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What Do We Mean By Delayed Control Systems ?

These are doubly parameterized families of ODEs of the form

Y'(t) = F(t, Y(t), u(t, Y(t = 7)), 0(t), Y(t)ey. (1)
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What Do We Mean By Delayed Control Systems ?

These are doubly parameterized families of ODEs of the form
Y'(t) = F(t, Y(2),u(t. Y(¢ - 7)),0(), Y()eV. (1)

Y C R". We have freedom to choose the control function u.
The functions ¢ : [0,00) — D represent uncertainty. D C R™.

Y.(0) = Y(t +0).
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What Do We Mean By Delayed Control Systems ?

These are doubly parameterized families of ODEs of the form
Y'(t) = F(t, Y(2),u(t. Y(¢ - 7)),0(), Y()eV. (1)

Y C R". We have freedom to choose the control function u.
The functions ¢ : [0,00) — D represent uncertainty. D C R™.

Y:(0) = Y(t + 0). Specify u to get a singly parameterized family
Y/(t) - g(t7 Ye, 5(t))7 Y(t) €, (2)
where G(t, Yy, d) = F(t, Y(t), u(t, Y(t —7)),d).
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What Do We Mean By Delayed Control Systems ?

These are doubly parameterized families of ODEs of the form
Y'(t) = F(t, Y(2),u(t. Y(¢ - 7)),0(), Y()eV. (1)

Y C R". We have freedom to choose the control function u.
The functions ¢ : [0,00) — D represent uncertainty. D C R™.

Y:(0) = Y(t + 0). Specify u to get a singly parameterized family
Y/(t) - g(t7 Ye, 5(t))7 Y(t) €, (2)
where G(t, Yy, d) = F(t, Y(t), u(t, Y(t —7)),d).

Typically we construct v such that all trajectories of (2) for all
possible choices of ¢ satisfy some control objective.
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Input-to-state stability generalizes global asymptotic stability.
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What is One Possible Control Objective ?

Input-to-state stability generalizes global asymptotic stability.

Y'(t)=G(t, Y:), Y(t)e . (Y)

Y (8)] <71 (e 2] Yol -r1)) (UGAS)
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What is One Possible Control Objective ?

Input-to-state stability generalizes global asymptotic stability.
Y'(t) =G(t, Yr), Y(t) €. (¥)
1Y ()] < 71 (e 72(| Yaolj-r0) (UGAS)

Our ~;'s are 0 at 0, strictly increasing, and unbounded.
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What is One Possible Control Objective ?

Input-to-state stability generalizes global asymptotic stability.
Y'(t) =G(t, Ye), Y(t)e. (X)
Y ()] < (e 2(Yali=r0])) (UGAS)
Our ~;'s are 0 at 0, strictly increasing, and unbounded. v; € K.

Y'(t) =G(t, Ye, 0(t), Y(t)e. (Zpert)
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What is One Possible Control Objective ?

Input-to-state stability generalizes global asymptotic stability.
Y'(t) =G(t, Ye), Y(t)e. (X)
Y ()] < (e 2(Yali=r0])) (UGAS)
Our ~;'s are 0 at 0, strictly increasing, and unbounded. v; € K.
Y'(t) =G(t, Ye, 0(t), Y(t)e. (Zpert)
Y0 <7 (e 2 Yalra)) +72(10],4) (ISS)
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What is One Possible Control Objective ?

Input-to-state stability generalizes global asymptotic stability.
Y'(t) =G(t, Ye), Y(t)e. (X)
Y ()] < (e 2(Yali=r0])) (UGAS)
Our ~;'s are 0 at 0, strictly increasing, and unbounded. v; € K.
Y'(t) =G(t, Ye, 0(t), Y(t)e. (Zpert)
Y0 <7 (e 2 Yalra)) +72(10],4) (ISS)

Find 7;'s by building certain LKFs for Y’(t) = G(t, Y%, 0).
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How Do We Stabilize Systems Under Input Delays ?
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dynamics.
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How Do We Stabilize Systems Under Input Delays ?

Prediction :
m The control values are trajectories of a new component of the
dynamics.

m It typically allows arbitrarily long input delays but the control
law might not be explicit.
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Prediction:

m The control values are trajectories of a new component of the
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m It typically allows arbitrarily long input delays but the control
law might not be explicit.

m It may be difficult to accommodate input constraints, e.g.,
amplitude or control rate constraints.
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amplitude or control rate constraints.
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m First we render the undelayed system UGAS and build a LF
for the closed loop system.
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m The control values are trajectories of a new component of the
dynamics.

m It typically allows arbitrarily long input delays but the control
law might not be explicit.

m It may be difficult to accommodate input constraints, e.g.,
amplitude or control rate constraints.

Leveraging Undelayed Stabilizers:
m First we render the undelayed system UGAS and build a LF
for the closed loop system.

m Then we see how long an input delay can be introduced in the
controller without destroying the UGAS.
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How Do We Stabilize Systems Under Input Delays ?

Prediction:

m The control values are trajectories of a new component of the
dynamics.

m It typically allows arbitrarily long input delays but the control
law might not be explicit.

m It may be difficult to accommodate input constraints, e.g.,
amplitude or control rate constraints.

Leveraging Undelayed Stabilizers:

m First we render the undelayed system UGAS and build a LF
for the closed loop system.

m Then we see how long an input delay can be introduced in the
controller without destroying the UGAS.

m The stabilization analysis typically adds integral terms to the
LF to produce an LKF.
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What is a Lyapunov-Krasovskii Functional (LKF)?
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What is a Lyapunov-Krasovskii Functional (LKF)?

Definition: We call V*# an ISS-LKF for Y'(t) = G(t, Y, d(t))
provided there exist functions ; € K such that:

Michael Malisoff (LSU) and Frederic Mazenc (INRIA) Stabilization for Feedforward Systems with Delayed Feedbacks



What is a Lyapunov-Krasovskii Functional (LKF)?

Definition: We call V*# an ISS-LKF for Y'(t) = G(t, Y, d(t))
provided there exist functions ; € K such that:

1 (¢(0)]) < VE(t, ¢) < v2(|6l(-r0)
for all (t,¢) € [0,400) x C([—T,0],R")
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What is a Lyapunov-Krasovskii Functional (LKF)?

Definition: We call V*# an ISS-LKF for Y'(t) = G(t, Y, d(t))
provided there exist functions ; € K such that:
11(16(0)]) < V¥(t,6) < 72(||-r0))
for all (t,¢) € [0,400) x C([—7,0],R") and

& [VA(E Y] < —ya(VA(t, V1)) +7a(10(8)])
along all trajectories of the system
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What is a Lyapunov-Krasovskii Functional (LKF)?

Definition: We call V*# an ISS-LKF for Y'(t) = G(t, Y, d(t))
provided there exist functions ; € K such that:
(o)) < V(¢ ¢) < 72(I¢lj-r0)
for all (t,¢) € [0,400) x C([—7,0],R") and
& [VA(E Y] < —ya(VA(t, V1)) +7a(10(8)])
along all trajectories of the system

Example:
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What is a Lyapunov-Krasovskii Functional (LKF)?

Definition: We call V*# an ISS-LKF for Y'(t) = G(t, Y, d(t))
provided there exist functions ; € K such that:
(o)) < V(¢ ¢) < 72(I¢lj-r0)
for all (t,¢) € [0,400) x C([—7,0],R") and
& [VA(E Y] < —ya(VA(t, V1)) +7a(10(8)])
along all trajectories of the system

Example: The function V(Y) = |Y/|? is an ISS-LKF for
Y'(t) = =Y(t) + Y (t) + 6(t) for any D.
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What is a Lyapunov-Krasovskii Functional (LKF)?

Definition: We call V*# an ISS-LKF for Y'(t) = G(t, Y, d(t))
provided there exist functions ; € K such that:
(o)) < V(¢ ¢) < 72(I¢lj-r0)
for all (t,¢) € [0,400) x C([—7,0],R") and
& [VA(E Y] < —ya(VA(t, V1)) +7a(10(8)])
along all trajectories of the system

Example: The function V(Y) = |Y/|? is an ISS-LKF for
Y'(t) = —Y(t)+ 3 Y(t) + o(t) for any D. Fix 7 > 0.
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What is a Lyapunov-Krasovskii Functional (LKF)?

Definition: We call V*# an ISS-LKF for Y'(t) = G(t, Y, d(t))
provided there exist functions ; € K such that:

11(16(0)]) < V¥(t,6) < 72(||-r0))
for all (t,¢) € [0,400) x C([—7,0],R") and

& [VA(E Y] < —ya(VA(t, V1)) +7a(10(8)])
along all trajectories of the system

Example: The function V(Y) = |Y/|? is an ISS-LKF for
Y'(t) = —Y(t)+ 3 Y(t) + o(t) for any D. Fix 7 > 0.

(Yt)_ 4ft T ‘2d£+87 ft T |:f ’Y ‘2dr:| ds

is an ISS-LKF for Y/(t) = —Y(t) + 2 Y(t — 7) + 6(¢).
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Linear Feedforward Systems

Consider the set of all systems having the feedforward form

x = hi(z)+ h(2)v(t —T)
{2 = f(z2)+g(z)v(t—7). ©
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Consider the set of all systems having the feedforward form

x = hi(z)+ h(2)v(t —T)
{2 = f(z2)+g(z)v(t—7). ©

The state space is R” x RP.
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Linear Feedforward Systems

Consider the set of all systems having the feedforward form

x = hi(z)+ h(2)v(t —T)
{2 = f(z2)+g(z)v(t—7). ©

The state space is R” x RP. Linearizing (3) around period 7
reference trajectories produces a system of the form

{X(t) = C()z(t) + D(t)u(t — 7) (4)
z(t) = A(t)z(t) + B(t)u(t — 1),

where A, B, C, and D are C! matrix valued functions of period 7.
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Linear Feedforward Systems

Consider the set of all systems having the feedforward form

x = hi(z)+ h(2)v(t —T)
{2 = f(z2)+g(z)v(t—7). ©

The state space is R” x RP. Linearizing (3) around period 7
reference trajectories produces a system of the form

{X(t) = C()z(t) + D(t)u(t — 7) (4)
z(t) = A(t)z(t) + B(t)u(t — 1),

where A, B, C, and D are C! matrix valued functions of period 7.

We focus on (4), and cases where uncertainties § are added to u.
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Preliminary Technical Results

Assumption 1. The system

0(t) = A(1)6(t) (5)
is UGAS. The matrices A, B, C, and D are C! and have period 7.
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Preliminary Technical Results

Assumption 1. The system
0(t) = A(1)6(t) (5)
is UGAS. The matrices A, B, C, and D are C! and have period 7.

Hence, (5) admits a Lyapunov function V/(t,0) = 0T P(t)0 such
that V < —|0? along all trajectories of (5) and P has period 7.
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Preliminary Technical Results

Assumption 1. The system
0(t) = A(1)6(t) (5)
is UGAS. The matrices A, B, C, and D are C! and have period 7.

Hence, (5) admits a Lyapunov function V/(t,0) = 0T P(t)0 such
that V < —|0? along all trajectories of (5) and P has period 7.

Let 1), be the inverse of the fundamental matrix for (5).
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Preliminary Technical Results

Assumption 1. The system
0(t) = A(1)6(t) (5)
is UGAS. The matrices A, B, C, and D are C! and have period 7.

Hence, (5) admits a Lyapunov function V/(t,0) = 0T P(t)0 such
that V < —|0? along all trajectories of (5) and P has period 7.

Let 1), be the inverse of the fundamental matrix for (5).

Wa(t m) = —ia(t, mA(L)
{zfa(mm 1 N

forall t € R and m € R.
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Preliminary Technical Results

Lemma

Let Assumption 1 hold. Then the function T — (¢, — T) is
invertible for all ¢ € R. Also, the function q : R — R"*P defined by

a)=- [ COU-vultt= DI 0ule00 (@)

has period T, and §4(t) + q(t)A(t) + C(t) =0 for all t € R. O
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Preliminary Technical Results

Lemma

Let Assumption 1 hold. Then the function T — (¢, — T) is
invertible for all ¢ € R. Also, the function q : R — R"*P defined by

a)=- [ COU-vultt= DI 0ule00 (@)

has period T, and §4(t) + q(t)A(t) + C(t) =0 for all t € R. O

Assumption 2. There exists a constant ¢ > 0 such that the matrix
R(t) = q(t)B(t) + D(t) satisfies

/t R(mR(m)"dm > cI (8)

for all t € R. (That means | is the n X n identity matrix.)
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Main Result

Our coordinate change £(t) = x(t) + q(t)z(t) gave the system

{g(t) = R(t)u(t—71) (9)
% = A(t)z(t) + B(t)u(t — 1)

where R(t) = q(t)B(t) + D(t) and g is from the lemma.
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Main Result

Our coordinate change £(t) = x(t) + q(t)z(t) gave the system

{g(t) = R(t)u(t—71) (9)
Z = A(t)z(t) + B(t)u(t — 1)

where R(t) = q(t)B(t) + D(t) and g is from the lemma.

Theorem

Let Assumptions 1 and 2 hold. Then for all constants T > 0 and
e € (0, HTIIIRIIZ)’ the controller

— R(t—7)T&(t—7)

LHe(e-m)P (10)

u(t—7) =

renders (9) UGAS.
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Proof of Theorem
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Proof of Theorem

Show that the closed loop system (9) admits the LKF

VAt &, 2(t)) = zT (t)P(t)z(t) + 2181 Wa(t, &), where
Wa(t,&) = Wa(t, &) + k [(1+2U(&))*? — 1],

2
Te(m
Wa(t, &) = Wa(t, &) + Bo [ T#(()Il ,
Wit &) = &0 [ S [LRIOR() T dedm) &(2),
— lig)rg L t R TEOP
U(&:) = 3¢l +4Tft,2Tme SO dedm,

fo = IR, k= %2(r+ Bo),
B1 = max{vi, vo}, vi = 2[4||P|12||BI |R|I? + 1]

and vo = 18¥27(1 4 87||P||2||B||? ||R||*).
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Key Ideas of Proof
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Key Ideas of Proof

The &-subsystem £(t) = R(t)u(t — 7) is

f(t) — _€w, (11)

1+[g(t—7)?

since R has period 7.
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Key Ideas of Proof

The &-subsystem £(t) = R(t)u(t — 7) is

: _  _ R(®)R()TE(t—T)
g(t) € 1+|§(t7T)|2 ? (1]‘)

since R has period 7. For all t > 7, we have

tR(MR(m) T &(m— 1
fe-m)= g0+ [ B HT Dy,

e VIFEm— TP 12
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Key Ideas of Proof

The &-subsystem £(t) = R(t)u(t — 7) is

_ ROR®Te(t—1)

f(t) = \/m J (11)

since R has period 7. For all t > 7, we have

tR(mR(m)T&(m—r
fe-n) =0 +c) va)’i(‘ézmﬁ(_ a Jam

Hence, for all t > 7, we have

(12)

- — _¢ ROR®'T R(t) R(t
2 R(f)/?(t) /'t R(m)R(m) ' {(m—7) | (13)

—————————am.
VIHEE=DP e r /14 [E(m —7)[2
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Key Ideas of Proof

If the orange term were not present, the & subsystem would be

(MR

§(t) = \/mf( ) (14)
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Key Ideas of Proof

If the orange term were not present, the & subsystem would be

(OR()T

§(t) = mg( ) (14)

That admits the strict Lyapunov function

t t € 2
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Key Ideas of Proof

If the orange term were not present, the & subsystem would be

) = e R0 —k(n) (14)

That admits the strict Lyapunov function

Ly L [0 [fROTEOP
O A vy = Rl

Then we must take the orange term for § into account.
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Key Ideas of Proof

If the orange term were not present, the & subsystem would be

) = e R0 —k(n) (14)

That admits the strict Lyapunov function

1 1o [f dRrE@)TE@)P?
U(E) = < |e(8)2+ / / dedm
(&) =31+ t—2r)m 2V/2,/1 4 [£(0)]?
Then we must take the orange term for § into account.

When the asymptotic stability of the £-subsystem is established,
we can (more) easily prove the UGAS result with the additional
component z(t) = A(t)z(t) + B(t)u(t — 7) from the dynamics.
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Key Ideas of Proof

If the orange term were not present, the & subsystem would be

) = e R0 —k(n) (14)

That admits the strict Lyapunov function

1 1o [f dRrE@)TE@)P?
U(E) = < |e(8)2+ / / dedm
(&) =31+ t—2r)m 2V/2,/1 4 [£(0)]?
Then we must take the orange term for § into account.

When the asymptotic stability of the £-subsystem is established,
we can (more) easily prove the UGAS result with the additional
component z(t) = A(t)z(t) + B(t)u(t — 7) from the dynamics.

Benefit of LKF: Leads to robustness to actuator errors, using ISS.
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ISS Result

Michael Malisoff ) and Frederic Mazenc (INRIA) Stabilization for Feedforward Systems with Delayed Feedbacks



ISS Result

Allowing additive uncertainties on the control gives

{g‘(t) = R(t)[u(t — ) + ()]

. (15)
z(t) = A(t)z(t) + B(t)[u(t — 7) 4+ o(t)] .
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ISS Result

Allowing additive uncertainties on the control gives

{g‘(t) = R(t)[u(t — ) + ()]

. (15)
z(t) = A(t)z(t) + B(t)[u(t — 7) 4+ o(t)] .

5 — _ 42 1 642

0 = guRiagzme: Where k=42 (7 + 5c[[R|[°74€) (16)
o 1 I[RI[>T €llRIP 2

and T= maX{§+ s ays (Lt 26lIR]] 7’)} :

Michael Malisoff (LSU) and Frederic Mazenc (INRIA) Stabilization for Feedforward Systems with Delayed Feedbacks



ISS Result

Allowing additive uncertainties on the control gives

{ Et) = R(t)[u(t —7)+0(t)] 15)
z(t) = A(t)z(t) + B(t)[u(t — 7) 4+ o(t)] .
0= W‘W, where k = %22 (1 + 5 ||R|[®7%?) (16)
and U= max{2 + €|L’}§T,€|L’f|}2 (1+ 2¢||R||?T )}

Theorem

Under the preceding assumptions, (15) in closed loop with

R(t—7) T &(t—7)

ut =) =~ e

(17)

is ISS with respect to the set of all disturbances § bounded by .
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Application to UAV Dynamics

We study the UAV with standard autopilots which is first order for
heading and Mach hold and second order for the altitude hold.
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Application to UAV Dynamics

We study the UAV with standard autopilots which is first order for
heading and Mach hold and second order for the altitude hold.

x = wvcos(d)
y = wvsin(0)
0 — ap(6(t—7)—0) (18)
v = ay(ve(t—7)—v),
where we omit the altitude subdynamics h = —a,h + an(h® — h).
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Application to UAV Dynamics

We study the UAV with standard autopilots which is first order for
heading and Mach hold and second order for the altitude hold.

x = wvcos(d)
y = wvsin(0)
0 — ap(6(t—7)—0) (18)
v = ay(ve(t—7)—v),
where we omit the altitude subdynamics h = —a,h + an(h® — h).

Key Model : Underactuated kino-dynamic representation that is
justifiable for high-level formation flight control.
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Application to UAV Dynamics

We study the UAV with standard autopilots which is first order for
heading and Mach hold and second order for the altitude hold.

x = wvcos(d)
y = wvsin(0)
0 — ap(6(t—7)—0) (18)
v = ay(ve(t—7)—v),
where we omit the altitude subdynamics h = —a,h + an(h® — h).

Key Model : Underactuated kino-dynamic representation that is
justifiable for high-level formation flight control.

See e.g. 2004 IEEE-TCST paper by Ren and Beard.
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Application to UAV Dynamics

We are given a C! reference trajectory (xv, y,0;,v;) : R — R?, so
there is a reference input (0, ver) : R — R? such that

— V,Et; c_OS((HGr((t))))

ve(t)sin(6,(t

ag(Oer(t) — 0,(1)) 1
= ay(ver(t) — wv(t))

5

NN N N
~

SN N’ N N
Il

holds for all t € R.
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Application to UAV Dynamics

We are given a C! reference trajectory (xv, y,0;,v;) : R — R?, so
there is a reference input (0, ver) : R — R? such that

— V,Et; c_OS((HGr((t))))

ve(t)sin(6,(t

ag(Oer(t) — 0,(1)) 1
= ay(ver(t) — wv(t))

I
NN N N
~
N N’ N N’
I

holds for all t € R.

Assumption 3 : The functions cos(¢,(t)) and sin(0,(t)) have
period 7, there exists a constant t. € [0, 7] such that 6,(t.) # 0,
and v, is bounded.
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Application to UAV Dynamics

We are given a C! reference trajectory (xv, y,0;,v;) : R — R?, so
there is a reference input (0, ver) : R — R? such that

— V,Et; c_OS((HGr((t))))

ve(t)sin(6,(t

ag(Oer(t) — 0,(1)) 1
= ay(ver(t) — wv(t))

I
NN N N
~
N N’ N N’
I

holds for all t € R.

Assumption 3 : The functions cos(¢,(t)) and sin(0,(t)) have
period 7, there exists a constant t. € [0, 7] such that 6,(t.) # 0,
and v, is bounded.

Tracking Error : (X,7,0,V) = (x — X,y — ¥r, 0 — 0, v — V).
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Application

|-

<I-

SSERNE

Michael Malisoff (LSU) and Frederic Mazenc (INRIA)

to UAV Tracking Dynamics

= cos(6,(t))v B

+ [V + vi(t)][cos(0 + 6,(t)) — cos(0-(t))]
= sin(6,(t))v B

+ [V + ve(t)][sin(0 + 0,(t)) —sin(0,(t))]
= —a,v+u(t—r1)
= —ayf.

(20)
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Application to UAV Tracking Dynamics

X =

<l
Il

SSERNE

\

cos(0,(t))v B

+ [(V—IE \;,)(t)][cos(H +0,(t)) — cos(6,(t))]
7+ ve()][sin(@ + 0,(2)) — sin(6,(1))]
—a, v+ u(t—r1)

—agh .

(20)

We apply our theory to the (X, ¥, V) dynamics obtained by setting
6 = 0, and then we reincorporate the § dynamics to get #. and v..
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Application to UAV Tracking Dynamics

X = cos(6,(t))v B

_ + [V + v, (t)][cos(8 + 8,(t)) — cos(0,(t))]

y = sin(6,(t))v B (20)
_ + [V + vi(t)][sin(0 + 6,(t)) — sin(0,(t))]

V= —awv+tu(t—r1)

0 = —agf.

We apply our theory to the (X, ¥, V) dynamics obtained by setting
6 = 0, and then we reincorporate the § dynamics to get #. and v..
x=(x7), 2=V, A(t) = —ay, $s(t, €) = >0, B(t) =

C(t) = (cos(6,(t)),sin(0,(t)))T, D(t) =0,

£=(&,8) =y +a(t)v, q(t) = R(1),

_ 1 ‘ cos(0(£)) cav(t=0)
R(t) = g /t_T < sin(0, (1)) > de . (21)
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UAV Simulations

We proved ISS for the full 4 state (X, y, v, ) tracking dynamics by
treating the 6 subdynamics separately at the end.
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UAV Simulations

We proved ISS for the full 4 state (X, y, v, ) tracking dynamics by
treating the 6 subdynamics separately at the end.

To illustrate our work, we simulated the UAV dynamics

= vcos()

vsin(6)

= (O (t—7)—0)

= ay(ve(t—7)+9(t) — v),

(22)

< @< X
I

with our controllers

Oc(t —7) = 0(t) and
_ . _ LR(th)Tg(tf‘r) (23)
ve(t —7) = ver(t) — £ BV
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UAV Simulations

Autopilot constants: «, = 0.192 and ay = 0.55.

Delay: 7 =2

Reference trajectory: (204 10sin(wt)/m, 20 — 10 cos(nt)/m, 7t, 10).
Reference control: (0 (t), ver(t)) = (7(t 4+ 1/ ), 10).

Controller parameter: ¢ = 0.257732.

Disturbance: §(t) = 0.1sin(t) added to ve.

Initial function: (xo, yo, 60, o) = (17,22, —0.5, 8).
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UAV Simulations

18 19 21 22 23

FIcURE: (x(t),y(t)) for Times [480,1000]
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UAV Simulations
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FIGURE: x(t) — x,(t)
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UAV Simulations
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FIGURE: y(t) — y,(1)
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UAV Simulations
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FIGURE: 0(t) — 0,(t)
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UAV Simulations
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FIGURE: v(t) — v,(t)
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UAV Simulations
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FIGURE: v (t —T)
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Conclusions
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Conclusions

m Input delays naturally occur in many engineering applications
and preclude the use of standard control designs.
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Conclusions

m Input delays naturally occur in many engineering applications
and preclude the use of standard control designs.

m Our controllers provide UGAS under arbitrarily long input
delays and ISS via a LKF and have arbitrarily small amplitude.
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Conclusions

m Input delays naturally occur in many engineering applications
and preclude the use of standard control designs.

m Our controllers provide UGAS under arbitrarily long input
delays and ISS via a LKF and have arbitrarily small amplitude.

m Our work applies to a broad class of feedforward linear
systems including a key model for UAVs.
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Conclusions

m Input delays naturally occur in many engineering applications
and preclude the use of standard control designs.

m Our controllers provide UGAS under arbitrarily long input
delays and ISS via a LKF and have arbitrarily small amplitude.

m Our work applies to a broad class of feedforward linear
systems including a key model for UAVs.

m It would be interesting to extend the analysis to

x(t) = E(t)x(t)+C(t)z(t) + D(t)u(t —T) (24)
z(t) = A(t)z(t) + B(t)u(t—T).
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Conclusions

m Input delays naturally occur in many engineering applications
and preclude the use of standard control designs.

m Our controllers provide UGAS under arbitrarily long input
delays and ISS via a LKF and have arbitrarily small amplitude.

m Our work applies to a broad class of feedforward linear
systems including a key model for UAVs.

m It would be interesting to extend the analysis to

x(t) = E(t)x(t)+C(t)z(t) + D(t)u(t — 1) (24)
z(t) = A(t)z(t) + B(t)u(t—T).

Nonlinear analogs involving PDEs would also be interesting.
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