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Abstract
An inexact accelerated stochastic Alternating Direction Method of Multipliers (AS-
ADMM) scheme is developed for solving structured separable convex optimization 
problems with linear constraints. The objective function is the sum of a possibly 
nonsmooth convex function and a smooth function which is an average of many 
component convex functions. Problems having this structure often arise in machine 
learning and data mining applications. AS-ADMM combines the ideas of both 
ADMM and the stochastic gradient methods using variance reduction techniques. 
One of the ADMM subproblems employs a linearization technique while a similar 
linearization could be introduced for the other subproblem. For a specified choice 
of the algorithm parameters, it is shown that the objective error and the constraint 
violation are O(1∕k) relative to the number of outer iterations k. Under a strong con-
vexity assumption, the expected iterate error converges to zero linearly. A linearized 
variant of AS-ADMM and incremental sampling strategies are also discussed. 
Numerical experiments with both stochastic and deterministic ADMM algorithms 
show that AS-ADMM can be particularly effective for structured optimization aris-
ing in big data applications.

Keywords  Convex optimization · Separable structure · Accelerated stochastic 
ADMM · Inexact stochastic ADMM · AS-ADMM · Accelerated gradient method · 
Complexity · Big data

1  Introduction

We consider the following structured separable convex optimization problems with 
linearly equality constraints:
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where X ⊂ ℝ
n1 and Y ⊂ ℝ

n2 are closed convex subsets, g ∶ Y → ℝ ∪ {+∞} is a 
convex, but not necessarily smooth function, A ∈ ℝ

n×n1 , B ∈ ℝ
n×n2 , and � ∈ ℝ

n are 
given, and f is an average of N real-valued convex functions:

It is assumed that each fj is defined on an open set containing X  and that fj ∶ X → ℝ 
is Lipschitz continuously differentiable. Problem (1.1) corresponds to the regular-
ized empirical risk minimization in big data applications, including classification 
and regression models in machine learning, where N denotes the sample size and fj 
is the empirical loss. A major difficulty in problems of the form (1.1) is that N can 
be very large, and hence, it would be expensive to evaluate either f or its gradient in 
each iteration.

The Lagrangian associated with (1.1) is

while the augmented Lagrangian with penalty 𝛽 > 0 is

The Alternating Direction Method of Multipliers (ADMM) [15, 16] is an effective 
approach to exploit the separable structure of the objective function. Assuming the 
existence of a solution to the first-order KKT optimality system for (1.1), Gabay [14, 
pp. 316–322] shows that the following ADMM scheme

is a special case of the Douglas-Rachford splitting method [10, 11] applied to the 
stationary system for the dual of (1.1). ADMM was proved convergent for the prob-
lem with two-block variables [15], while the direct extension to more than two 
blocks is not necessarily convergent [6], although its efficiency has been observed in 
some applications [22, 34].

ADMM and its variants have been extensively studied in the literature and 
applied to a wide range of applications in signal and image processing, and in statis-
tical and machine learning. Here, we briefly review some of the ADMM literature. 
Classes of ADMM-type methods include proximal ADMM [2, 31], inexact ADMM 
[18–20, 27], and linearized/relaxed ADMM [37, 39]. Most of these are globally 
convergent with an O(1∕k) ergodic convergence rate, where k denotes the iteration 
number. Some improvements in the convergence rate of ADMM have been obtained 

(1.1)min{f (�) + g(�) ∶ � ∈ X, � ∈ Y, A� + B� = �},

f (�) =
1

N

N∑
j=1

fj(�).

(1.2)L(�, �,�) = f (�) + g(�) + ��(� − A� − B�),

(1.3)L�(�, �,�) = L(�, �,�) +
�

2
‖� − A� − B�‖2.

(1.4)

⎧⎪⎨⎪⎩

�k+1 ∈ argmin
�∈X

L�

�
�, �k,�k

�
,

�k+1 ∈ argmin
�∈Y

L�

�
�k+1, �,�k

�
,

�k+1 = �k + �
�
� − A�k+1 − B�k+1

�
,
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including [9] where the same O(1∕k) convergence rate is obtained in a multi-block 
setting with a Jacobi-proximal implementation. For either a linear or a quadratic 
programming problem, the classic ADMM scheme and its variant have a linear 
convergence rate [3]. Under the assumption that the subdifferential of each compo-
nent objective function is piecewise linear, the global linear convergence of ADMM 
for two-block separable convex optimization has been established in [38]. Assum-
ing that an error bound condition holds and that the dual stepsize is sufficiently 
small, Hong and Luo [23] showed an R-linear convergence rate of their multi-block 
ADMM. Under the hypothesis that some of the underlying functions are strongly 
convex, global linear convergence of ADMM-type algorithms and their correspond-
ing proximal/generalized versions have been established [4, 17, 21, 25, 30].

Notice that in standard deterministic ADMM for (1.1), gradient methods are 
often used to solve the subproblem involving f. Hence, the gradient of f needs to be 
evaluated at each iteration, which requires the gradient of each component function 
fi . This could be expensive or impossible when N is large in big data applications. 
Hence, ADMM type algorithms have been designed in recent years to solve struc-
tured optimization problems of the form (1.1) using stochastic inexact gradients. 
Research in the stochastic gradient ADMM area includes [1, 26, 28, 32, 36, 40, 42].

The algorithm analyzed in this paper is the inexact accelerated ADMM, denoted 
AS-ADMM, given in Algorithm 1.1. Note that AS-ADMM contains a routine xsub 
to generate an approximation to the solution of the �-subproblem in (1.4), and two 
steps corresponds to updates �k+1 and �k+1 in (1.4). The algorithm is inexact since 
the solution of the �-subproblem is approximated in xsub. The algorithm is sto-
chastic since in each step of xsub, the gradient is computed at a randomly cho-
sen component fj of f. The outcome of AS-ADMM is stochastic since it depends on 
the randomly chosen component fj where the gradient is evaluated. The structure 
of AS-ADMM is somewhat typical of the structure for stochastic gradient ADMM 
algorithms. 
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Parameters: β > 0, s ∈ (0, (1 +
√
5)/2] and H � 0.

Initialization: (x0,y0,λ0) ∈ X × Y × R
n, x̆0 = x0.

For k = 0, 1, . . .
Choose Mk, ηk > 0 and Mk such that Mk − βATA � 0.

hk := −AT
[
λk − β(Axk +Byk − b)

]
.

(xk+1, x̆k+1) = xsub (xk, x̆k,hk).

yk+1 ∈ argmin
{
g(y) + β

2

∥∥∥Axk+1 +By − b− λk

β

∥∥∥
2
: y ∈ Y

}
.

λk+1 = λk − sβ Axk+1 +Byk+1 − b
)
.

end

(x+, x̆+) = xsub (x1, x̆1, h).
For t = 1, 2, . . ., Mk

Randomly select ξt ∈ {1, 2, . . . , N} with uniform probability.
βt = 2/(t+ 1), γt = 2/(tηk), x̂t = βtx̆t + (1− βt)xt.
dt = ĝt + et, where ĝt = ∇fξt(x̂t) and et is a random vector

satisfying E[et] = 0.

x̆t+1 = argmin
{
〈dt + h,x〉+ γt

2 ‖x− x̆t‖2H + 1
2

∥∥x− xk
∥∥2
Mk

: x ∈ X
}
.

xt+1 = βtx̆t+1 + (1− βt)xt.
end
Return (x+, x̆+) = (xMk+1, x̆Mk+1).

Alg. 1.1. Accelerated Stochastic ADMM (AS-ADMM)

It seems that the first development of a stochastic gradient ADMM scheme is given 
in [28]. In the context of (1.1), the algorithm computes the gradient of a single ran-
domly chosen component fj , and uses this gradient to linearize fj at the current iterate. 
The solution of the linearized problem yields �k+1 . If � denotes expectation, (�∗, �∗) 
denotes a solution of (1.1), and X  is compact, then it is shown that

where the bar over an iterate means the average of the first k iterates. Without some 
additional information, such as f (�k) + g(�k) ≥ f (�∗) + g(�∗) , this bound is not 
strong enough to ensure that the expected objective value or constraint violation 
tends to zero. In [32] the same algorithm is considered, but in the special case that 
B = −� and A� ∈ Y for all � ∈ X  . For this special case, �k can be replaced by A�k to 
obtain a feasible point, and (1.5) yields an O(1∕

√
k) bound for the objective error. In 

[1] the error bound (1.5) is sharpened to O(1∕k) by further developing the algorithm 
in [28] by introducing a more complex averaging process and additional assump-
tions such as both X  and Y compact, and the dual multipliers are bounded. Another 
variation of the method in [28] is given in [42] with an error bound of O(1∕k).

(1.5)�
�
f (�k) + g(�k) − f (�∗) − g(�∗) + ‖A�k + B�k − �‖� ≤ c∕

√
k,
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The paper [40] seems to be the first to realize the potential benefit of solving the 
�-subproblem with greater accuracy. Using Mk = O(k2�) inner iterations for the �
-subproblem with 𝜚 > 1 , an O(1∕k) bound was established for the left side of (1.5). 
The paper [26] seems to represent the current state-of-the-art for problems of the 
form (1.1) with smooth fj and potentially nonsmooth g. There were two fundamen-
tal innovations. First, for their algorithm ASVRG-ADMM, the �-subproblem takes 
advantage of both a momentum acceleration trick from [35] and variance reduction 
techniques from [24] when performing a fixed number m inner iterations with a fixed 
batch size for the stochastic gradients. Second, in the analysis of ASVRG-ADMM, 
the authors exploit an observation from [41] to obtain an O(1∕k) bound for both the 
objective error and constraint violation.

In comparing AS-ADMM to the previous work, the STOC-ADMM scheme pro-
posed in [28], and the various modifications of it, use one stochastic gradient step in 
each ADMM iteration to approximately solve the �-subproblem, while the scheme 
ASVRG-ADMM proposed in [26] uses a fixed number m inner iterations. In con-
trast, our AS-ADMM uses a dynamic Mk (see (4.10)) accelerated stochastic gradi-
ent iterations to solve the �-subproblem with increasing accuracy as the iterations 
progress. We found this strategy particularly effective in our earlier work [19] on 
an inexact, adaptive ADMM scheme. The number of iterations is chosen so as to 
achieve a convergence rate of either O(1∕k) or O(k−1 log k) , based on the theory in 
our paper. In a specific adaptive scheme that we analyze, Mk = O(k�) with � ≥ 1.

In the ASVRG-ADMM scheme, the �-subproblem is solved at each inner itera-
tion; hence, in k iterations, ASVRG-ADMM will solve the �-subproblem mk times. 
In contrast, AS-ADMM treats the �-subproblem as a single step in the outer itera-
tion, and it is only solved k times during k iterations.

Another fundamental difference between these schemes is that AS-ADMM does 
not require an estimate for the Lipschitz constant of ∇f  , while ASVRG-ADMM 
uses the Lipschitz constant within the algorithm, as is typical in stochastic gradi-
ent techniques. In ASVRG-ADMM the Lipschitz constant is used to compute the 
momentum parameter which appears within the steps of the algorithm. Hence, a 
poor estimate of the Lipschitz constant could significantly affect the performance of 
ASVRG-ADMM and other stochastic ADMMs. If a good estimate of either the local 
or global Lipschitz constant were known, then it can be exploited in AS-ADMM, 
but it is not required in the algorithm.

A fundamental difference between the stochastic and deterministic ADMM lit-
erature is that in the deterministic setting, the literature typically establishes conver-
gence of the iterates to a stationary point for (1.1), assuming the gradient of f is Lip-
schitz continuous. The corresponding convergence results in the stochastic setting 
have not yet been established; what is established is the convergence of the expected 
objective error and constraint violation. However, under strengthened assumptions, 
such as strong convexity, convergence of the expected ergodic error as well as con-
vergence of the expected iterate error can be deduced (see Appendix).

A very recent paper [36] developed an inexact stochastic gradient algorithm 
SI-ADMM for a different version of (1.1), where not only f is viewed as stochas-
tic, but also g. To incorporate the setting of [36] in (1.1), one should also view 
g as the sum of component functions gj , just like f. The algorithm in [36] differs 
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from our algorithm in that SI-ADMM is based on gradient steps for the aug-
mented Lagrangian and proximal term, while AS-ADMM employs a linearization 
technique described in item 3 below. The assumptions in [36] imply that both fj 
and gj are strongly convex and Lipschitz continuous, that X = ℝ

n1 and Y = ℝ
n2 , 

and that the linear constraint in (1.1) has full row rank. In this very smooth and 
strongly convex setting, a linear convergence rate for the expected error in the SI-
ADMM iterates is established. In the Appendix of our paper, we also show that 
the expected error in the AS-ADMM iterates converges to zero at a linear rate 
when f and g are strongly convex.

In more detail, some features of AS-ADMM are the following: 

1.	 The memory cost of AS-ADMM is low since the prior stochastic gradients and 
iterates are not saved, which is advantageous in big data applications. For a spe-
cific choice of �k and Mk given in (4.10), we show in Theorem 4.2 that the expec-
tation of the objective error and constraint violation for an ergodic mean of the 
AS-ADMM iterates is O(1∕k) . The Appendix introduces additional assumptions 
to obtain results concerning the convergence of the expected error in the iterates. 
For example, when Mk − �A�A is uniformly positive definite, then the iterates 
are bounded in expectation, and when f and g are strongly convex, the expected 
error in the iterates converges linearly to zero.

2.	 Although the AS-ADMM algorithm does not require knowledge of the Lipschitz 
constant for the gradient of f, faster convergence may be possible when a good 
estimate of the Lipschitz constant � for ∇fj , 1 ≤ j ≤ N , is known and exploited. 
In particular, the convergence results apply when �k reaches the interval (0, 1∕�) ; 
for the choice of �k given in (4.10), �k tends to zero, so it eventually lies in the 
interval where convergence is guaranteed. But if the Lipschitz constant is known, 
we could always take �k ∈ (0, 1∕�) and the convergence rates would be valid from 
the start of the iterations.

3.	 The routine xsub is obtained from the deterministic inexact ADMM scheme in 
[20] by replacing the full gradient by a stochastic gradient. In the deterministic 
setting, it is shown in [20] (see Lemma 3.1 and the parameter choice (2.4) in [20]) 
that this inexact ADMM is an accelerated scheme for solving the problem 

 Note that both the objective function and the penalty term of (1.6) are linearized 
to some degree in the optimization problem contained in xsub. The objective 
function of (1.6) is linearized by replacing the objective f by ∇fj for some j, 
while the penalty term is partly linearized by including a proximal term of the 
form (1∕2)‖� − �k‖2

Mk−�A
�A

 in (1.6). This proximal term annihilates (�∕2)‖A�‖2 
in the penalty term. If Mk and H in xsub were a multiple of the identity, then 
the Hessian of the objective for the optimization problem in xsub would be a 
multiple of the identity. The constraint Mk − �A�A ⪰ � in AS-ADMM arises 
from the proximal term in (1.6).

(1.6)argmin
�∈X

L�

�
�, �k,�k

�
+

1

2
‖� − �k‖2

Dk
, Dk = Mk − �A�A.
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4.	 AS-ADMM allows for variance reduction techniques. In each iteration of xsub, 
a stochastic gradient �̂t of the function f at �̂t is generated, and the user has the 
flexibility of choosing a zero mean random vector �t to reduce the variance of �̂t . 
A trivial choice is �t = � ; however, faster convergence is observed in the numeri-
cal experiments when a variance reduction technique is employed.

5.	 In the standard deterministic Gauss-Seidel version of ADMM, a dual step 
s ∈ (0, (1 +

√
5)∕2) (the open interval) is used. In the stochastic AS-ADMM, 

the stepsize constraint is s ∈ (0, (1 +
√
5)∕2] (the half-open interval) since we 

only show convergence of the function values. If Mk = 1 and N = 1 , then AS-
ADMM becomes the standard linearized ADMM. If Mk > 1 and N = 1 , then AS-
ADMM is a deterministic inexact ADMM, where the �-subproblems of ADMM 
are solved inexactly using Mk accelerated gradient iterations. Hence, our con-
vergence results for AS-ADMM also imply convergence results for an inexact 
deterministic ADMM based on Mk accelerated gradient iterations. Similar to the 
Gauss-Seidel version of ADMM, s ∈ (0, (1 +

√
5)∕2) guarantees convergence of 

the iterates for this inexact deterministic ADMM, a result not previously known 
in the literature. In fact, the more general multi-block convergence results in [19, 
20] require that s ∈ (0, 1).

6.	 As shown in the analysis, the constraint in AS-ADMM that Dk = Mk − �A�A is 
positive semidefinite can be weakened to (�k+1 − �k)�Dk(�

k+1 − �k) ≥ 0 for all k 
sufficiently large. In Remark 4.2, we show that when Mk = �k� , there is an easy 
and effective way to adjust �k during the iterations, based on an underestimate 
of the largest eigenvalue of �A�A , so as to satisfy the weakened constraint on Dk 
when k is sufficiently large.

7.	 Our numerical experiments show that AS-ADMM performs much better than 
deterministic ADMM methods for solving problem (1.1) when it is expensive to 
compute the exact gradient of f, and it is competitive or faster than other state-of-
the-art stochastic ADMM type algorithms [16, 26, 28, 29], especially when the 
linear constraints are not simple.

The paper is organized as follows. Section 2 introduces some notation and assump-
tions. Detailed convergence analysis of AS-ADMM is given in Sections  3 and 4. 
Incremental sampling strategies and a linearized variant of AS-ADMM are also 
briefly discussed in Sections  5 and 6. Numerical experiments comparing AS-
ADMM with both deterministic and stochastic ADMM type algorithms are given in 
Section 7. The Appendix develops properties for the expected iterates under stronger 
assumptions. In particular, the AS-ADMM iterates are bounded in expectation when 
the proximal term is uniformly positive definite, while the expected error in the iter-
ates converges to zero at a linear rate under a strong convexity assumption.

2 � Notation and assumptions

Let ℝ , ℝn , and ℝn×m be the sets of real numbers, n dimensional real column 
vectors, and n × m real matrices, respectively. Let � denote the identity matrix 
and � denote zero matrix/vector. For symmetric matrices A and B of the same 
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dimension, A ≻ B ( A ⪰ B ) means A − B is a positive definite (semidefinite) 
matrix. For any symmetric matrix G, ‖�‖2

G
∶= ��G� , where the superscript � 

denotes the transpose. Note that G could be indefinite with ��G� < 0 for some � . 
If G is positive definite, then ‖�‖G is a norm. We use ‖ ⋅ ‖ and ⟨⋅, ⋅⟩ to denote the 
standard Euclidean norm and inner product; ∇f (�) is the gradient of f at � . For 
convenience in the analysis, we define

We also define F(�) = f (�) + g(�) and �k = (�k, �k,�k) . The affine map J(⋅) is 
skew-symmetric in the sense that

for all � and � ∈ ℝ
n1 ×ℝ

n2 ×ℝ
n . In other words, the matrix associated with J  is 

skew symmetric.
The point �∗ ∶= (�∗, �∗,�∗) ∈ Ω ∶= X × Y ×ℝ

n is a saddle-point of the 
Lagrangian L , given in (1.2), if

for every � = (�, �,�) ∈ Ω . It follows that

These inequalities are equivalent to the variational inequality

for all � ∈ Ω . Note that �∗ satisfies (2.3) if and only if �∗ is a primal-dual solution 
of problem (1.1). Let W∗ denote the set of �∗ ∈ Ω satisfying (2.3).

Throughout the paper, we make the following assumptions: 

	(a1)	 The primal-dual solution set W∗ of the problem (1.1) is nonempty.
	(a2)	 The problem 

 has a minimizer for any � ∈ ℝ
n2.

	(a3)	 For some 𝜈 > 0 and H ≻ � , the gradients ∇fj satisfy the Lipschitz condition 

 for every �1, �2 ∈ X  and j = 1, 2,… ,N.
By a Taylor expansion, (a3) implies that f is �-bounded in the following sense:

(2.1)� =

⎛
⎜⎜⎝

�

�

�

⎞
⎟⎟⎠

and J(�) =

⎛
⎜⎜⎝

−A��

−B��

A� + B� − �

⎞
⎟⎟⎠
.

(2.2)(� − �)�[J(�) − J(�)] = 0

L(�∗, �∗,�) ≤ L
(
�∗, �∗,�∗

)
≤ L

(
�, �,�∗

)

f (�) − f (�∗) + (� − �∗)�
(
−A��∗

)
≥ 0,

g(�) − g(�∗) + (� − �∗)�
(
−B��∗

)
≥ 0,

A�∗ + B�∗ − � = �.

(2.3)F(�) − F(�∗) + (� − �∗)�J(�∗) ≥ 0

min
{
g(�) + (�∕2)������ + ��� ∶ � ∈ Y

}

(2.4)‖∇fj(�1) − ∇fj(�2)‖H−1 ≤ �‖�1 − �2‖H
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for every �1, �2 ∈ X .

3 � Variational characterization

In this section we show that the iterates generated by AS-ADMM satisfy a variational 
inequality that is similar to (2.3), but with some additional error terms. The following 
lemma provides a key recursive property for the iterates {�t} generated by xsub. Note 
that �k below is the objective function for (1.6), which xsub is minimizing.

Lemma 3.1  Let us define Γt = 2∕(t(t + 1)) and

and �k = −A�
[
�k − �(A�k + B�k − �)

]
 . Then, for any � ∈ X  and k with �k ∈ (0, 1∕�) , 

we have

where

Proof  By the updates of �t+1 and �̂t , we have

Since f is �-bounded (2.5), the following relations hold due to (3.5) and the convex-
ity of f:

(2.5)f (�1) ≤ f (�2) + ⟨∇f (�2), �1 − �2⟩ + �

2
‖�1 − �2‖2H

(3.1)�k(�) = f (�) + �k(�), where �k(�) =
1

2

���� − �k
���
2

Mk

+ ⟨�k, �⟩,

(3.2)
1

Γt

[
�k(�t+1) − �k(�)

]
≤

{
�1, t = 1,
1

Γt−1

[
�k(�t) − �k(�)

]
+ �t, t ≥ 2,

(3.3)𝜃t =
1

𝜂k

[‖‖� − �̆t
‖‖2H − ‖‖� − �̆t+1

‖‖2H
]
−

t

2
‖‖� − �̆t+1

‖‖2Mk

(3.4)
+ t⟨�t, �̆t − �⟩ + 𝜂kt

2

4

���t��2H−1

(1 − 𝜂k𝜈)
, t ≥ 1, and

�t =∇f (��t) − �t.

(3.5)𝛽t(�̆t+1 − ��t) + (1 − 𝛽t)(�t − ��t) = �t+1 − ��t = 𝛽t�t, �t = �̆t+1 − �̆t.
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where Rf = f (��t) +
⟨
∇f (��t), �̆t+1 − ��t

⟩
 . For any � ∈ X  , it again follows from the 

convexity of f that

By the update formula �t+1 = 𝛽t�̆t+1 + (1 − 𝛽t)�t and the convexity of �k , we have

Combine (3.6), (3.7), and (3.8) with the definition of �k(�) in (3.1), to obtain

In xsub of AS-ADMM,

where �k is defined in (3.1). Since H is a quadratic with ∇2H = �tH +Mk , we have

By the first-order optimality condition, we have ∇H(�̆t+1)(� − �̆t+1) ≥ 0 for all 
� ∈ X  , which implies that H(�) ≥ H(�̆t+1) + 0.5‖� − �̆t+1‖2𝛾tH+Mk

 for all � ∈ X  . 
Rearrange this inequality to obtain

Substituting ∇f (�̂t) = �t + �t in (3.9) and utilizing (3.10) yields

(3.6)

f (�t+1) ≤ f (��t) +
⟨
∇f (��t), �t+1 − ��t

⟩
+

𝜈

2
‖‖�t+1 − ��t

‖‖2H

= f (��t) +
⟨
∇f (��t), 𝛽t(�̆t+1 − ��t) + (1 − 𝛽t)(�t − ��t)

⟩
+

𝜈𝛽2
t

2
‖‖�t‖‖2H

= (1 − 𝛽t)
[
f (��t) +

⟨
∇f (��t), �t − ��t

⟩]
+ 𝛽tRf +

𝜈𝛽2
t

2
‖‖�t‖‖2H

≤ (1 − 𝛽t)f (�t) + 𝛽tRf +
𝜈𝛽2

t

2
‖‖�t‖‖2H,

(3.7)
Rf = f (��t) +

⟨
∇f (��t), � − ��t

⟩
+
⟨
∇f (��t), �̆t+1 − �

⟩

≤ f (�) +
⟨
∇f (��t), �̆t+1 − �

⟩
.

(3.8)𝜓k(�t+1) ≤ 𝛽t𝜓k(�̆t+1) + (1 − 𝛽t)𝜓k(�t).

(3.9)

𝜙k(�t+1) ≤(1 − 𝛽t)f (�t) + 𝛽t
�
f (�) +

�
∇f (��t), �̆t+1 − �

��
+

𝜈𝛽2
t

2
���t��2H + 𝜓k(�t+1)

≤(1 − 𝛽t)𝜙k(�t) + 𝛽t
�
f (�) +

�
∇f (��t), �̆t+1 − �

��
+

𝜈𝛽2
t

2
‖�t‖2H + 𝛽t𝜓k(�̆t+1).

�̆t+1 = argmin
�∈X

H(�) ∶= ⟨�t, �⟩ +
𝛾t
2
��� − �̆t

��2H + 𝜓k(�),

H(�) = H(�̆t+1) + ∇H(�̆t+1)(� − �̆t+1) +
1

2
‖� − �̆t+1‖2𝛾tH+Mk

.

(3.10)
⟨�t, �̆t+1 − �⟩ + 𝛾t

2
���t��2H + 𝜓k(�̆t+1)

≤
𝛾t
2
��� − �̆t

��2H + 𝜓k(�) −
1

2
‖� − �̆t+1‖2𝛾tH+Mk

.
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where

By the choice for �t and �t , we have

For c > 0 , use the inequality

to obtain

Note that c = [1 − 𝜈𝛽t∕𝛾t]∕2 > 0 by (3.13). Insert this choice for c and a = 1∕�t in 
(3.14), and use the resulting inequality in (3.12) to obtain

where the last inequality is due to (3.13). Combining this inequality with (3.11) 
gives

(3.11)

𝜙k(�t+1) ≤𝛽t

�
f (�) + ⟨�t, �̆t+1 − �⟩ + 𝛾t

2
���t��2H + 𝜓k(�̆t+1)

�

+ (1 − 𝛽t)𝜙k(�t) + 𝛽t⟨�t, �̆t+1 − �⟩ + 𝜈𝛽2
t

2
‖st‖2H −

𝛽t𝛾t
2

���t��2H
≤𝛽t

�
f (�) + 𝜓k(�) +

𝛾t
2
��� − �̆t

��2H −
1

2
‖� − �̆t+1‖2𝛾tH+Mk

�

+ (1 − 𝛽t)𝜙k(�t) + Rd

=𝛽t

�
𝜙k(�) +

𝛾t
2
��� − �̆t

��2H −
1

2
‖� − �̆t+1‖2𝛾tH+Mk

�
+ (1 − 𝛽t)𝜙k(�t) + Rd,

(3.12)

Rd =𝛽t⟨�t, �̆t+1 − � − �̆t + �̆t⟩ +
𝜈𝛽2

t

2
��st��2H −

𝛽t𝛾t
2

���̆t+1 − �̆t
��2H

=𝛽t⟨�t, �̆t − �⟩ + 𝛽t⟨�t, �t⟩ −
𝛽t𝛾t − 𝜈𝛽2

t

2
���t��2H

≤𝛽t⟨�t, �̆t − �⟩ + 𝛽t
���t��H−1

��st��H −
𝛽t𝛾t − 𝜈𝛽2

t

2
���t��2H

=𝛽t⟨�t, �̆t − �⟩ + 𝛽t𝛾t

�
1

𝛾t
���t��H−1

���t��H −
1 − 𝜈𝛽t∕𝛾t

2
���t��2H

�
.

(3.13)1 −
𝜈𝛽t
𝛾t

= 1 − 𝜈
2

t + 1

t𝜂k
2

= 1 −
t

t + 1
𝜂k𝜈 > 1 − 𝜂k𝜈 > 0.

0 ≤

�
a

2
√
c
‖�‖

H
−1 −

√
c‖�‖H

�2

=
a2

4c
‖�‖2

H
−1 + c‖�‖2

H
− a‖�‖

H
−1‖�‖H

(3.14)a‖‖�t‖‖H−1
‖‖�t‖‖H − c‖‖�t‖‖2H ≤

a2

4c
‖‖�t‖‖2H−1 .

Rd ≤ 𝛽t⟨�t, �̆t − �⟩ + 𝛽t
2(𝛾t − 𝜈𝛽t)

‖�t‖2H−1 ≤ 𝛽t⟨�t, �̆t − �⟩ + 𝛽t
2𝛾t(1 − 𝜈𝜂k)

‖�t‖2H−1 ,
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Now, by subtracting �k(�) from each side of the above inequality, we obtain

Finally, by the definitions Γt =
2

t(t+1)
 , �t = 2∕(t + 1) , and �t =

2

t�k
 , we have

Dividing each side of (3.15) by Γt and exploiting these relations, we deduce that 
(3.2) holds for t ≥ 2 . Since Γ1 = �1 = 1 , it also follows from (3.15) that (3.2) holds 
for t = 1 . 	�  ◻

Based on Lemma 3.1, we are able to give a variational characterization of the 
AS-ADMM iterates.

Lemma 3.2  Let Dk and �t be as defined in (1.6) and (3.4) respectively, and suppose 
the �k ∈ (0, 1∕�) . Then the iterates generated by AS-ADMM satisfy

for all � ∈ X  , where

Proof  Let us define T = Mk . Summing (3.2) over 1 ≤ t ≤ T  and recalling that 
�̆k = �̆1 , �k+1 = �T+1 , and �̆k+1 = �̆T+1 , we obtain

𝜙k(�t+1) ≤(1 − 𝛽t)𝜙k(�t) + 𝛽t𝜙k(�) +
𝛽t𝛾t
2

���� − �̆t
��2H − ��� − �̆t+1

��2H
�

−
𝛽t
2
��� − �̆t+1

��2Mk
+ 𝛽t⟨�t, �̆t − �⟩ + 𝛽t

2𝛾t

‖�t‖2
H

−1

1 − 𝜈𝜂k
.

(3.15)

𝜙k(�t+1) − 𝜙k(�) ≤(1 − 𝛽t)[𝜙k(�t) − 𝜙k(�)] +
𝛽t𝛾t
2

���� − �̆t
��2H − ��� − �̆t+1

��2H
�

−
𝛽t
2
��� − �̆t+1

��2Mk
+ 𝛽t⟨�t, �̆t − �⟩ + 𝛽t

2𝛾t

‖�t‖2
H

−1

1 − 𝜈𝜂k
.

(3.16)�t�t =
4

t(t + 1)�k
,

�t�t
Γt

=
2

�k
,

�t
Γt

= t, and
�t
Γt�t

=
�kt

2

2
.

(3.17)f (�) − f (�k+1) −
⟨
� − �k+1,A��̃

k
⟩
≥
⟨
�k+1 − �,Dk(�

k+1 − �k)
⟩
+ � k,

(3.18)�̃
k
=�k − �

(
A�k+1 + B�k − �

)
, and

(3.19)

𝜁 k =
2

Mk(Mk + 1)

�
1

𝜂k

����� − �̆k+1
���
2

H
−
���� − �̆k

���
2

H

�

−

Mk�
t=1

t⟨�t, �̆t − �⟩ − 𝜂k
4(1 − 𝜂k𝜈)

Mk�
t=1

t2���t��2H−1

�
.
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for any � ∈ X  , where �t is defined in (3.3). Dividing the update formula 
�t+1 = 𝛽t�̆t+1 + (1 − 𝛽t)�t by Γt and exploiting the identity �t∕Γt = t from (3.16) 
yields

We sum over 2 ≤ t ≤ T  and recall that Γ1 = �1 = 1 to obtain

Since (tΓT ) for 1 ≤ t ≤ T  sums to 1 and the quadratic term ‖� − �‖2
Mk

 is convex in � , 
it follows from (3.21) that for any choice of � , we have

Inserting this inequality into (3.20) gives

Now, by the definition of �k and �k , we have

By the definition of �k , it follows that

(3.20)

1

ΓT

�
𝜙k(�

k+1) − 𝜙k(�)
�
≤

T�
t=1

𝜃t

=
1

𝜂k

����� − �̆k
���
2

H
−
���� − �̆k+1

���
2

H

�
−

1

2

T�
t=1

t��� − �̆t+1
��2Mk

+

T�
t=1

t⟨�t, �̆t − �⟩ + 𝜂k
4(1 − 𝜂k𝜈)

T�
t=1

t2���t��2H−1

1

Γt

�t+1 =
1

Γt−1

�t + t�̆t+1.

(3.21)

�k+1 =ΓT

{
1

Γ1

�2 +

T∑
t=2

t�̆t+1

}
= ΓT

{
�2 − �̆2 +

T∑
t=1

t�̆t+1

}

=ΓT

{
[𝛽1�̆2 + (1 − 𝛽1)�1] − �̆2 +

T∑
t=1

t�̆t+1

}
=

T∑
t=1

(tΓT )�̆t+1.

‖‖‖�
k+1 − �

‖‖‖
2

Mk

≤

T∑
t=1

(tΓT )
‖‖�̆t+1 − �‖‖2Mk

.

(3.22)

1

ΓT

�
𝜙k(�

k+1) − 𝜙k(�) +
1

2

����
k+1 − �

���
2

Mk

�
≤

1

𝜂k

����� − �̆k
���
2

H
−
���� − �̆k+1

���
2

H

�

+

T�
t=1

t⟨�t, �̆t − �⟩ + 𝜂k
4(1 − 𝜂k𝜈)

T�
t=1

t2���t��2H−1 .

�k(�
k+1) − �k(�) =f (�

k+1) − f (�) + �k(�
k+1) − �k(�) and

�k(�
k+1) − �k(�) =

�
�k, �k+1 − �

�
+

1

2

�
‖�k+1 − �k‖2

Mk
− ‖� − �k‖2

Mk

�
.
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The identity

with � = �k+1 , � = �k , and � = � implies that

Insert all these relations in (3.22) and make the substitutions T = Mk and 
ΓT = 2∕(T(T + 1)) to obtain (3.17), which completes the proof. 	�  ◻

We now establish the following variational inequality similar to (2.3).

Lemma 3.3  If �k ∈ (0, 1∕�) , then the iterates generated by AS-ADMM satisfy

for all � ∈ Ω , where � k is defined in (3.19), �̃
k
 is defined in (3.18), and

Proof  Since the objective in the �-subproblem is the sum of a nonsmooth and a 
smooth term, the first-order optimality condition can be expressed as

for all � ∈ Y , where �k is the gradient with respect to � , evaluated at (�k+1, �k+1) , of 
the smooth term:

Here �̃
k
 is defined in (3.18). Substituting �k into (3.25) gives

for all � ∈ Y.

�k = − A�
[
�k − �

(
A�k + B�k − �

)]

= − A�
[
�k − �

(
A�k+1 + B�k − �

)]
− �A�A

(
�k+1 − �k

)

= − A��̃
k
− �A�A

(
�k+1 − �k

)
.

(� − �)�Mk(� − �) =
1

2

�
‖� − �‖2

Mk
− ‖� − �‖2

Mk
+ ‖� − �‖2

Mk

�

1

2

[‖‖‖�
k+1 − �k

‖‖‖
2

Mk

−
‖‖‖� − �k

‖‖‖
2

Mk

+
‖‖‖�

k+1 − �
‖‖‖
2

Mk

]
=
(
�k+1 − �k

)�
Mk

(
�k+1 − �

)
.

(3.23)F(�) − F(�̃k) +
�
� − �̃k,J(�̃k)

�
≥ ⟨� − �̃k,Qk(�

k − �k+1)⟩ + � k

(3.24)�̃k ∶=

⎛⎜⎜⎝

�̃k

�̃k

�̃
k

⎞⎟⎟⎠
∶=

⎛⎜⎜⎝

�k+1

�k+1

�̃
k

⎞⎟⎟⎠
, Qk =

⎡⎢⎢⎣

Dk

�B�B
1

s�
I

⎤⎥⎥⎦
.

(3.25)g(�) − g(�k+1) +
⟨
� − �k+1, �k

⟩
≥ 0

�k = − B��k + �B�
(
A�k+1 + B�k+1 − �

)

= − B�
[
�k − �

(
A�k+1 + B�k − �

)
− �B

(
�k+1 − �k

)]

= − B��̃
k
+ �B�B

(
�k+1 − �k

)
.

(3.26)g(�) − g(�k+1) −
�
� − �k+1,B��̃

k
�
≥ �⟨�k+1 − �,B�B(�k+1 − �k)⟩
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The update formula for �k+1 yields the relation

Take the inner product of the above equality with � − �̃
k
 to obtain

Adding (3.17), (3.26), and (3.27) yields (3.23). 	�  ◻

For the convergence analysis, we need to further analyze the right side of (3.23).

Corollary 3.4  If �k ∈ (0, 1∕�) , then the iterates of AS-ADMM satisfy the following 
relation:

for any � ∈ Ω , where � k is defined in (3.19), Qk is given by (3.24) and

Proof  The identity

with the choices � = � , � = �̃k , � = �k , and � = �k+1 gives

The update formula for �k+1 , together with the definition of �̃
k
 in (3.18), yield the 

relation

Hence, we have

A�k+1 + B�k+1 − � =
�k − �k+1

s�
.

(3.27)⟨� − �̃
k
,A�k+1 + B�k+1 − �⟩ = 1

s�
⟨� − �̃

k
,�k − �k+1⟩.

(3.28)
F(�) − F(�̃k) + (� − �̃k)�J(�)

≥
1

2

{‖‖‖� − �k+1‖‖‖
2

Qk

−
‖‖‖� − �k‖‖‖

2

Qk

+
‖‖‖�

k − �̃k‖‖‖
2

Gk

}
+ � k,

(3.29)Gk =

⎡⎢⎢⎣

Dk

(1 − s)�B�B (s − 1)B�

(s − 1)B
2−s

�
I

⎤⎥⎥⎦
.

2(� − �)�Qk(� − �) = ‖� − �‖2
Qk

− ‖� − �‖2
Qk

+ ‖� − �‖2
Qk

− ‖� − �‖2
Qk

(3.30)

⟨� − �̃k,Qk(�
k − �k+1)⟩

=
1

2

����� − �k+1���
2

Qk

−
���� − �k���

2

Qk

+
����

k − �̃k���
2

Qk

−
����

k+1 − �̃k���
2

Qk

�
.

(3.31)�k+1 − �k = s�B(�k − �k+1) − s(�k − �̃
k
).

�k+1 − �̃
k
=�k+1 − �k + �k − �̃

k

=s�B(�k − �k+1) + (1 − s)(�k − �̃
k
).
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Since the only nonzero component of �k+1 − �̃k is the �k+1 − �̃
k
 component, we 

have

With this substitution, it follows that

Combine this identity with (3.30), Lemma 3.3, and the skew symmetry of J  to com-
plete the proof. 	�  ◻

Comparing (2.3) with (3.28), the convergence of AS-ADMM can be analyzed 
relatively easily if the matrix Gk given by (3.29) is positive semidefinite, which 
ensures that ‖‖�k − �̃k‖‖2Gk

≥ 0 . However, Gk is not always positive semidefinite 
when s ∈ (0, (1 +

√
5)∕2] . Consequently, the convergence analysis requires the 

following lower bound for ‖‖�k − �̃k‖‖2Gk
.

Lemma 3.5  The iterates of AS-ADMM satisfy

where Gk and Dk are defined in (3.29) and (1.6), respectively.

Proof  By the definition of Gk in (3.29) and direct calculation, we have

Since �̃
k
− �k = −�(A�k+1 + B�k+1 − �) + �B(�k+1 − �k) , it follows that

Choosing � = �k in the first-order optimality condition (3.25), we have

‖‖‖�
k+1 − �̃k‖‖‖

2

Qk

=
1

s�

‖‖‖‖s�B(�
k − �k+1) + (1 − s)(�k − �̃

k
)
‖‖‖‖
2

.

‖‖‖�
k − �̃k‖‖‖

2

Qk

−
‖‖‖�

k+1 − �̃k‖‖‖
2

Qk

=
‖‖‖�

k − �̃k‖‖‖
2

Gk

.

(3.32)

‖‖‖�
k − �̃k‖‖‖

2

Gk

≥(2 − s)�
‖‖‖A�

k+1 + B�k+1 − �
‖‖‖
2

+
‖‖‖�

k − �k+1
‖‖‖
2

Dk

− (1 − s)2�
‖‖‖A�

k + B�k − �
‖‖‖
2

,

1

�

‖‖‖�
k − �̃k‖‖‖

2

Gk

=
1

�

‖‖‖�
k − �k+1

‖‖‖
2

Dk

+ (1 − s)
‖‖‖B

(
�k − �k+1

)‖‖‖
2

+
2(s − 1)

�

(
�k − �̃

k
)�

B
(
�k − �k+1

)
+

2 − s

�2

‖‖‖‖�
k − �̃

k‖‖‖‖
2

.

(3.33)

1

�

‖‖‖�
k − �̃k‖‖‖

2

Gk

=
1

�

‖‖‖�
k − �k+1

‖‖‖
2

Dk

+ (2 − s)
‖‖‖A�

k+1 + B�k+1 − �
‖‖‖
2

+

‖‖‖B
(
�k − �k+1

)‖‖‖
2

+ 2
(
A�k+1 + B�k+1 − �

)�
B
(
�k − �k+1

)
.

g(�k) − g(�k+1) +
⟨
B
(
�k − �k+1

)
,−�k + �

(
A�k+1 + B�k+1 − �

)⟩
≥ 0.
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Similarly, choosing � = �k+1 in the first-order optimality condition (3.25) at the 
(k − 1)-th iteration, we have

Adding these two inequalities and substituting �k = �k−1 − s�
(
A�k + B�k − �

)
 , we 

have

where the last inequality comes from the relation ��� ≥ −
1

2

�
c‖�‖2 + 1

c
‖�‖2

�
 for any 

c > 0 . Inserting this lower bound for the last term in (3.33) yields (3.32). 	�  ◻

4 � Convergence analysis

In this section, we analyze the convergence properties of AS-ADMM. The fol-
lowing theorem explores how closely an ergodic average of the iterates satisfies 
the first-order optimality condition (2.3).

Theorem  4.1  Suppose that for some integers � ≥ 0 and T > 0 and for all 
k ∈ [�, � + T] , the following conditions are satisfied: 

	(A1)	Dk ⪰ Dk+1 ⪰ � and �
�‖�t‖2

H
−1

�
≤ �2 for some 𝜎 > 0 , independent of t and the 

iteration number k, where �t is defined in (3.4).
	(A2)	�k ∈ (0, 1∕(2�)] , where 𝜈 > 0 is the Lipschitz constant given in (a3), and the 

sequence {�kMk(Mk + 1)} is nondecreasing.

Then for every � ∈ Ω, we have

where

g(�k+1) − g(�k) +
⟨
B
(
�k+1 − �k

)
,−�k−1 + �

(
A�k + B�k − �

)⟩
≥ 0.

(
A�k+1 + B�k+1 − �

)�
B
(
�k − �k+1

)

≥ (1 − s)
(
A�k + B�k − �

)�
B
(
�k − �k+1

)

≥ −
1

2

(
(1 − s)2

‖‖‖A�
k + B�k − �

‖‖‖
2

+
‖‖‖B

(
�k − �k+1

)‖‖‖
2
)
,

(4.1)

�
�
F(�T ) − F(�) + (�T − �)�J(�)

�
≤

1

2(1 + T)

�
�2

�+T�
k=�

�kMk

+ ‖� − ��‖2
Q�

+ �(1 − s)2‖A�� + B�� − �‖2 + 4

M�(M� + 1)��
‖� − ��‖2

H

�
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Proof  Since s ∈ (0, (1 +
√
5)∕2] and 𝛽 > 0 in AS-ADMM, we have

The inequality (3.32) can be rearranged into the form

By (A1) and the fact that s > 0 , it follows that Qk in (3.24) satisfies Qk ⪰ Qk+1 ⪰ � . 
Substituting (4.34.3) into (3.28) and utilizing the relation Qk ⪰ Qk+1 , we have

where � k is defined in (3.19).
Sum the inequality (4.4) over k between � and � + T  . Notice that the sum associ-

ated with the first two bracketed terms are telescoping series while the sum associ-
ated with the third bracketed expression is negative and can be neglected. Thus by 
the definition of �T in (4.2), we obtain

It further follows from the convexity of F that

Dividing (4.5) by T + 1 and utilizing (4.6), we obtain

(4.2)�T ∶=
1

1 + T

�+T∑
k=�

�̃k.

�1 ∶= �((2 − s) − (1 − s)2) ≥ 0 and �2 ∶= �(1 − s)2 ≥ 0.

(4.3)

‖‖‖�
k − �̃k‖‖‖

2

Gk

≥
‖‖‖�

k − �k+1
‖‖‖
2

Dk

+ �1
‖‖‖A�

k+1 + B�k+1 − �
‖‖‖
2

+ �2

(‖‖‖A�
k+1 + B�k+1 − �

‖‖‖
2

−
‖‖‖A�

k + B�k − �
‖‖‖
2
)
.

(4.4)

F(�̃k) − F(�) + (�̃k − �)�J(�)

≤
1

2

{‖‖‖� − �k‖‖‖
2

Qk

−
‖‖‖� − �k+1‖‖‖

2

Qk+1

}

+
�2
2

{‖‖‖A�
k + B�k − �

‖‖‖
2

−
‖‖‖A�

k+1 + B�k+1 − �
‖‖‖
2
}

−
1

2

{‖‖‖�
k − �k+1

‖‖‖
2

Dk

+ �1
‖‖‖A�

k+1 + B�k+1 − �
‖‖‖
2
}

− � k,

(4.5)

�+T�
k=�

F(�̃k) − (1 + T)
�
F(�) +

�
�T − �

��
J(�)

�

≤
1

2

�
‖� − ��‖2

Q�
+ �2‖A�� + B�� − �‖2

�
−

�+T�
k=�

� k.

(4.6)F(�T ) ≤
1

1 + T

�+T∑
k=�

F(�̃k).
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Let us now focus on the � k summation in (4.7). By assumption (A2), the sequence {
Mk(Mk + 1)�k

}
 is nondecreasing for k ∈ [�, � + T] ; hence, by the telescoping 

nature of the sum, we have

For �t defined in (3.4), we have

Since the random variable �t ∈ {1, 2,… ,N} is chosen with uniform probability and 
�[�t] = � , it follows that �[�t] = � . Also, since �t only depends on the index �t while 
�̆t depends on �t−1 , �t−2 , … , we have

By (A1), we have �(‖�t‖2
H

−1
) ≤ �2 . Since Mk ≥ 1 , it follows that

Combining these bounds for the terms in � k defined in (3.19) with the condition 
�k ≤ 1∕(2�) in (A2) yields

To complete the proof, apply the expectation operator to (4.7) and substitute this 
bound for the � k term. 	�  ◻

Analogous to the definition (4.2), we define

Theorem 4.1 yields a convergence result for AS-ADMM when we make the follow-
ing choice for �k and Mk in (4.1):

(4.7)

F(�T ) − F(�) + (�T − �)�J(�)

≤
1

1 + T

�
1

2

�
‖� − ��‖2

Q�
+ �2‖A�� + B�� − �‖2 − 2

�+T�
k=�

� k

��
.

(4.8)

𝜅+T�
k=𝜅

2

Mk(Mk + 1)𝜂k

�‖� − �̆k‖2
H
− ‖� − �̆k+1‖2

H

�

≤

𝜅+T�
k=𝜅

�
2‖� − �̆k‖2

H

Mk(Mk + 1)𝜂k
−

2‖� − �̆k+1‖2
H

Mk+1(Mk+1 + 1)𝜂k+1

�
≤

2‖� − �𝜅‖2
H

M𝜅(M𝜅 + 1)𝜂𝜅
.

�t = ∇f (�̂t) − �t = ∇f (�̂t) − ∇f�t (�̂t) − �t.

�
�⟨�t, �̆t − �⟩� = �.

�

�
Mk�
t=1

t2‖�t‖2H−1

�
≤

�2Mk(Mk + 1)(2Mk + 1)

6
≤ M2

k
(Mk + 1)

�
�2

2

�
.

−�

�
�+T�
k=�

� k

�
≤

2‖� − ��‖2
H

M�(M� + 1)��
+

�2

2

�+T�
k=�

�kMk.

(4.9)�T =
1

1 + T

�+T∑
k=�

�̃
k
, �T =

1

1 + T

�+T∑
k=�

�̃k and �T =
1

1 + T

�+T∑
k=�

�̃k.
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where c1, c2, c3 > 0 and � ≥ 1 are constants, and M > 0 is a given integer. 
Choose k large enough so that Mk = ⌈c3k�⌉ . As k tends to infinity, Mk tends 
to infinity and �k tends to zero. Choose k larger if necessary to ensure that 
�k = c1∕(Mk(Mk + 1)) ≤ 1∕(2�) , where � is the Lipschitz constant in (A2). Since 
�kMk(Mk + 1) = c1 , a constant, and �k ∈ (0, 1∕2�] for k ≥ � , condition (A2) of Theo-
rem 4.1 is satisfied for this choice of k.

Theorem 4.2  If (A1) of Theorem 4.1 holds for all k and the parameters �k and Mk 
are chosen according to (4.10), then for �∗ ∈ W

∗ , we have

where E�(T) = O(1∕T) for 𝜚 > 1 and E�(T) = O(T−1 log T) for � = 1.

Proof  Suppose that � is chosen by the procedure explained beneath (4.10), which 
ensures that condition (A2) of Theorem 4.1 is satisfied for all k ≥ � . By assumption, 
(A1) holds. Hence, the conclusion (4.1) of Theorem 4.1 holds.

First, let us analyze the left side of (4.1). By the definition of J  (see (2.1)), it fol-
lows that

For any �∗ = (�∗, �∗,�∗) ∈ W
∗ , let us choose � = (�∗, �∗,�T ) , where �T = �∗ + �T 

and �T is a unit vector chosen so that

Note that �T and �T are stochastic variables. In equations such as (4.12) and (4.13), 
the vectors �T and �T represent a specific realization of the stochastic vectors. For 
each possible realization of �T and �T , �T should be chosen so that (4.13) holds. Thus 
the choice for �T depends on the realization of �T and �T . Since A�∗ + B�∗ = � , the 
choice � = (�∗, �∗,�T ) in (4.12) yields

Since F(�) = F(�∗) when � = (�∗, �∗,�T ) , (4.14) yields

By the variational inequality (2.3) with � = �T , we have

(4.10)�k = min

�
c1

Mk(Mk + 1)
, c2

�
and Mk = max

�⌈c3k�⌉,M
�
,

(4.11)
|||�
[
F(�T )

]
− F(�∗)

||| = E�(T) = �
[‖‖A�T + B�T − �‖‖

]
,

(4.12)(�T − �)�J(�) = ��

T
(A� + B� − �) − ��

(
A�T + B�T − �

)
.

(4.13)(�T )
�
�
A�T + B�T − �

�
= −‖A�T + B�T − �‖.

(4.14)(�T − �)�J(�) = −‖A�T + B�T − �‖ − (�∗)�(A�T + B�T − �).

(4.15)
F(�T ) − F(�) + (�T − �)�J(�)

= F(�T ) − F(�∗) − (�∗)�(A�T + B�T − �) + ‖A�T + B�T − �‖.
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Use this inequality in (4.15) to obtain the lower bound

for � = (�∗, �∗,�T ).
Next, let us analyze the right side of (4.1) when � = (�∗, �∗,�T ) . By the choice 

(4.10) for �k and Mk , we see that

This sum is O(1) if 𝜚 > 1 , while it is O(log T) if � = 1 . Since � was chosen so that 
��M�(M� + 1) = c1 , it follows that the other terms in brackets on the right side of 
(4.1) are all O(1) . Consequently, we have

We combine this upper bound E�(T) with the lower bound (4.17) and take expecta-
tion to obtain

which establishes the right side of (4.11).
The optimality condition (4.16) implies that

Again, take expectation and utilize (4.18) to obtain

Similar to our observation above, the right side of (4.1) is bounded by E�(T) when 
� = �∗:

Since (�T − �∗)�J(�∗) = −(�∗)�
[
A�T + B�T − �

]
 , it follows that

where the last equality is by (4.18). Combine this with (4.19) to obtain the left side 
of (4.11), which completes the proof. 	�  ◻

We now have the following remarks.

(4.16)
F(�T ) − F(�∗) + (�T − �∗)�J(�∗)

= F(�T ) − F(�∗) − (�∗)�
[
A�T + B�T − �

]
≥ 0.

(4.17)F(�T ) − F(�) + (�T − �)�J(�) ≥ ‖A�T + B�T − �‖

�+T∑
k=�

�kMk ≤

�+T∑
k=�

c1∕(1 + c3k
�).

�
[
F(�T ) − F(�) + (�T − �)�J(�)

]
= E�(T).

(4.18)�
�‖A�T + B�T − �‖� = E�(T),

F(�T ) − F(�∗) ≥ −‖�∗‖ ‖A�T + B�T − �‖.

(4.19)�
[
F(�T ) − F(�∗)

]
≥ −E�(T).

(4.20)�
[
F(�T ) − F(�∗) + (�T − �∗)�J(�∗)

]
≤ E�(T).

�
[
F(�T ) − F(�∗)

]
≤ E�(T) + �

[
(�∗)�

[
A�T + B�T − �

]]
= E�(T),
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Remark 4.1  The objective error and the constraint violation converge to zero in 
expectation due to (4.11); however, this does not imply the convergence or bounded-
ness of the ergodic iterates. If there exists c > 0 such that Dk ⪰ c� , then the iterates 
(�k, �k,�k) are bounded in expectation, and under a strong convexity assumption, the 
ergodic iterates converge in expectation (see Appendix).

Remark 4.2  In AS-ADMM, it was required that Dk = Mk − �A�A ⪰ � , however, in 
Theorem 4.1, the proof only requires that ‖‖�k+1 − �k‖‖2Dk

≥ 0 so that the third brack-
eted expression in (4.4) can be dropped while preserving the inequality. Hence, for 
numerical efficiency, at any iteration k, we could set Mk = �k� and then adjust �k 
based on an underestimate ��k

2
∕�k

1
 for the largest eigenvalue of �A�A , where

In particular, given parameters �0 and 𝜌min > 0 , and 𝜂 > 1 , we multiply �min by � in 
any iteration where 𝜌k−1 < 𝛽𝛿k

2
∕𝛿k

1
 , and in each iteration, we set

The increase in �min can only happen a finite number of times since �k−1 ≥ ��k
2
∕�k

1
 

whenever �k−1 ≥ �‖A�A‖ ; in fact, the increase in �min can happen at most 
⌈log� �‖A�A‖

�0
⌉ times. Hence, for k large enough, �k , Mk , and Dk are all unchanged, 

and ‖‖�k+1 − �k‖‖2Dk
 ≥ 0 . Related techniques were first used in [8] in the context of a 

line search.

Remark 4.3  Theorem 4.1 holds under the assumption that 
{
�kMk(Mk + 1)

}
 is non-

decreasing. We now point out that Theorem 4.1 can be reformulated so as to hold 
when 

{
�kMk(Mk + 1)

}
 is nonincreasing if X  is a bounded set. Let NX denote the 

diameter of X :

If NX is finite and 
{
�kMk(Mk + 1)

}
 is nonincreasing for k ∈ [�, � + T] , then the term 

(4.8) in the proof of Theorem 4.1 has the following bound: For any � ∈ X  , we have

�k
1
=
‖‖‖�

k − �k−1
‖‖‖
2

and �k
2
=
‖‖‖A(�

k − �k−1)
‖‖‖
2

.

�k = max{�min, ��
k
2
∕�k

1
}.

(4.21)NX = sup{‖�1 − �2‖H ∶ �1, �2 ∈ X}.
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By using (4.22), a bound similar to (4.1) can be established.

Remark 4.4  If N = 1 and �t = � , then AS-ADMM is a deterministic ADMM with 
multiple accelerated gradient steps to solve the �-subproblem inexactly, and the 
expectation operator can be removed from (4.11). If additional assumptions hold, 
such as s ∈ (0, (1 +

√
5)∕2) (the open interval), Dk ⪰ c� for some c > 0 , and B has 

full column rank, then the iterates �k are uniformly bounded and convergent to some 
�∗ ∈ W

∗.

5 � Incremental sampling of stochastic gradient with variance 
reduction

In this section, we discuss AS-ADMM algorithm with incremental sampling of the 
stochastic gradient. These techniques can potentially reduce the number of stochastic 
gradient steps and can be beneficial when the subproblems for computing the stochastic 
gradient step is expensive. Suppose that at the t-th inner iteration of subroutine ���� in 
the k-th outer iteration of AS-ADMM, when calculating the stochastic gradient of func-
tion f, we randomly select an index sample set

with uniform probability. We define

for some choice of �k ∈ Ω . Since the elements of Ut are chosen with uniform prob-
ability, �

[
�t
]
= � . Also, we define

(4.22)

𝜅+T�
k=𝜅

2

Mk(Mk + 1)𝜂k

�‖� − �̆k‖2
H
− ‖� − �̆k+1‖2

H

�

=
2

M𝜅(M𝜅 + 1)𝜂𝜅
‖� − �𝜅‖2

H
−

2

MT (MT + 1)𝜂T
‖� − �̆T+1‖2

H

−

𝜅+T−1�
k=𝜅

�
2

Mk(Mk + 1)𝜂k
−

2

Mk+1(Mk+1 + 1)𝜂k+1

�
‖� − �̆k+1‖2

H

≤
2

M𝜅(M𝜅 + 1)𝜂𝜅
N

2
X
−

𝜅+T−1�
k=𝜅

�
2

Mk(Mk + 1)𝜂k
−

2

Mk+1(Mk+1 + 1)𝜂k+1

�
N

2
X

=
2

MT (MT + 1)𝜂T
N

2
X
.

Ut ⊂ {1, 2,⋯ ,N} of size |Ut| = mk ≤ N

�̂t =
1

mk

∑
i∈Ut

∇fi(�̂t) and �t = ∇f (�
k
) −

1

mk

∑
i∈Ut

∇fi(�
k
)

(5.1)�t = �̂t + �t =
1

mk

∑
i∈Ut

[
∇fi(�̂t) − ∇fi(�

k
)
]
+ ∇f (�

k
),
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and �t = ∇f (�̂t) − �t . Again, since Ut is chosen with uniform probability, we have 
�[�t] = � . Moreover, if the diameter N� of X  , defined in (4.21), is finite, then the 
variance of �t has the following bound:

where the second equality follows from [12, Page 183], ��[⋅] is taken with respect to 
a random drawing of � ∈ {1, 2,… ,N} with uniform probability, and � is the Lip-
schitz constant for the fj given in (a3). Consequently, �[‖�t‖2

H
−1
] ≤ �2 with 

� = �NX∕
√
mk.

On the other hand, if we obtain information during the computation by choosing 
�
k such that ‖�k − �̂t‖ is small, then we see from (5.2) that the variance of �t could be 

reduced significantly. Note that the full gradient ∇f (�k) is only calculated in the outer 
iteration. In our numerical experiments, we choose �k to be the ergodic mean of the 
iterates at certain iterations. Furthermore, under the conditions of Theorem 4.1, we can 
show that

where �2 = �(1 − s)2.
Suppose we choose the parameters

where M ≥ 1 is an integer and c > 0 and � ≥ 1 are real scalars. In the case that the 
total data size N is large, with mk < N , we can deduce from (5.3) that

(5.2)

�

�
‖�t‖2H−1

�
=�

⎡
⎢⎢⎣

������
1

mk

�
i∈Ut

�
∇fi(�̂t) − ∇fi(�

k
)
�
+ ∇f (�

k
) − ∇f (�̂t)

������

2

H
−1

⎤
⎥⎥⎦

=
N − mk

mk(N − 1)
��

����∇f�(�
k
) − ∇f�(�̂t) − [∇f (�

k
) − ∇f (�̂t)]

���
2

H
−1

�

=
N − mk

mk(N − 1)

�
��

����∇f�(�
k
) − ∇f�(�̂t)

���
2

H
−1

�
−
���∇f (�

k
) − ∇f (�̂t)

���
2

H
−1

�

≤
1

mk

��

����∇f�(�
k
) − ∇f�(�̂t)

���
2

H
−1

�
=

1

mkN

N�
j=1

���∇fj(�
k
) − ∇fj(�̂t)

���
2

H
−1

≤
1

mkN

N�
j=1

�2
����

k
− �̂t

���
2

H
=

�2

mk

����
k
− �̂t

���
2

H
≤

�2N2
X

mk

,

(5.3)

�
�
F(�T ) − F(�) + (�T − �)�J(�)

�
≤

1

2(1 + T)

�
(�NX)

2

�+T�
k=�

�kMk

mk

+ ‖� − ��‖2
Q
+ �2‖A�� + B�� − �‖2 + 4

M�(M� + 1)��
‖� − ��‖2

H

�
,

(5.4)�k = � ∈
�
0,

1

2�

�
, Mk = M and mk = min

�⌈c(1 + k)�⌉,N�,
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Hence, the convergence rate with the incremental sampling of the stochastic gradi-
ent will be the same as the rate (4.11) of AS-ADMM with parameter setting (4.10).

In addition, it can be observed that with the parameter settings (5.4), the total num-
ber of sample gradients used in the inner iteration when N is large and mk < N is given 
by

which is on the same order as that of AS-ADMM with parameter settings (4.10). 
However, the stepsize parameter �k in (5.4) can be larger than that in (4.10), and the 
total number of stochastic gradient steps performed in AS-ADMM is

which can be significantly smaller than the total number of stochastic gradient steps 

O

�
T∑

k=0

k�

�
 performed by AS-ADMM with parameter settings (4.10); this would 

greatly reduce the computational cost in the case that the subproblem for calculating 
the stochastic gradient step is expensive.

6 � Linearized AS‑ADMM

When B is a relatively complicated matrix, a closed-form solution of the �-subprob-
lem may not exist, even when g is simple. A common approach, in this case, is to 
modify the �-subproblem by linearizing its quadratic penalty term so that a closed-
form solution may exist, similar to what is done in xsub for the �-subproblem. The 
corresponding proximal term is

where 𝜏 > 0 is large enough that �� ⪰ �B�B . This proximal term, when added to the 
penalty term in the �-subproblem, will annihilate the penalty term (�∕2)‖B�‖2 . For 
𝜏 > 0 , the �-subproblem reduces to the following proximal mapping:

where �k = �k − B�[�(A�k+1 + B�k − �) − �k]∕� . Note that the assumption (a2) is 
not required in this case since strong convexity of the y-subproblem implies a unique 
global solution. The complexity analysis when the �-subproblem is linearized is 

(5.5)�
[
F(�T ) − F(�) + (�T − �)�J(�)

]
= O

(
1

T

(
1 +

T∑
k=0

1

(1 + k)�

))
.

T∑
k=0

Mkmk = O

(
T∑

k=0

(1 + k)�

)
,

T∑
k=0

Mk = MT ,

1

2

‖‖‖� − �k
‖‖‖
2

��−�B�B
,

�k+1 = ����g,�(�
k) ∶= argmin

�∈Y

�
g(�) + (�∕2)‖� − �k‖2�,



	 J. Bai et al.

1 3

the same as that of the original AS-ADMM given in Theorem  4.2 for appropri-
ate choices of the parameters. It may be possible to relax the constraint �� ⪰ �B�B 
using ideas from [7, 33].

7 � Numerical experiments

This section provides numerical experiments to investigate the performance of 
AS-ADMM.

7.1 � Test problem and parameter settings

Given a number of training samples {(�j, bj)}Nj=1 where �j ∈ ℝ
l and bj ∈ {−1, 1} , we 

solve the following generalized lasso problem (called the graph-guided fused lasso 
model):

where fj(�) = log
(
1 + exp(−bi�

�

i
�)
)
 denotes the logistic loss function on the fea-

ture-label pair (�j, bj) , N is the data size (usually large), 𝜇 > 0 is a given regulariza-
tion parameter, and A = � or A = [�;�] , where � is obtained from a sparse inverse 
covariance estimation given in [13]. Although the generalized lasso problem is used 
to compare the ADMM algorithms, this specific problem is potentially solved more 
efficiently using a stochastic primal-dual algorithm such as the one developed in [5].

By introducing an auxiliary variable � , the above problem can be reduced to a 
special case of problem (1.1):

We use AS-ADMM to solve (7.1); the closed-form solutions of the subproblems are

Here, Shrink(⋅, ⋅) denotes the so-called soft shrinkage operator, which can be evalu-
ated using the built-in MATLAB function “wthresh”.

The datasets of Table 1 and the Lipschitz constants of f are taken from the LIB-
SVM website. The parameter settings used in AS-ADMM are as follows. The step-
size s is taken as s = 1.618 (approximately its largest value), the penalty param-
eter is � = 0.04 , and the values of �k and Mk are given by (4.10) with c1 = 1∕� , 
c2 = 1∕(2�) , c3 = 0.01 , � = 1.1 , and M = 200 . The choice for c2 ensures that the 
condition �k ∈ (0, 1∕2�] of Theorem 4.1 is satisfied from the start of the iterations, 
while c1 was chosen so that it scaled in the same way as c2 . A small value was used 

min
�

1

N

N�
j=1

fj(�) + �‖A�‖1,

(7.1)min
�,�

{F(�, �) =
1

N

N�
j=1

fj(�) + �‖�‖1 ∶ A� − � = �}.

(7.2)

{
�̆t+1 =

[
𝛾tH +Mk

]−1[
𝛾tH�̆t +Mk�

k − �t − �k
]
,

�k+1 = Shrink
(

𝜇

𝛽
,A�k+1 −

�k

𝛽

)
.
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for c3 so that the growth of Mk would be delayed, and M = 200 since N is on the 
order of tens of thousands, and we wanted at least several hundred inner iterations. 
The matrices Mk are updated adaptively by the strategy in Remark  4.2 with ini-
tial values �0 = 1 , � = 1.1 , �min = 10−5 ; these were the same parameter values that 
seemed to work well in [19, 20] when we solved image reconstruction problems. 
In particular, � = 1.1 so that the lower bound �min for the largest eigenvalue would 
grow slowly. We set H ∶= �� with � = 2 × 10−5 . Thus both Mk and H are diagonal 
matrices. We set the regularization parameter � = 10−5 since ASVRG-ADMM set 
all the regularization parameters to 10−5 . We found that it is expensive and unneces-
sary to calculate one full gradient at each outer iteration for reducing the variance of 
the stochastic gradient. Hence, in numerical experiments, we only do the variance 
reduction when the number of inner iterations Mk is larger than the dimension of the 
�-variable. More precisely, at the k-th outer iteration of AS-ADMM, in the t-th inner 
iteration of subroutine ���� , we set

where �k is the ergodic mean of the �-iterates. All comparison algorithms 
are implemented in MATLAB R2018a (64-bit) with the same starting point 
(�0, �0,�0) = (�, �, �) , and all experiments are performed on a PC with Windows 10 
operating system, with an Intel i7-8700K CPU, and with 16GB RAM.

7.2 � Comparative experiments

In this section, we compare the following algorithms for solving problem (7.1) using 
the four data sets of Table 1:

•	 Accelerated stochastic ADMM, Algorithm 1.1 (AS-ADMM).
•	 Stochastic ADMM ( [28], STOC-ADMM).
•	 Accelerated variance reduced stochastic ADMM ( [26, Alg. 2], ASVRG-

ADMM).
•	 Accelerated Linearized ADMM with � = 1 ( [29, Alg. 2], ALP-ADMM).
•	 The classic ADMM [16] with f linearized (L-ADMM): 

�t =

{
∇f (�k−1) − ∇f𝜉t (�k−1), if Mk > n1,

�, otherwise ,

�k+1 = arg min
�∈Rl

⟨
∇f (�k), � − �k

⟩
+

�

2

‖‖‖� − �k
‖‖‖
2

+
�

2

‖‖‖A� − �k − �k∕�
‖‖‖
2

.

Table 1   Real-world datasets and 
regularization parameters used 
in the experiments

Dataset Number of samples Dimensionality �

a9a 32,561 123 1e-5
ijcnn1 49,990 23 1e-5
w8a 49,749 300 1e-5
mnist 11,791 784 1e-5



	 J. Bai et al.

1 3

We did not compare AS-ADMM with many other stochastic algorithms mentioned 
in this paper since their performance has been shown in the literature to be worse 
than that of ASVRG-ADMM. We compare AS-ADMM with STOC-ADMM [28] 
since STOC-ADMM only applies one stochastic gradient step to solve the �-sub-
problem in each outer iteration, while AS-ADMM applies a multiple number of 
accelerated gradient steps as determined by the theory, and ASVRG-ADMM pre-
forms a fixed number m = N∕200 inner iterations. Note that both ALP-ADMM and 
L-ADMM are deterministic ADMM-type algorithms using the full gradient.

In comparing algorithms, we plot Opt_err, the maximum of the relative objec-
tive error (Obj_err) and constraint violation (Equ_err), versus CPU time in seconds, 
where

Here F∗ is the approximate optimal objective function value obtained by running 
AS-ADMM for more than 10 minutes. Experimental results are averaged over 10 
successive runs for the three stochastic algorithms. For AS-ADMM, we plot the 
error associated with the iterates over the first 1/3 of the total CPU time budget, fol-
lowed by the error associated with the ergodic iterates over the last 2/3 of the budget. 
Note that the convergence theory describes the error for k ≥ � , where � is the itera-
tion number where the assumptions in the analysis are satisfied. An advantage of 
AS-ADMM is that the algorithm is completely adaptive, and the user does not need 
to provide Lipschitz constants or eigenvalue bounds; and in theory, convergence is 
guaranteed. Nonetheless, the initial iterates may be less reliable than later iterates.

Figures 1, 2 and 3 show results for the data sets a9a, ijcnn1 and w8a and 
A = � , while Figure 4 is the corresponding plot for the mnist data set with the 
more complicated choice A = [�;�] explained in subsect.  7.1. We can see that 
both AS-ADMM and ASVRG-ADMM perform better than STOC-ADMM [28], 
where only one stochastic gradient step is used in each iteration to solve the �

Obj _ err =
�F(�, �) − F∗�
max{F∗, 1}

and Equ _ err = ‖A� − �‖.
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Fig. 1   Comparison of Opt _ err vs CPU time for Problem (7.1) and the a9a dataset
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-subproblem. We also see that AS-ADMM and ASVRG-ADMM achieve compa-
rable performance on the lasso problems for the first three data sets, while AS-
ADMM performs significantly better than ASVRG-ADMM on the last data set, 
where the constraint is more complex. Note that Opt _ err for AS-ADMM has a 
big drop at around 1/3 of the CPU time budget, the point where we start to utilize 
the ergodic iterates when reporting the objective value. Observe that both sto-
chastic algorithms, AS-ADMM and ASVRG-ADMM, perform significantly better 
than the deterministic methods ALP-ADMM and L-ADMM, while the acceler-
ated nature of ALP-ADMM leads to much better performance than that of the 
classic L-ADMM.
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Fig. 2   Comparison of Opt _ err vs CPU time for Problem (7.1) and the ijcnn1 dataset
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Fig. 3   Comparison of Opt _ err vs CPU time for Problem (7.1) and the w8a dataset
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8 � Conclusion

We have developed an accelerated stochastic ADMM for solving a type of regular-
ized empirical risk minimization problem arising in machine and statistical learning. 
We also discussed incremental sampling techniques, which are potentially benefi-
cial when the subproblems for computing the stochastic gradient step are expensive, 
and a variant of AS-ADMM that was achieved by linearizing the �-subproblem. The 
proposed algorithm AS-ADMM combines both the variance reduction technique 
and an accelerated gradient method for fast convergence. Using a unified variational 
analysis, the expected objective error and constraint violation for ergodic iterates are 
O(1∕k) or O(k−1 log k) , depending on the choice of parameters. Numerical experi-
ments on group lasso problems using well-established stochastic and deterministic 
ADMM algorithms show that AS-ADMM can be very effective for solving data 
mining and machine learning problems with large data sets. With stronger assump-
tions, bounds for the iterates in expectation, as well as linear convergence results, 
are established.

Appendix: Additional properties of the iterates

In the appendix, we derive additional properties of AS-ADMM which involve new 
assumptions that do not appear in the previous analysis.

Iteration bounds

When Dk ∶= Mk − �A�A is uniformly positive definite, the expectation of the (non-
ergodic) iterates �k = (�k, �k,�k) is uniformly bounded.

Proposition 9.1  If (A1) and (A2) in Theorem  4.1 are satisfied, the param-
eters �k and Mk are chosen according to (4.10) with 𝜚 > 1   and there exists 
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Fig. 4   Comparison of Opt _ err vs CPU time for Problem (7.1) and the mnist dataset
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c > 0 such that Dk ⪰ c� for every k, then �
�‖�k‖2� is bounded uniformly in k; 

moreover, if s ∈ (0, (1 +
√
5)∕2) , then �

�‖A�k + B�k − �‖2� tends to 0, while 
�
�‖A�k + B�k − �‖2� is uniformly bounded if s = (1 +

√
5)∕2.

Proof  Insert � = �∗ ∈ W
∗ in (4.4) and utilize (2.3) to obtain

where �k = ‖A�k + B�k − �‖2 , � k is defined in (3.19) with � = �∗ , 
�2 ∶= �(1 − s)2 ≥ 0 , and 𝜉1 ∶= 𝛽((2 − s) − (1 − s)2) > 0 if s ∈ (0, (1 +

√
5)∕2) . Let 

Ek be defined by

Since {Mk(Mk + 1)�k} is nondecreasing, it follows from (9.1) and the definition of � k 
that

As shown in the proof of Theorem 4.1, the expectation of the first term on the right 
side vanishes, while the expectation of the second term is bounded by �2�kMk . 
Hence, we have

We sum this inequality over k ∈ [�, j) to obtain

Since 𝜚 > 1 , it follows that �kMk is summable when (4.10) holds, and �
[
Ej

]
 is 

bounded, uniformly in j. Moreover, when s ∈ (0, (1 +
√
5)∕2) , the bound for the 

sum of �
[
�k
]
 over k ≥ � implies that �

[
�k
]
 tends to zero. If s = (1 +

√
5)∕2 , then 

𝜉2 > 0 and the uniform bound for �
[
Ej

]
 implies that �

[
�j
]
 is uniformly bounded. 	�  ◻

Convergence of ergodic iterates under strong convexity

We now show that an error bound such as (4.11) implies convergence of the ergodic 
iterates in expectation when strong convexity holds.

Proposition 9.2  Suppose (4.11) holds. If either f and g are strongly convex or f is 
strongly convex and the columns of B are linearly independent, then

(9.1)‖‖‖�
k+1 − �∗‖‖‖

2

Qk+1

−
‖‖‖�

k − �∗‖‖‖
2

Qk

≤ �2(�k − �k+1) − �1�k+1 − 2� k,

Ek =
‖‖‖�

k − �∗‖‖‖
2

Qk

+ 𝜉2𝛾k +
4

Mk(Mk + 1)𝜂k

‖‖‖�̆
k − �∗

‖‖‖
2

H
.

Ek+1 − Ek + 𝜉1𝛾k+1 ≤
4

Mk(Mk + 1)

� Mk�
t=1

t⟨�t, �̆t − �∗⟩ + 𝜂k
4(1 − 𝜂k𝜈)

Mk�
t=1

t2���t��2H−1

�
.

�
[
Ek+1 − Ek + �1�k+1

]
≤ �2�kMk.

�
[
Ej

]
+ �1

j∑
k=�+1

�
[
�k
]
≤ �

[
E�

]
+ �2

j−1∑
k=�

�kMk.
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where (�∗, �∗) is the unique solution of (1.1) and E�(T) is defined in Theorem 4.2.

Proof  If f is strongly convex with modulus � , then it follows from strong convexity, 
the first-order optimality conditions for a stationary point (�∗, �∗,�∗) , and the inclu-
sion �T ∈ X  that

If g is also strongly convex, with the same modulus � , then the same inequality 
holds, but with � replaced by � , A replaced by B, and gradient replaced by subgradi-
ent. Together, these inequalities yield

Taking expectations and utilizing (4.11) gives

On the other hand, if g is only convex, not strongly convex, then the term ‖�T − �∗‖2 
in this last inequality is lost. But if the columns of B were linearly independent, then 
the equation error can be manipulated as follows:

Thus we have

Hence, the bound for �
�‖�T − �∗‖2� from (9.2) and the independence of the columns 

in B imply again that �
�‖�T − �∗‖2� = E�(T) . 	�  ◻

Linear convergence of iterates under strong convexity

In this section, it is proved that AS-ADMM is linearly convergent when both f and 
g are strongly convex. The analysis requires a geometric growth rate for the inner 
iterations, similar to the geometric growth rate employed in [36] for the analysis of a 
much different ADMM. In detail, the linear convergence result needs the following 
assumptions: 

�
�‖�T − �∗‖2 + ‖�T − �∗‖2� = E�(T),

f (�T ) − f (�∗) ≥∇f (�∗)(�T − �∗) +
�

2
‖�T − �∗‖2

≥(�∗)�A(�T − �∗) +
�

2
‖�T − �∗‖2.

F(�T ) − F(�∗) ≥ (�∗)�
�
A�T + B�T − �

�
+

�

2

�‖�T − �∗‖2 + ‖�T − �∗‖2�.

(9.2)
�
�‖�T − �∗‖2 + ‖�T − �∗‖2� ≤ 2

�
�
�‖A�T + B�T − �‖�‖�∗‖ + E�(T)

=E�(T).

�
[‖‖A�T + B�T − �‖‖

]
=�

[‖‖A(�T − �∗) + B(�T − �∗)‖‖
]

≥�
[‖‖B(�T − �∗)‖‖

]
− �

[‖‖A(�T − �∗)‖‖
]
.

�
[‖‖B(�T − �∗)‖‖

]
≤ E�(T) + �

[‖‖A(�T − �∗)‖‖
]
.
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	(L1)	 f and g are strongly convex with modulus 𝛼 > 0 , and both f and g have Lipschitz 
continuous gradients, with Lipschitz constant �.

	(L2)	 The sets X = ℝ
n1 and Y = ℝ

n2.
	(L3)	 The stepsize s ∈ (0, (1 +

√
5)∕2) and for some c1 and c2 > 0 and for all k, we 

have 

 Moreover, �
�‖�t‖2

H
−1

�
≤ �2 for some 𝜎 > 0 , independent of t and the iteration 

number k, where �t is defined in (3.4).
	(L4)	 For some 𝜃 > 0 , we have 

Here M0 > 0 is an integer chosen large enough that 𝜂0 < 1∕(2𝜈) , where � is the Lip-
schitz constant given in (a3).

By (L4), we have: 

	(L4a)	Mk ≥ (1 + �)2kM0,
	(L4b)	Mk�k = (1 + �)−k,
	(L4c)	(‖�̆k‖2 + 1)∕[Mk(Mk + 1)𝜂k] ≤ (1 + 𝜃)−k∕M0,
	(L4d)	Mk(Mk + 1)�k is nondecreasing.

The condition (L4a) follows from the first equation in (L4) after erasing ‖�̆k‖2 and 
the ceiling operators, and replacing the equality by an inequality. The equation (L4b) 
is simply the definition of �k . After substituting for �k , we see that (L4c) is equiva-
lent to

Erasing the ceiling operation in (L4) and replacing the equality by an inequality 
gives

Replace Mk by Mk + 1 and use the lower bound Mk−1 ≥ (1 + �)2k−2M0 of (L4a) to 
obtain (9.3) which is equivalent to (L4c). To establish (L4d), we need to show that 
the sequence ak = Mk(Mk + 1)�k is nondecreasing, or equivalently, that ak+1 ≥ ak . 
By (L4b), this is equivalent to

Erasing the ceiling operator and the ‖�̆k‖2 in (L4), it follows that Mk+1 ≥ (1 + �)2Mk , 
which implies that

c1� ⪯ Dk+1 ⪯ Dk ∶= Mk − �A�A ⪯ c2�.

Mk = ⌈(1 + 𝜃)2Mk−1(‖�̆k‖2 + 1)⌉ and 𝜂k = (1 + 𝜃)−k∕Mk.

(9.3)
‖�̆k‖2 + 1

Mk + 1
≤

(1 + 𝜃)−2k

M0

.

‖�̆k‖2 + 1

Mk

≤
(1 + 𝜃)−2

Mk−1

.

(9.4)Mk+1 + 1 ≥ (1 + �)(Mk + 1).

Mk+1 + 1 ≥ (1 + �)2Mk + 1 = (1 + �)Mk + (� + �2)Mk + 1 ≥ (1 + �)Mk + 1 + �
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since Mk ≥ 1 . Hence, (9.4) holds and the sequence ak is nondecreasing.

Proposition 9.3  If (L1)–(L4) hold, then there exists c > 0 and 0 < 𝜏 < 1 such that

for all k ≥ 0 , where � denotes the projection of � onto �∗ , the set of all multipliers 
associated with the solution (�∗, �∗) of (1.1).

Proof  Throughout the proof, c denotes a generic positive constant, independent of 
k, which typically has different values in different equations. If �k

∶= (�∗, �∗,�
k
) , 

then by the strong convexity assumption and the first-order optimality conditions for 
(�∗, �∗) , we have

Hence, by (4.4) with � = �
k and �k = ‖A�k + B�k − �‖2 , we have

where � k is defined in (3.19) with � = �∗ , and �1, �2 ≥ 0 . Since ‖�k+1 − �
k+1‖ ≤ 

‖�k+1 − �
k‖ , it follows that

Add 0.5�1(�k − �k+1) to each side of (9.5) and combine with (9.6) to obtain

where Ek ∶= ‖�k − �
k‖2

Qk
+ (0.5�1 + �2)�k and 𝜉1 > 0 since s ∈ (0, (1 +

√
5)∕2) . 

The left side of this inequality is bounded from below by a positive multiple c of

Hence, the inequality can be rearranged to yield Ek+1 ≤ Ek − 2� k − cdk . We will 
show that |�[� k]| ≤ c(1 + �)−k , in which case, we have

Note that �
[
dk
]
 must approach zero. Otherwise, there exists 𝜖 > 0 and an infinite 

number of indices k where �
[
dk
]
≥ � . If this were to hold, then �

[
Ek

]
 is eventually 

negative, which is impossible.
For � = �∗ , (3.19) gives � k =

�
�‖�k − �∗‖2 + ‖�k − �∗‖2 + ‖�k − �

k‖2� ≤ c�k

F(�̃k) − F(�
k
) + (�̃k − �

k
)�J(�

k
) =F(�̃k) − F(�

k
) − (A�k+1 + B�k+1 − �)��

k

≥
�

2

�‖�k+1 − �∗‖2 + ‖�k+1 − �∗‖2�.

(9.5)
�
�‖�k+1 − �∗‖2 + ‖�k+1 − �∗‖2� ≤ ‖�k − �

k‖Qk
− ‖�k+1 − �

k‖Qk+1

+ �2(�k − �k+1) − c1‖�k+1 − �k‖2 − �1�k+1 − 2� k,

(9.6)‖�k+1 − �
k+1‖Qk+1

≤ ‖�k+1 − �
k‖Qk+1

.

�
�‖�k+1 − �∗‖2 + ‖�k+1 − �∗‖2� + c1‖�k+1 − �k‖2 + 0.5�1(�k + �k+1)

≤ Ek − Ek+1 − 2� k,

dk = ‖�k+1 − �∗‖2 + ‖�k+1 − �∗‖2 + ‖�k+1 − �k‖2 + �k + �k+1.

(9.7)�
[
Ek+1

]
≤ �

[
Ek

]
+ c(1 + �)−k − c�

[
dk
]
.
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where Γk = 2∕[Mk(Mk + 1)] . The first bracketed term in � k has the upper bound

which is bounded by c(1 + �)−k using (L4c). Also, by (L4b), we have Mk�k = 
(1 + �)−k . Taking the expectation of � k and utilizing the estimates obtained in Theo-
rem  4.1 for the last two terms in � k , we obtain a bound of the form |||�
[
� k
]||| ≤ c(1 + �)−k.

To complete the proof, we will show that

This is combined with the bound (9.7) to obtain for some r > 0,

Consequently, �
[
Ek

]
 converges to zero at linear convergence rate � where

To establish (9.8), first define e1 and e2 by

Also, define �k = argmin{�k(�) ∶ � ∈ X} , where �k is defined in (3.1). Since �k 
minimizes �k over X = ℝ

n1 , ∇�k(�
k
) = � , which implies that

Utilize this equality in the definition of e1 and exploit the Lipschitz continuity of ∇f  
to obtain

Inserting � = �
k and T = Mk in (3.22) gives

where Γk = 2∕[Mk(Mk + 1)] . The right side of (9.10) has the same expression � k 
that was analyzed previously, except that �∗ is now replaced by �k . By the previous 

Γk

𝜂k

�����
∗ − �̆k

���
2

H
−
����

∗ − �̆k+1
���
2

H

�
+ Γk

Mk�
t=1

t⟨�t, �̆t − �∗⟩ + Γk𝜂k
4(1 − 𝜂k𝜈)

T�
t=1

t2���t��2H−1 ,

2���∗ − �̆k��2H
𝜂kMk(Mk + 1)

≤
4
�‖�∗‖2

H
+ ‖�̆k‖2

H

�
𝜂kMk(Mk + 1)

,

(9.8)�
[
Ek+1

]
≤ c(�

[
dk
]
+ (1 + �)−k).

�
[
Ek+1

]
≤

1

1 + r
�
[
Ek

]
+ c(1 + �)−k.

1 > 𝜏 > max{1∕(1 + r), 1∕(1 + 𝜃)}.

e1(�,�) = ‖∇f (�) − A��‖ and e2(�,�) = ‖∇g(�) − B��‖.

∇f (�
k
) − A��k + �A�(A�k + B�k − �) +Mk(�

k
− �k) = �.

(9.9)e1(�
k+1,�k) ≤ c

�√
�k + ‖�k − �k‖ + ‖�k − �k+1‖

�
,

(9.10)

����
k+1 − �

k���
2

Mk

≤
2Γk

𝜂k

�����
k
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���
2

H
−
����

k
− �̆k+1

���
2

H

�

+ 2Γk

Mk�
t=1

t⟨�t, �̆t − �
k⟩ + 2Γk𝜂k

4(1 − 𝜂k𝜈)

T�
t=1

t2���t��2H−1 ,
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analysis, the last two terms on the right side of (9.10) are bounded by c(1 + �)−k in 
expectation. In the first term, observe that

Again, by the previous analysis, (Γk∕𝜂k)‖�̆k‖2H ≤ c(1 + 𝜃)−k due to (L4c). We will 
show that �

�‖�k‖2
H

�
 is uniformly bounded, which implies that (Γk∕�k)�

�‖�k‖2
H

�
≤ 

c(1 + �)−k . In this case, (L3) and (9.10) yield

Combine this with (9.9) to obtain

To obtain a bound for �
�‖�k‖2

H

�
 , we utilize strong convexity (L1) along with any 

� ∈ ℝ
n1 to obtain

Hence, by the Schwarz and triangle inequalities, we have

For � = �∗
f
 , the minimizer of f, we have ∇f (�∗

f
) = � and

Since ‖�k‖2 and ‖�k‖2 are uniformly bounded in expectation by Proposition 9.1, it 
follows that ‖�k‖2 is uniformly bounded in expectation.

Similar to the treatment of �k , the optimality condition for �k+1 , the solution of 
the �-subproblem in AS-ADMM, is

This identity is rearranged to give

The set of multipliers �∗ are those � ∈ ℝ
n that satisfy both of the equations 

A�� = ∇f (�∗) and B�� = ∇g(�∗) . Hence, �∗ is a particular solution plus any vector 

‖‖‖�
k
− �̆k

‖‖‖
2

H
≤ 2

(‖‖‖�
k‖‖‖

2

H
+
‖‖‖�̆

k‖‖‖
2

H

)
.

c1�

[‖‖‖�
k+1 − �

k‖‖‖
2
]
≤ �

[‖‖‖�
k+1 − �

k‖‖‖
2

Mk

]
≤ c(1 + �)−k.

(9.11)
�
�
e1(�

k+1,�k)2
�
≤c

�
�
�
�k + ‖�k − �k‖2� + (1 + �)−k

�

≤c
�
�
�
�k + ‖�k+1 − �k‖2� + (1 + �)−k

�
.

0 ≥ �k(�
k
) − �k(�) ≥ ∇�k(�)(�

k
− �) +

�
� + c1

2

�
‖�k − �‖2.

‖�k‖ − ‖�‖ ≤ ‖�k − �‖ ≤

�
2

� + c1

�
‖∇�k(�)‖ =

�
2

� + c1

�
‖∇f (�) + �k +Mk(� − �k)‖.

‖�k‖2 ≤ c
�
‖�k‖2 + ‖�k‖2 + ‖�∗

f
‖2
�
.

∇g(�k+1) − B��k + �B�(A�k+1 + B�k+1 − �) = �.

(9.12)
e2(�

k+1,�k) ≤ c
√
�k+1, which yields �

�
e2(�

k+1,�k)2
�
≤ c�

�
�k+1

�
.
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in the null space N  of the matrix [A B]� . The projection � onto �∗ has the property 
that � − � is orthogonal to N  , which implies the existence of a constant c such that

Since A�� = ∇f (�∗) and B�� = ∇g(�∗) , this bound can be rewritten

The following inequality is deduced from the triangle inequality, and the Lipschitz 
assumption for the gradient of f:

An analogous inequality holds for e2 . Hence, by (9.13),

where

Now insert � = �k+1 in (9.14), take expectation, and utilize the bounds (9.11) and 
(9.12) to obtain

Since

and

it follows that �
[
Ek+1

]
≤ c(�

[
dk
]
+ (1 + �)−k) , which completes the proof of (9.8). 	

� ◻

A careful analysis of the proof of Proposition 9.3 reveals that the strong con-
vexity assumption (L1) can be relaxed to the following: Both f and g have Lip-
schitz continuous gradients and any one of the following conditions hold: 

Case 1:	 Both f and g are strongly convex (current version of (L1)).
Case 2:	 f is strongly convex and B has full column rank.
Case 3:	 g is strongly convex and A has full column rank.

‖� − �‖2 ≤ c‖[A B]�(� − �)‖2 = c
�
‖A�(� − �)‖2 + ‖B�(� − �)‖2

�
.

(9.13)‖� − �‖2 ≤ c
�
e1(�

∗,�)2 + e2(�
∗,�)2

�
.

e1(�
∗,�)2 ≤2e1(�

k+1,�k)2 + 2
�
e1(�

∗,�) − e1(�
k+1,�k)

�2
≤c

�
e1(�

k+1,�k)2 + ‖�k+1 − �∗‖2 + ‖�k − �‖2�.

(9.14)‖� − �‖2 ≤ c�k+1,

�k+1 = e1(�
k+1,�k)2 + e2(�

k+1,�k)2 + ‖�k+1 − �∗‖2 + ‖�k+1 − �∗‖2 + ‖�k − �‖2.

�
�‖�k+1 − �

k+1‖2� ≤ c
�
�
�
dk
�
+ (1 + �)−k

�
.

‖�k+1 − �
k+1‖2

Qk+1
= ‖�k+1 − �∗‖2

Dk+1
+ �‖B(�k+1 − �∗)‖2 + ‖�k+1 − �

k+1‖2∕(s�)
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+ 0.5(�1 + �2)�k+1,
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