P; 3(x)and D(y) := Dz 3(). Note that the system (2.1) can be reformulated
as the following KKT system

{06 df (%) + Vh(X) + K*9, 22)
0e€dg(y) — Kx. )
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Denote the solution set to the KKT system (2.2) by U. For analyzing the linear con-
vergence, we introduce the KKT mapping R : i/ — U as follows

_ (x —proxy (x — (Vh(x) + K*y)) _

R(u) = (y — prox, (v + Kx) , Yu=(x,y)el. 2.3)
Since the proximal operator of a proper convex function is 1-Lipschitz continuous,
the mapping R(-) is continuous on /. Obviously, we have

U=1{uecld|Ru)=0}.

2.2 Locally upper Lipschitz continuity and calmness

Let X and ) be two finite-dimensional real vector spaces and F : X == ) be a
multivalued mapping. We denote the graph of F' by Gph F' and the unit ball in )
by By. In the following, we first introduce the definition of locally upper Lipschitz
continuity.

Definition 1 [31] The multivalued mapping F : X = ) is locally upper Lipschitz
continuous at x° € X with modulus ko > 0, if there exists a neighborhood V of x9
such that

F(x) € F(x°) +wollx —x°|By, VxeV.

Note that this definition was first proposed by Robinson [31] to develop an implicit
function for generalized variational inequalities. Now, we give the definition of piece-
wise polyhedral mapping.

Definition 2 [33] The multivalued mapping F : X = ) is said to be piecewise
polyhedral, if Gph F is the union of finitely many polyhedral sets.

The following proposition, Robinson [32], established the locally upper Lipschitz
continuity of a piecewise polyhedral multivalued mapping.

Proposition 1 [32] If the multivalued mapping F : X = Y is piecewise polyhe-
dral, then F is locally upper Lipschitz continuous at any x° € X with modulus
independent of the choice of x°.

The following gives the definition of convex piecewise linear quadratic function,
whose subdiffenrential is a piecewise polyhedral multivalued mapping.

Definition 3 A closed proper convex function f : X — (—o0, oo] is called piecewise
linear-quadratic, if dom f is the union of finitely many polyhedral sets and f is an

affine or a quadratic function on each of these polyhedral sets.

We now summarize several useful results in the following proposition, whose proof
can be found in [33].
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Proposition2 Ler f : X — (—o00, o] be a closed proper convex function. Then f is
piecewise linear-quadratic if and only if the graph of d f is piecewise polyhedral. More-
over, f is piecewise linear-quadratic if and only if f* is piecewise linear-quadratic. In
addition, f is piecewise linear-quadratic function if and only if the proximal mapping
of f is piecewise linear.

Next, we present the definition of calmness for F : X = Y at x° for y° with
(xo, yo) € Gph F, which origins from [8].

Definition 4 Let (x°, y°) € Gph F. The multivalued mapping F : X = ) is calm
at x0 for yo with modulus k¢ > O, if there exists a neighborhood V of x% and a
neighborhood W of y° such that

Fx)NW C F(x%) +wollx —x°|By, VxeV.

If F: X =2 ) is piecewise polyhedral, in particular F is the subdifferential of a
convex piecewise linear-quadratic function, it follows from Proposition 1 that F' is
locally upper Lipschitz continuous at any xo € X with modulus «o independent of
xo. Consequently, according to Definitions 1 and 4, F is calm at x° for y° satisfying
(O, yo) € Gph F with modulus ko > 0 independent of the choice of O, yo).

3 Linear convergence of Condat-Vu, PDFP and AFBA

In this section, we first provide unified convergence analysis for Condat-Vu (1.4),
PDFP (1.5) and AFBA (1.6). Then, we establish the Q-linear convergence rate of
the distance of the iterates to the solution set, which in return leads to the R-linear
convergence rate for the iterates generated by these methods.

3.1 Global convergence

For analyzing the global convergence of Condat-Vu (1.4), PDFP (1.5) and AFBA
(1.6), we need some of the following assumptions for different algorithms:

(Ia) toL? + %tLh < 1;

() toL> +1L; < 1;

(Ila) toL? < land TLj < 2;

(Ilb) toL? < land tL; < 1.
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We now define the following self-adjoint linear operators:

1 L 1
MI:Xxy—>Xxy:(x,y)|—>((——%)x—K*y,—Kx—i——y),
T o

1 1
Hi: XxY—>XxY:(x,y) <——Lh>x—K*y,—Kx+—y),
T o

Mp: X xY—>Xx)Y:(x,y)+—

GI:Xxy—>Xxy:(x,y)|—><
HH:Xxy—>Xxy:(x,y)|—><

GII:Xxy—>Xxy:(x,y)r—>< x,éy).

For conceptual clarity, we let My := My, G := G and Hypp := Hj and let
assumptions (IIla) and (ITIb) be the same as (Ila) and (IIb), respectively. Note that
Assumption (ta) is necessary for establishing convergence of iterates, whereas the
stronger Assumption (tb) is for establishing convergence rate of the gap functions for
these methods with ¢ € { LILIII } (see Theorem 1).

For unifying the convergence analysis, we denote the sequence {(x¥, y*)} generated
by Condat-Vu (1.4), PDFP (1.5) and AFBA (1.6) by {(xk, y©)} with ¢« € {1, IT, 11T},
respectively. We also denote v := (X, y). Note that ¥**! does not appear in Condat-Vu
(1.4) and thus, we simply denote x¥*! := x¥*1 for Condat-Vu. Forevery ¢ € {I, II, III},
if (ta) holds, M, and G, are positive definite, which implies there exist two positive
constants 8, > «, > 0 such that for any u, u’ € U,

au —u'll < llu—u'lly, < llu—ulc < Blu—ul. (3.2

To establish global convergence, we start with the following lemma. For simplicity,
we omit the subscript index in its proof without causing confusion.

Lemma 2 Suppose that Assumption 1 holds. Let {(ka, yf‘)} with ¢ € {1, I, I} be the
sequence generated by Condat-Vu (1.4), PDFP (1.5) and AFBA (1.6), respectively.
Then, for any (x,y) € X x ), we have

_ 1 1 1
Ory (5L 3T = Shuf —ullg, — S —ullg, = Sy — v, G3)
and
—k+1 k+1 [I" 2 Lk LT I 2 Ir
E(xt 1y)_£(-x9 y[ ) = 5””1 _MHGL_EHML _u”Gl_EHML_vL ”Ht (34)
Proof We consider the cases with ¢ € {I, II, III} respectively.
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Case ( = 1. First, it follows from (1.4a) that

£ = fORD 4+ (e —xkHT K*yk—i—Vh(xk)—i-%(ka—xk)) >0, VxeX. (35)

By rearranging some terms of (3.5), we have

(x —xFLRFOF —y) + %(x"“ — x5 + VR = Vi)
> fEEY — fo) + T = X, V) + KFy).

Then, using the definition of Py y(-), we obtain

<xk+l —x, ;(xk _ )Ck+1) _ K*(yk _ yk+1)) + <xk+l —x, K*(y _ yk+l)>

— (M, VAGR) = VA®@)) = Py (. 3.6)

Similarly, according to (1.4b), we have

1
) —g (T (y—y T, — K K (k! —)c")Jr;(y"+1 —yK) =0, Vye,

which by rearranging some terms gives

|
(v — yFH K ) - R — k) 4 ;(yk+1 k)
> g(VMh — g + K —y, —Kx).

Then, using the definition of Dy ,(-), we obtain

1
(Yt —y, —K(x"—x"“)+;(y"—y"+‘>>—<y"+‘ —y, K(x—x**h) = D, (F).

3.7)
Summing (3.6) and (3.7) and using the definition in (2.1), we can get

(=) — KGR D) — M YRGS - Va))

1
O =y —K O =D+ —0f =) 2 0, (LD G
By the fact that % is convex and possesses a Lipschitz gradient, we have

— (M — x, VRGR) = Va(x))
= — (K — x5 VR — Va(x)) — (xF = x, VR — VR(x))

=<

— (T — xR VR — V) — LLHVh(xk) — Vh(x)|?
h
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2
_ Ly k+1 k2 Ly k+1 k 1 k
= Zlx XX Vz (x )+ m(Vh(x) Vh(x))
Ly
e B 3.9)

4 ’

where the first inequality follows from convexity and Lipschitz continuity of VA (for
example, see [27]). Now, on one hand, according to Lemma 1, we have

1
e e e (e e e e e S WA ER (V)

and

2 2

k1 ok kI

1
vy =y >=5<||y"—y|| L

(v —lly yIP =k =y A, @

On the other hand, we have

<x _ xk+1, K*(yk o yk+1)> + <y _ yk+1’ K(xk o xk+])>
— (x _ xk+1, K*(y _ yk+1)> + <x _ xk+1’ K*(yk _ y))
‘Hy _ yk+l’ K(xk _xk+1)>
= (x — XM K*(y — ) + (x — XK KGR - )
_ka _xk+1’ K*(yk _ y)> + <y _ yk+17 K(xk _karl))
= (x = XL Ky =y ) + (0 — x5 KO )
_ka _ xk+l, K*(yk _ yk+1)). (3'12)

Substituting (3.10), (3.11) and (3.12) into (3.8), and combining the inequality (3.9),
we get (3.3) with ¢ = I immediately. Adding 2(x*T!) — h(x) to both sides of (3.5)
and rearranging some terms, we obtain
1
<xk+1 —x, —(.Xk _ .Xk+1) _ K*(yk _ yk+1)) + <xk+1 —x, K*(y _ yk+l)>
T
— (=, VRGN + A = h(x)
> fEFD F R = F) = ho) + - k). (3.13)

In addition, the following inequality holds

(x = xR + hGFY — h(x)
< (x — X VRGR)) + (KD — h(xF) + (F = x, VAED)

L
< 7h||xk — xk2, (3.14)
Combining (3.7), (3.13) and (3.14), the conclusion (3.4) with ¢ = I follows directly.
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Case « = II. First, it follows from (1.5a) that
1
F) = FE Y+ =K, K VR + = EH —xb)) > 0, Vx e X. (3.15)
T
Similarly, it follows from (1.5c) that

1
FE) = FETY 4 0 =ML K L VRGN 4 - =) =0, vrea
T
(3.16)
Setting x = x**! in (3.15) and adding the above two inequalities, we obtain

(x — K KRy = R KRy 4 <xk+1 _ gk K*yk>
1
+<x _ ik wRk) — Vh(x)> 4+ <xk+1 _ gkl gkl xk>
T

1
N L

“
> FEFY - F)+ <ik+1 — X, K*y + Vh(x)>.
Using the definition of Py ,(-) and Lemma 1, we obtain
(x — XK Ry e R Ry 4 <xk+1 _ gkt K*yk>
+ (v =, VhEH) - Vi)

1
k k+1)2 k —k+1)2 k+1 —k+1,2
5o (I =R gt Bt )

1 -
(Il = K12 = e = A2 = ek = 2) = Py . 317)

tor

According to (1.5b), we obtain
g — g + (v =y K 4 é(yk“ —)) =0, Vyel,
which by simple manipulation gives
(y — Yo+ _K @ — ) + é(yk+1 )
> g(" ) — g + (T =y, —Kx).

Using the definition of D, ,(-) and Lemma 1, we have

1
5o (I =12 = AT =y = 1y = 1)

+y =y K GEHF — x)) > Dy, (R, (3.18)
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Note that
(x — Xk gk o gRL ey
+<xk+1 _ gk K*yk> F oy — Y KGR — x)
= (o — xFHL gy <yk+1, K(x — ik—i—l)) T <xk+l _ gkt K*yk>
— (RHD gk gor ke +<xk+1 — gk K*yk>
— (B kL g (kT gk

Summing (3.17) and (3.18), it follows from the the above equality and (3.9) that
Lok 2 Ly 2 [ 2 Lokt 2
7 X" — X"+ o Iy =yl 7 llx x[I”+ e lly Vi

1 Ly _ _
> <Z _ T) ”xk _xk+1 ”2 + <xk+1 _ xk+1, K*(yk _ yk+1)>

1 _ 1 -
+_||xk+l _ xk+1“2 + _“yk _ yk+1”2 + @x’y(xk-'rl’ yk+l)

2T 20
1 Ly ko o—k12 . Lok k+1,2
> <E‘T> e i -l Vb G S
FO, (B YR, (3.19)

where the second inequality follows from the Cauchy-Schwarz inequality. Then, we
get (3.3) with ¢ = II holds. Setting x = x**! in (3.15) and summing it with (3.16),
we have

<x _ xk+l’ K*yk+l> _ (x _ )Ek+1, K*y> + <xk+l _ ik+1’ K*yk>

T <x — gL Vh(xk)> F G — hex)
1 1

4+ (xk+1 _ gkl gkl xk) 4o (x — XKL kL Ry
T T

> FEFY) £ RGRY = F0) — h(x) + (x"“ —x K*y>.

Adding this equality to (3.18) and combining it with (3.14), (3.4) with ¢« = II will
follow.

Case « = III. First, it follows from (1.6a) that

FoO)—fEFDH 4 o=k, K*yk+Vh(xk)+%(ik+l—xk)) >0, VxeX. (3.20)
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By rearranging some terms of (3.20), we obtain

(x — P KF G = ) + <x — 7 VR — Vh(x)>
L1 <x gkl gkl xk>
T
> FEFY - F) + (x"“ —x, Ky + Vh(x)>.

Using the definition of P(-) and Lemma 1, we obtain
(e = FHL KGR = ) o+ (v = 5L VhER - Vhe)
1 _ _ _
5o (I =12 = e = 2 = = E2) = P . G2D)

Since (1.6b) is the same with (1.5b), (3.18) still holds for this case. Summing (3.21)
and (3.18), we get

(x —)Ek+l, K*(yk _ yk+1)) + (x —)Ek+1, Vh(xk) _ Vh(x))

1 _ -
5o (I =12 = e = B2 gt - B2
T
1 -
5 (I =32 = T =3P = 1k = PP = 0, @),
(3.22)
Note that

I — 2 = 22 (o — T KGR - YD)
= [ —x — kO = YOI = 2 IKFOF -y D)2
= [IxXFT — |12 = K F - YY),

where the last equality follows from (1.6c). Substituting the above equality and (3.9)
into (3.22), (3.3) with ¢ = III will follow. Likewise, instead of using (3.9), we adopt
the inequality (3.14), we will get (3.4) with ¢ = III. The proof is completed. O

The following theorem shows the ergodic convergence of Condat-Vu (1.4), PDFP
(1.5) and AFBA (1.6).

Theorem 1 Suppose that Assumptions 1 and (1a) hold for v € {1, 11, II1}. Let {(xf‘, yf‘)}
with ¢ € {I, I, Ill} be the sequence generated by Condat-Vu (1.4), PDFP (1.5) and
AFBA (1.6), respectively. Then {(xlk , y{‘)} converges to a saddle point (x2°, y>°) of
(1.1). If, in addition, Assumption (1b) holds, for the ergodic sequence {(XLN, YLN)}
defined by

N N
1 -
xN = v E x5 and YN = E vk, (3.23)
k=1
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we have
1
LXN, y) - £aY)<—Wu—mm,vmweXxy (3.24)

Proof Suppose that (ta) holds. Let (£, ¥) be an arbitrary saddle point of (1.1). Summing
the inequality (3.3) over k = 0, 1,..., N — 1 and setting (x, y) = (%, ¥) yields that
forany N > 0,

Nl N-—1
wuﬂ%ﬁ Zw—wﬂw+zowﬂﬁm
kO k=0 (3.25)
1 0 A2
< Sl =l

Combining (3.25), @ (xk+1, yk+1) > 0 and the positive definiteness of M, and H,, we
conclude that {(x[k, yf‘)} is bounded and

o0

k k+12
§ lluy — vy, < 00
k=0

Consequently, (xk, yF) — (x5+1, y&+1) — 0 as k — oo. Since {(x¥, y¥)} has at least
one limit pomt (xl , ¥.°) by its boundedness, there exists a subsequence {(ka , yLk )}

such that (xL ,yt’) — (x>, y>*) as j — oo. For any ¢ € {I, II, III}, we have

o) = FETY 4 =25 Vel + k)
+x — 5t ('f‘“ X)) >0, VxeX.

For ¢ = 1, it follows from (1.4b) that

g — g+ (v =yt keI -

7))
Hy =y —(f“ Wiy =0, Vye.

For ¢ € {II, I1I}, according to (1.5b) and (1.6b), we have

kj+1 _k; +1
,—KX,

kit1 k +1
gy —gy.) )+ <y -’

Pl ) =0 vyew.

Passing j — oo in the above three inequalities, it follows that (x°, y°) is a solution
of (1.1). Note that (3.3) holds for any solution of (1.1), hence

Ikt — g, <k —u®)E,. Yk = 0. (3.26)
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Since (xt ,yl ) = (x%, y®) and (xk, yk) — x5+, yk+1) — 0, for any given € > 0
and ¢ € {I, I1, III}, there exists a positive integer / such that
€

o g < 5 (3.27)

k+1 2 €
H—uX|g, < 5. and |y,

v, >

Therefore, for any k > k;, it follows from (3.26) and (3.27) that

k 2 k 2
luy —uliG, <l —uXlg,

ki+1 _ 2 k ki+12
< o — a4 luh = o, < e

This shows that the sequence {(xl ) )} converges to (x>, ¥2).
Now, suppose that (tb) holds, then the operator H, defined in (3.1) are positive
definite. So, summing the inequality (3.4) overk =0, 1,..., N — 1, we obtain

N—
Z(axk“ — L(x, y{‘“)) (||u?—u||%;t—||ufv—u||ét>.

It follows from the convexity of f, g, h and the definition of (X lN Y LN )in (3.23) that
1
NEXY, ) = L0, YY) < Sl —ullg,

Then, the assertion (3.24) follows directly. O

Note that the condition (:a) with ¢ € {I, II, IIT} is enough to guarantee the conver-
gence of Condat-Vu, PDFP, and AFBA, respectively. However, if one would like to
establish the convergence rate for primal-dual gap, the stronger condition (¢tb) needs
to be assumed. For Condat-Vu, the conclusions of Lemma 2 and Theorem 1 had been
extablished in [4,38]. As for PDFP, [6] proved that the sequences {x¥} and {x¥} con-
verge to a solution of the primal problem (1.2) by fixed point theory; however, no
convergence rate of the primal-dual gap is analyzed. Actually, by Theorem 1, we see
that the primal-dual gap of the ergodic sequence converges to zero with an O(1/N)
rate. As for AFBA, [20] proved that the sequence {(x*, y¥)} converge to a saddle point
of the min-max problem (1.1) under the condition toL?+vtoL?+ 1L, < 2. This
condition is much more conservative than the conditions posed in the Theorem 1,
where the O(1/N) convergence rate of the primal-dual gap of the ergodic sequence
of AFBA is also established. Moreover, although the update of x**! in AFBA (1.6¢c)
differs from that one in PDFP (1.5c), we can see from our analysis in Lemma 2 and
Theorem 1 that they actually lead to the same contractive property.

3.2 Linear convergence

In this subsection, we study the Q-linear convergence and R-linear convergence prop-
erties of Condat-Vu (1.4), PDFP (1.5) and AFBA (1.6).
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Firstly, we derive an useful upper bound of | R(-)|| at the iterates {(x**1, yk+1)}
generated by Condat-Vu (1.4), PDFP (1.5) and AFBA (1.6).

Lemma 3 Suppose that Assumptions 1 and (1a) hold for 1 € {1, 11, II1}. Let {(x[k, yf‘)}
with ¢ € {I, I, Ill} be the sequence generated by Condat-Vu (1.4), PDFP (1.5) and
AFBA (1.6), respectively. Then for any k > 0, there exists a constant k, > 0 such that

IR < kelluf — vFFI3, (3.28)

where
1 2 3 2 2 2
K, = — max 3L, + -+ 2L°,3L" + — (3.29)
o T o

and o, > 0 is a constant given in (3.2).

Proof Since we have denoted )E'i“ = x’i“ for Condat-Vu, by (1.4a), (1.5a) and (1.6a),
for ¢ € {I, II, III} it has

0€dfE) + Vaek) + %(if“ —xb) + KL,
which implies that
)ELk‘H = prox (JEL]"H — (Vh(xlk) + %()Elkﬂ — xtk) + K*)’tk)) .
Therefore,

”)—C[k+1 _ pI'OXf (')ELk+] _ (Vh()?lkﬂ) + K*ytk+1)) ”2

_ 1
< IVRGEY) — Vha(xF) - ;(xf“ — x5+ KO - )
_ 3 )
< 3L7|IxF — F2 4 ;nxf‘ — T2 32k — Y20 (3.30)
Then, it follows from (1.4b) that for ¢ = 1,
L L

_ 1
0 € ag(yFth — K xr! — Xk + ;<y"“ -5,

which implies that

_ 1
yE! = prox, <y{<+1 — (K QFT —xhy 4 ;(yf‘“ — yf‘))) :
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Therefore, we have
”yk+1 — prox, ( k1 ka+1) 2
< |KGEH —xH + - (y“‘ yolI?
< 2L%||xf — 2+ ;nyl‘ YR (3.31)

where the first inequality follows from the 1-Lipschitz continuity of prox, (-), and the
second inequality follows from the Cauchy-Schwarz inequality. Similarly, according
to (1.5b) and (1.6b), we have for ¢ € {II, III},

yi+! = prox, <yLk+l (—KxT 4 (yk+1 ylk))>’

which gives
1
Iy = prox, (yEF + KET) 12 < Sk 0L 63
Consequently, it follows (3.31) and (3.32) that for any ¢ € {I, II, IIT},

_ 2
||ytk+1 — prox, ( ( k1 ka+1> % < 2L2||x k+1”2 n ?“ylk _ yll<+1”2_

(3.33)
Then, by combining (3.30) and (3.33), we obtain from the definition of R(-) in (2.3)
that

IR@EDIP = I8! = prox; (87! = (VAGE) + Ky ) P
Syl - prox, ( k+1 +ka+1) &

3 _ 2
< (3L + 5+ 2L2)|xF — 2 4 3L + ;)ny{‘ — yk 2

k 1
< el = oF 3,

where the last inequality follows from (3.2) and the definition of «, in (3.29). O

Now, we are ready to establish the linear convergence rate of Condat-Vu (1.4),
PDFP (1.5) and AFBA (1.6) under a calmness condition. If R=! : ¢/ — U is calm at
the origin for a point 4 with modulus 6 > 0, it follows from Definition 4 that there
exist a neighborhood B(0, s) of the origin and a neighborhood B (u°, r) of u® with
r,s > 0 such that

R'x)NBw™®,r) € R7'0)+0|Ix||By, VYx e B(,s), (3.34)

where By, is the unit ball in ¢/. By the Lipschitz continuity of KKT mapping R,
we can choose r > 0 sufficiently small in (3.34) such that R(u) € B(0, s) for any
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u € B(u™, r). Then, noticing that R™N0) = U and considering x = R(u) € B(0, s),
the relation (3.34) would imply

dist(u, i) < 0| R@)|l, u € fu U ||u—u>| <r).

Note that this calmness condition is also proposed for establishing linear conver-
gence of the alternating direction method of multipliers [15] and the first-order inexact
primal-dual algorithm [19].

Theorem 2 Suppose that Assumptions 1 and (1a) hold for v € {1, 11, I11}. Let {(ka, ylk)}
with v € {I, I, Ill} be the sequence generated by Condat-Vu (1.4), PDFP (1.5) and
AFBA (1.6), respectively. Then we have the following properties.

(1) There exists a saddle point u® = (x°,y>°) of (1.1) such that the {(x[k, yf‘)}
converges to u™°.

(2) If RV is calm at the origin for u>® with modulus 0, > 0, i.e.,

distu,U) < O, |R@)|l, Vueluecld|llu—u>|<r), (3.35)

for some r, > O, there exists a positive number 0 < & < 1 given by

R (G —
T B0,k + 1)2

such that R R
distg, (X U) < gdistg, (uk, U), (3.36)

forallk > 0, where a,, B, and k, are given in (3.2) and (3.29), respectively. Moreover,
Uk} := {(x¥, y5)} converges to u™ R-linearly.
L L L L

Proof Property (1) has already been established in Theorem 1. Hence, there exists
k > 0 such that for all ¢ € {I, II, III} it has

W —u® <. Vk=k.
Thus, by Lemma 3 and (3.35), we know that for all k£ > k,
dist(uf ™, 20) < 0,1 RS < 0k, ik — of g, (3.37)
where k, is given in Lemma 3. Next, we have
~ 1 ~ 1 ~
dist ! ) > EdistMl(vf‘“,Z/{) =5 (distM, Wk, Uy — luk — ot 1||M,).
‘ ’ ] (3.38)
By combining (3.37) with (3.38), we obtain for k > k

. _ ) 1
distg, (u*, U) < édistMl Wk, U) < wnuf‘ — . (3.39)
o o
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Note that for any (X, y) € U, it follows from (3.3) and ©(-, -) > 0 that

k_ ~n2 k1 ~n2 k k412
ll —dallg, — Nl ™ = dallg, = Ml — v, (3.40)
Since Uis a nonempty closed convex set, the above inequality (3.40) implies for
k >k,

F) k 77 L) k+1 77 k k+1)2
distg, (uy, U) — distg, (o, U) = [luy — o3,

Ol2

>t dist2 WX U). (3.41)
BROSJi + D2
where the second inequality follows from (3.39). Then, (3.40), (3.41), and Lemma 2
imply that the property (2) holds, i.e., (3.36) holds for all £ > 0. R
Now, we show that {uk} converges to u™ R-linearly. Let #* € U such that
distg, (uk, U) = ||u* — i¥||s,. By (3.3), we have

k ~k k+1 ~k
||GL = ||ML - I/ll ||GL + ||u[+ - ut ”Gl

<2lluk — ik, = 2distg, (¥, U)

< 2&kdistg, (u®, ).

k_ ket

llue,

Consequently,

o0
k k_ ket
luy —u®llG, = | E W, —u g,

j=k

o0 o
k k+1 : 0 77 j
<Y lluf —uf g, < 2diste, . U) Y &/
i—k j=k
k
L

T 1-g

distg, u?, U),

which shows {u¥} converges to u™ R-linearly. O

Under proper calmness condition (3.35), Theorem 2 shows the Q-linear conver-
gence rate of distg, (uf‘, Zj) and the nonergodic R-linear convergence rate of {uf}.
Since Chambolle-Pock is a special case of Condat-Vu, the linear convergence results
also holds for Chambolle-Pock. In addition, since PDFP includes PAPC [9,22] and
PDFP20 [5] as special cases, the linear convergence results for PAPC and PDFP20
also follows directly. However, since the constant 6, in the calmness condition (3.35)
is not known explicitly, the exact linear convergence ratio &, is not explicitly known
either.

Corollary 1 Suppose that Assumptions I and (ta) hold for € {1, 11, I11}. Let {(xf‘, ylk)}
with v« € {I, I, I} be the sequence generated by Condat-Vu (1.4), PDFP (1.5) and
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AFBA (1.6), respectively. If the mapping R : U — U is piecewise polyhedral, then
the following properties hold.
(1) There exists a constant 0 > 0 such that for all k > 0 we have
distu®, U) < O Ru")|. (3.42)
(2) For all k > 0 we have
distg, X" U) < & distg,w*, 1), (3.43)

where

o2

= 1—-——— 1
\/ BEOBi + 1)?

k. yf‘)} converges to u™® R-linearly.

Moreover, {uf‘} ={(x,

Proof Since R~! is piecewise polyhedral if and only if R is piecewise polyhedral [15],
it follows from the discussion at the end of Sect. 2 that there exist two constants 0 > 0
and s > 0 such that

dist(u, U) < OIRw)|l, Yuefue Z/{} IRw)| < s}. (3.44)

By Theorem 2, we know {u{C } converges to u° € u. Hence, there exists a constant
r > 0 such that ||u{‘ —u®|| < rforall k > 0. Note that when ||R(u{‘)|| > 5, we have

. -~ r
dist(u®, U) < Juk —u>®| <r < ;||R(u{‘)||. (3.45)

Combining (3.44) and (3.45), we have (3.42) holds with 8 := max{0, ?}. Using (3.42),
the property (2) can be similarly proved as the proof in Theorem 2. O

4 Applications to some convex models

In this section, we show some practical examples, where the linear convergence results
in the previous section will apply. As one can see in Theorem 2, the calmness condition
is the key assumption for linear convergence. So, to show the linear convergence of
Condat-Vu (1.4), PDFP (1.5) and (1.6) for solving the example problems, we need to
verify that the KKT mapping (2.3) of these problems satisfies the calmness condition
(3.35). From Corollary 1, it is sufficient to show the KKT mapping defined in (2.3) is
piecewise polyhedral.

Note that the following examples do not satisfy the strongly convex condition
required in [4,6]. Hence, the theoretical results given in [4,6] do not imply the linear
convergence rate of Condat-Vu, PDFP or AFBA for solving the following example
problems. However, from our analysis, these models satisfy the calmness condition
and the linear convergence rate can be obtained immediately.
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4.1 Matrix games
Consider the following min-max matrix game [4,30]:

min max 84, (x) +(Kx,y) =64, (), “.1)
xeR" yeR/

where K € R™*", A, and A,, denote the standard unit simplices in R" and R™,
respectively. [19] showed that the KKT mapping of (4.1) is piecewise polyhedral.

4.2 Fused lasso

The fused lasso problem, which was proposed for group variable selection [21,37,40],
can be written as:

1
min —[|Ax — b|* + pillxll + pallKx|l1, (4.2)
xeR" 2

where A € R™*" b € R™, and K € R"~D*" is given by

The model (4.2) can be reformulated as

m% max f(x) +h(x) + (Kx, y) = g(y), (4.3)
xeR" yeR/

where f(x) = pillxll, h(x) = [Ax — b|% g(y) = 5300(,%’2) and ép_ (*) is the
indicator function of the ball Boo = {y : ||¥|lcoc < 1}. Then the KKT mapping for this
model (4.3) is

_ _ _ *
R(u)::(x prox ;(x — Ax +b — K*y)

, Yuel.
_Hungo(y_Kx) )

Since f is piecewise linear, according to Proposition 2, prox  (-) is piecewise linear. By
recalling that By is a polyhedral set, Proposition 2 implies that [Tg_ (-) is piecewise
linear. Therefore, R is piecewise polyhedral and so is R~! [15].

4.3 TV-£; image restoration
Many image processing problems involve two regularized terms such as tomography

reconstruction, where nonnegative constraint and total variation regularization appear.
Consider the following constrained TV-£; image restoration problem [6,14,18,26]
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. P
min ||| K x|l + = || Ax — b]%, (4.4)
xeB 2

where b € R" is the observed image, A is a blur operator, K is the discrete gradient

operator [34] in order to promote sparsity, (|z]); := ,/(11)1-2 + (zz)iz, i=1,2,...,n

where z = (z1, z2) € R"xR",B = [0, 11", and p is a positive parameter for balancing
the data-fidelity and TV regularization. n = n| X nj is the total number of pixels,
where n1 and nj are the numbers of pixels in the horizontal and vertical directions,
respectively. Note that the model (4.4) can be reformulated as the following saddle
point problem

. 1Y 2 }
) —||Ax — b Kx,y)—3§ . 4.5
min max {5500 + 514 = DI 4 (Kx, ) = 85, 0) @.5)

Clearly, (4.5) is the special case of (1.1) with f(x) = ép(x), g(y) = é5,(y), and
h(x) = ’2—’||Ax — b||%. Then the KKT mapping for this model (4.4) is

R(u) = (x—HB(x—Ax—i—b—K*y)

, Yuel.
y—1IIg (y — Kx) ) !

Similarity, we can conclude that both R and R~! are piecewise polyhedral.

5 Numerical experiments

In this section, we firstly show that the larger stepsizes presented in assumption (II1a)
for AFBA result in better performance on fused lasso model. Then we show the linear
convergence rate results of Condat-Vu, PDFP and AFBA. All codes were written by
MATLAB R2016a and all the numerical experiments were conducted on a personal
computer with a 2.20GHz i7 processor and a 16GB memory.

Consider the fused lasso model (4.2). In this simulation, we use the same setting as
[39]. The entries of A are generated by the standard Gaussian distribution A/ (0, 1) and
bisobtained by b = Ax+ pe, where e is a standard distributed Gaussian noise and p =
0.01. The parameters are set as ;11 = 20 and p» = 200. Each entry of the initial point
(x%, ¥0) is independently generated from A/(0, 1). Recall that the n — 1 eigenvalues
of K K* can be analytically computed as 2 — 2 cos(inw/n),i = 1,2,--- ,n — 1.

We firstly show the advantage of larger range of acceptable parameters in AFBA.
For AFBA with to L2 + VTo L2 +1L;/2 < 1, weset A := to as 1/16 and T =
2(0.99 — toL? — vtoL?)/Ly,, whereas we set A = 1/4 and T = 1.9/L,, for AFBA
with larger stepsizes. The stopping criterion is set as [u* — u**! ||/||uk|| < 1077,
The optimal solution # are obtained by running these methods for 10,000 iterations.
Define Error := |[uf — 7 ||2G,’ ¢ € {I, I, I} and Error converges Q-linearly according
to Theorem 2. We run 5 groups of problems and report the average performances
including the computing time in seconds (Time), iteration number (Iter.) and Error in
Table 1.
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Table 1 Comparisons for different stepsizes in AFBA on fused lasso

r n rUL2+m+tLh/2< 1 toL? < 1,7l <2
Time Tter. Error Time Tter. Error
25 500 1.36 695 1.98e—04 0.08 218 1.60e—05
50 1000 4.92 930 2.15e—04 0.60 301 1.05e—04
75 1500 39.52 2063 4.06e—04 5.60 722 2.51e—04
100 2000 121.48 3111 1.22e—03 20 1160 2.23e—04
200 4000 280.58 3416 4.08e—04 37.63 1011 9.61e—05
1010 1010
=€~ Condat-Vu —©— Condat-Vu
4 &
105+ 105 N\
5 100F 5 100}
5 i
ads 10°}
10»10, 10-107
10-15 10—15
0 1000 2000 3000 4000 5000 6000 7000 8000 0 2 4 6 8 10 12 14 16 18 20
Iteration Time

Fig.1 Numerical experiments for fused lasso (4.2)

As to the linear convergence of these three methods, we set r = 100 and n = 2000.
For Condat-Vu (1.4), the product A is set as 1/8 and t = 2(0.99 — AL%)/Lj. As to
PDFP (1.5), weset . = 1/4 and t = 1.9/Lj. For AFBA (1.6), we set A = 1/4 and
© = 1.9/Ly, for better performance. We plot the performance of Error with respect to
iteration number and computing time in Fig. 1.

According to Table 1, the larger range of acceptable parameters results in much
better performance. Figure 1 (left) shows that ‘Error’ of these methods converges to
zero at a linear rate. Moreover, after running same iteration number, AFBA has the
same performance with PDFP, which is better than Condat-Vu. From Fig. 1 (right),
after executing same computing time, we can observe that AFBA outperforms PDFP,
which performs better than Condat-Vu.

6 Conclusions

In this paper, we provide unified convergence analysis to establish global convergence
and the linear convergence rate of a class of primal-dual algorithms such as Condat-Vu,
PDFP and AFBA for solving saddle point problems. With a mild calmness condition
of the KKT mapping, which naturally holds for many convex models in practical
applications, we have established the Q-linear convergence of the distance between
the current iterate and the solution set, and the R-linear convergence of the noner-
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god

ic iterates for Condat-Vu, PDFP and AFBA. Since Chambolle-Pock, PDFP20 and

PAPC are special cases of these algorithms, the global convergence and linear rates of
Chambolle-Pock, PDFP?O and PAPC will also follow immediately.
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