Print Your Name Here:

- Show all work in the space provided. We can give credit only for what you write! Indicate clearly if you continue on the back side, and write your name at the top of the scratch sheet if you will turn it in for grading.
- No books or notes (paper or electronic) or communication devices (smart/cell phones, internetconnected devices such as laptops, tablets, or I-watches) are allowed. A scientific calculator (not capable of graphing or symbolic calculations) is allowed-but it is not needed. If you use a calculator, you must still write out all operations performed on the calculator. Do not replace precise answers such as $\sqrt{2}, \frac{1}{3}$, or π with decimal approximations. Keep your eyes on your own paper!
- There are five (5) problems and the Maximum total score $=100$.

1. (15) Evaluate the limit or say why it does not exist: $\lim _{t \rightarrow 2} \frac{t^{2}+t-6}{t^{2}-4}$.
2. (15) Give a formal proof that $\lim _{x \rightarrow 2} 3 x+4=10$ as follows. Let $\epsilon>0$. Find a corresponding $\delta>0$ such that $0<|x-2|<\delta$ implies $|(3 x+4)-10|<\epsilon$.
3. (20) Suppose $f(x)=\left\{\begin{array}{ll}c-x^{2}, & x<2 \\ d, & x=2 \\ 2 x-c, & x>2 .\end{array}\right.$ Find the values of c and d that make f continuous at $x=2$.
4. (20) Find $\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+4 x}-\sqrt{x^{2}+x}\right)$ or explain why it does not exist.
5. (30) Let $f(x)=\frac{1}{x}, x \neq 0$.
a. (20) Find $f^{\prime}(x)$ by evaluating $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ if it exists.
b. (10) Write an equation for the tangent line to the graph of $y=f(x)$ at the point $\left(2, \frac{1}{2}\right)$.

Solutions

1. Factoring the numerator and denominator we see that $\lim _{x \rightarrow 2} \frac{t^{2}+t-6}{t^{2}-4}=\lim _{x \rightarrow 2} \frac{t+3}{t+2}=\frac{5}{4}$.
2. Solving the inequality $|(3 x+4)-10|<\epsilon$ for $|x-2|$ we find that it is necessary and sufficient that $|x-2|<\frac{\epsilon}{3}$. Thus we can use any $\delta>0$ such that $\delta \leq \frac{\epsilon}{3}$.
3. For continuity at $x=2$ we need both $\lim _{x \rightarrow 2-} f(x)=d$ and $\lim _{x \rightarrow 2+} f(x)=d$. Thus $c-4=d$ and $4-c=d$. Hence $d=0$ and $c=4$.
4. Rationalizing the numerator and then dividing numerator and denominator by x shows that the limit is $\frac{3}{2}$. There were many errors with signs in expanding the difference of two squares because of laxity in using parentheses. Also, be careful to use the equal sign " $=$ " only if you really mean that the left side equals the right side. It is incorrect to write " $="$ as if it were a general connective between one step and the next step.
5.

a. $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\frac{1}{x+h}-\frac{1}{x}}{h}=\lim _{h \rightarrow 0} \frac{-1}{x(x+h)}=\frac{-1}{x^{2}}$.
b. $x+4 y=4$ or any equivalent equation. Be aware that the equation of a straight line is a linear equation!

Class Statistics

\% Grade	Test\#1	Test\#2	Test\#3	Test 4	Test 5	Final Exam	Final Grade
$90-100(\mathrm{~A})$	12						
$80-89(\mathrm{~B})$	10						
$70-79(\mathrm{C})$	4						
$60-69(\mathrm{D})$	5						
$0-59(\mathrm{~F})$	1						
Test Avg	83.3%	$\%$	$\%$	$\%$	$\%$	$\%$	$\%$

