
Adaptive Tracking and Parameter Identification
for Nonlinear Control Systems

Michael Malisoff, Roy P. Daniels Professor of
Mathematics at Louisiana State University

Sponsors: AFOSR, NSF/DMS, NSF/EPCN
Joint with Georgia Tech Systems Research Lab

North Carolina State University Mathematics Talk
4 November 2015



What Do We Mean By Control Systems?

Y ′(t) = F
(
t ,Y (t),u(t ,Y (t − τ)), Γ, δ(t)

)
, Y (t) ∈ Y. (1)

Y ⊆ Rn. δ : [0,∞)→ D is (nonstochastic) uncertainty. D ⊆ Rm.
The vector Γ is constant but unknown. τ is a constant delay.

Y ′(t) = G(t ,Y (t),Y (t − τ), Γ, δ(t)), Y (t) ∈ Y, (2)

where G(t ,Y (t),Y (t − τ), Γ,d) = F(t ,Y (t),u(t ,Y (t − τ)), Γ,d).

Problem: Given a trajectory Yr , specify u and a dynamics for an
estimate Γ̂ of Γ such that the dynamics for the augmented error
E(t) = (Y (t)− Yr (t), Γ− Γ̂(t)) satisfies ISS with respect to δ.

Flight control, electrical and mechanical engineering, etc.
Persistent excitation. Annaswamy, Narendra, Teel..
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What is Input-to-State Stability (or ISS)?

ISS (Sontag, ’89) generalizes uniform global asymptotic stability.

E ′(t) = G(t , E(t), E(t − τ), Γ), E(t) ∈ Y (Σ)

|E(t)| ≤ γ1
(
et0−tγ2(|E|[t0−τ ,t0])

)
(UGAS)

γi ’s are 0 at 0, strictly increasing, and unbounded. γi ∈ K∞.

E ′(t) = G
(
t , E(t), E(t − τ), Γ, δ(t)

)
, E(t) ∈ Y (Σpert)

|E(t)| ≤ γ1
(
et0−tγ2(|E|[t0−τ ,t0])

)
+ γ3(|δ|[t0,t]) (ISS)

Find γi ’s by building special strict Lyapunov functions (LFs).

When τ = 0, a system is ISS iff it has an ISS LF (Sontag-Wang).
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What is the Value Added by Your Research?

For many systems, we design controls u that ensure ISS under
the delays τ and uncertainties δ that prevail in engineering.

Interconnect the systems with dynamics for estimators Γ̂(t) that
converge to Γ, and then use Γ̂(t) in u, instead of Γ.

Under state constraints Y, choose sets S ⊆ Y to find maximal
perturbation sets D the system can tolerate without leaving S.

To handle delays τ , we use Lyapunov-Krasovskii or Razumikhin
functions, or predictive or other dynamic controls.

Active magnetic bearings, bioreactors, brushless DC motors,
heart rate controllers, human pointing motions, marine robots,
microelectromechanical relays, neuromuscular electrical
stimulation, underactuated ships, unmanned air vehicles,..
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My Joint Work with F. Mazenc and M. de Queiroz

We solved the tracking and parameter identification problem for{
ẋ = f (ξ)
żi = gi(ξ) + ki(ξ)θi + ψiui , i = 1,2, . . . , s .

(3)

ξ = (x , z) ∈ Rr+s.

(θ, ψ) = (θ1, ..., θs, ψ1, . . . , ψs) ∈ Rp1+...+ps+s.

The C2 reference trajectory ξR = (xR, zR) is assumed to have
some period T > 0 and satisfy ẋR(t) = f (ξR(t)) for all t ≥ 0.

Main PE Assumption: positive definiteness of the matrices

Mi =
∫ T

0 λ>i (t)λi(t) dt ∈ R(pi+1)×(pi+1), 1 ≤ i ≤ s, (4)

where λi(t) = (ki(ξR(t)), żR,i(t)− gi(ξR(t))) for i = 1,2, . . . , s.
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Two Other Key Assumptions

I We know vf and a strict LF V : [0,∞)× Rr+s → [0,∞) for{
Ẋ = f

(
(X ,Z ) + ξR(t)

)
− f (ξR(t))

Ż = vf (t ,X ,Z )
(5)

such that −V̇ and V have positive definite quadratic lower
bounds near 0, and V and vf also have period T .

Key: Reduces the LF construction problem to (5).

I There are known positive constants θM , ψ and ψ such that

ψ < ψi < ψ and |θi | < θM (6)

for each i ∈ {1,2, . . . , s}. Known directions for the ψi ’s.
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Ż = vf (t ,X ,Z )
(5)

such that −V̇ and V have positive definite quadratic lower
bounds near 0, and V and vf also have period T .

Key: Reduces the LF construction problem to (5).

I There are known positive constants θM , ψ and ψ such that

ψ < ψi < ψ and |θi | < θM (6)

for each i ∈ {1,2, . . . , s}. Known directions for the ψi ’s.



Two Other Key Assumptions

I We know vf and a strict LF V : [0,∞)× Rr+s → [0,∞) for{
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Dynamic Feedback

The estimator evolves on {
∏s

i=1(−θM , θM)pi} × (ψ,ψ)s.
˙̂θi,j = (θ̂2

i,j − θ2
M)$i,j , 1 ≤ i ≤ s ,1 ≤ j ≤ pi

˙̂ψi =
(
ψ̂i − ψ

)(
ψ̂i − ψ

)
Υi , 1 ≤ i ≤ s

(7)

Here θ̂i = (θ̂i,1, . . . , θ̂i,pi ) for i = 1,2, . . . , s ,

$i,j = −∂V
∂z̃i

(t , ξ̃)ki,j
(
ξ̃ + ξR(t)

)

and

Υi = −∂V
∂z̃i

(t , ξ̃)ui(t , ξ̃, θ̂, ψ̂) .
(8)

ui(t , ξ̃, θ̂, ψ̂) =
vf ,i (t ,ξ̃)−gi (ξ)−ki (ξ)θ̂i+żR,i (t)

ψ̂i
(9)

Estimator and feedback can only depend on things we know.

Barrier terms ensure that ψ < ψ̂i(t) < ψ and |θ̂i,j(t)| < θM .
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Augmented Error Dynamics

Tracking error: ξ̃ = (x̃ , z̃) = ξ − ξR = (x − xR, z − zR)

Parameter estimation errors: θ̃i = θi − θ̂i and ψ̃i = ψi − ψ̂i

˙̃x = f (ξ̃ + ξR(t))− f (ξR(t))

˙̃zi = vf ,i(t , ξ̃) + ki(ξ̃ + ξR(t))θ̃i

+ψ̃iui(t , ξ̃, θ̂, ψ̂), 1 ≤ i ≤ s
˙̃
θi,j = −

(
θ̂2

i,j − θ2
M

)
$i,j , 1 ≤ i ≤ s ,1 ≤ j ≤ pi

˙̃
ψi = −

(
ψ̂i − ψ

)(
ψ̂i − ψ

)
Υi , 1 ≤ i ≤ s .

(AED)

Y = Rr+s ×
(∏s

i=1

{∏pi
j=1(θi,j − θM , θi,j + θM)

})
×
(∏s

i=1
(
ψi − ψ,ψi − ψ

))
.
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Stabilization Analysis

We build a strict LF for the augmented error dynamics for
E = (ξ̃, θ̃, ψ̃) = (ξ − ξR, θ − θ̂, ψ − ψ̂) on its state space Y.

We start with this nonstrict barrier type LF on Y:

V1(t , ξ̃, θ̃, ψ̃) = V (t , ξ̃) +
s∑

i=1

pi∑
j=1

∫ θ̃i,j

0

m
θ2

M − (m − θi,j)2
dm

+
s∑

i=1

∫ ψ̃i

0

m
(ψi −m − ψ)(ψ − ψi + m)

dm .

On Y, V̇1 ≤ −W (ξ̃) for some positive definite function W .

We transform V1 into the desired strict LF for (AED).



Stabilization Analysis

We build a strict LF for the augmented error dynamics for
E = (ξ̃, θ̃, ψ̃) = (ξ − ξR, θ − θ̂, ψ − ψ̂) on its state space Y.

We start with this nonstrict barrier type LF on Y:

V1(t , ξ̃, θ̃, ψ̃) = V (t , ξ̃) +
s∑

i=1

pi∑
j=1

∫ θ̃i,j

0

m
θ2

M − (m − θi,j)2
dm

+
s∑

i=1

∫ ψ̃i

0

m
(ψi −m − ψ)(ψ − ψi + m)

dm .

On Y, V̇1 ≤ −W (ξ̃) for some positive definite function W .

We transform V1 into the desired strict LF for (AED).



Stabilization Analysis

We build a strict LF for the augmented error dynamics for
E = (ξ̃, θ̃, ψ̃) = (ξ − ξR, θ − θ̂, ψ − ψ̂) on its state space Y.

We start with this nonstrict barrier type LF on Y:

V1(t , ξ̃, θ̃, ψ̃) = V (t , ξ̃) +
s∑

i=1

pi∑
j=1

∫ θ̃i,j

0

m
θ2

M − (m − θi,j)2
dm

+
s∑

i=1

∫ ψ̃i

0

m
(ψi −m − ψ)(ψ − ψi + m)

dm .

On Y, V̇1 ≤ −W (ξ̃) for some positive definite function W .

We transform V1 into the desired strict LF for (AED).



Stabilization Analysis

We build a strict LF for the augmented error dynamics for
E = (ξ̃, θ̃, ψ̃) = (ξ − ξR, θ − θ̂, ψ − ψ̂) on its state space Y.

We start with this nonstrict barrier type LF on Y:

V1(t , ξ̃, θ̃, ψ̃) = V (t , ξ̃) +
s∑

i=1

pi∑
j=1

∫ θ̃i,j

0

m
θ2

M − (m − θi,j)2
dm

+
s∑

i=1

∫ ψ̃i

0

m
(ψi −m − ψ)(ψ − ψi + m)

dm .

On Y, V̇1 ≤ −W (ξ̃) for some positive definite function W .

We transform V1 into the desired strict LF for (AED).



Stabilization Analysis

We build a strict LF for the augmented error dynamics for
E = (ξ̃, θ̃, ψ̃) = (ξ − ξR, θ − θ̂, ψ − ψ̂) on its state space Y.

We start with this nonstrict barrier type LF on Y:

V1(t , ξ̃, θ̃, ψ̃) = V (t , ξ̃) +
s∑

i=1

pi∑
j=1

∫ θ̃i,j

0

m
θ2

M − (m − θi,j)2
dm

+
s∑

i=1

∫ ψ̃i

0

m
(ψi −m − ψ)(ψ − ψi + m)

dm .

On Y, V̇1 ≤ −W (ξ̃) for some positive definite function W .

We transform V1 into the desired strict LF for (AED).



Our Transformation

Theorem: We can construct a function L ∈ K∞ ∩ C1 such that

V ](t , ξ̃, θ̃, ψ̃) = L
(
V1(t , ξ̃, θ̃, ψ̃)

)
+

s∑
i=1

Ωi(t , ξ̃, θ̃, ψ̃) , (10)

where Ωi(t , ξ̃, θ̃, ψ̃) = −z̃iλi(t)αi(θ̃i , ψ̃i)

+ 1
Tψ
α>i (θ̃i , ψ̃i)Ωi(t)αi(θ̃i , ψ̃i) ,

(11)

αi(θ̃i , ψ̃i) =

[
θ̃iψi − θi ψ̃i

ψ̃i

]
, and

Ωi(t) =
∫ t

t−T

∫ t
m λ
>
i (s)λi(s)ds dm ,

(12)

is a strict LF for (AED) on its state space Y, so (AED) is UGAS.
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Application: Marine Robots (with Georgia Tech)

ρ = |r2 − r1|, φ = angle between x1 and x2, cos(φ) = x1 · x2
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Curve Tracking Dynamics

Zhang et al, IEEE CDC, ’04: Steering control ρ̇ = − sin(φ)

φ̇ = κ cos(φ)
1+κρ − u0, (ρ, φ) ∈ (0,∞)× (−π/2, π/2)

(13)

u0 = κ cos(φ)
1+κρ − h′(ρ) cos(φ) + µ sin(φ) , κ = curvature (14)

h(ρ) = α
{
ρ+

ρ2
0
ρ − 2ρ0

}
, ρ0 = desired value for ρ (15)

V (ρ, φ) = − ln
(

cos(φ)
)

+ h(ρ) (16)

New : U(ρ, φ) = −h′(ρ) sin(φ) +
1
µ

∫ V (ρ,φ)

0
Γ0(m)dm (17)
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Our Robustly Forwardly Invariant Hexagons

We used U to prove ISS of the (ρ− ρ0, φ) system, where

ρ̇ = − sin(φ), φ̇ = h′(ρ) cos(φ)− µ sin(φ) + δ (18)

and δ : [0,∞)→ [−δ∗i , δ∗i ], on certain forward invariant sets Hi .

View the curve tracking state space
Y = (0,∞)× (−π/2, π/2) as a union of
hexagonal regions H1 ⊆ H2 ⊆ . . .Hi ⊆ . . ..
For each i , all trajectories of (18) starting in
Hi for all δ : [0,∞)→ [−δ∗i , δ∗i ] stay in Hi .

Tight Disturbance Bound: Choose any δ∗i ∈ (0,min{∆∗i ,∆∗∗i}).
∆∗i = min{|h′(ρ) cos(φ)| : (ρ, φ)> ∈ AB ∪ ED}
∆∗∗i = min{|h′(ρ) cos(φ)− µ sin(φ)| : (ρ, φ)> ∈ BC ∪ EF}.
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Our Adaptive Robust Tracking Control ρ̇ = − sin(φ)

φ̇ = κ cos(φ)
1+κρ + K [u + δ]

(19)

ξ = (ρ, φ), θi = 0, ψi = K , f (ξ) = − sin(φ), gi(ξ) = κ cos(φ)
1+κρ

Take u = −u0/K̂ . We proved ISS for the dynamics
˙̃q1 = − sin(q̃2)

˙̃q2 = κ cos(q̃2)
1+κ(q̃1+ρ0)

− K
K̃+K

u0 − K δ
˙̃K = −(K̃ + K − cmin)(cmax − K̃ − K )∂U

∂φ
u0

K̃+K

(20)

for (q̃1, q̃2, K̃ ) = (ρ− ρ0, φ, K̂ − K ) on each set in our sequence
of hexagonal regions that fill Y = (0,∞)× (−π/2, π/2).
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Our Summer 2011 Field Work at Grand Isle, LA

20 days of field work off Grand Isle. Search for oil spill remnants.
Georgia Tech Savannah Robotics Team. Joint with F. Zhang.
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Circle Tracking by ASV Victoria
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Conclusions

Adaptive nonlinear controllers are useful for many engineering
control systems with delays and uncertainties.

Curve tracking controllers for autonomous marine vehicles are
important for monitoring water quality, especially after oil spills.

Our controls identify parameters and are adaptive and robust to
the perturbations and delays that arise in field work.

We can prove these properties using ISS, dynamic extensions,
and Lyapunov-Krasovskii functionals.

We used our controls on student built marine robots to map
residual crude oil from the Deepwater Horizon spill.

A promising research direction is to study adaptive robust
control for heterogeneous fleets of autonomous marine vehicles.
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