Print Your Name Here:

- Show all work in the space provided. We can give credit *only* for what you write! *Indicate clearly if you continue on the back side*, and write your name at the top of the scratch sheet if you will turn it in for grading.
- No books or notes (paper or electronic) or communication devices (smart/cell phones, internetconnected devices such as laptops, tablets, or I-watches) are allowed. A scientific calculator (*not capable* of graphing or symbolic calculations) is allowed—but it is not needed. If you use a calculator, you *must still write out all operations performed* on the calculator. Do not replace precise answers such as $\sqrt{2}$, $\frac{1}{3}$, or π with decimal approximations. Keep your eyes on your own paper!
- There are five (5) problems and the *Maximum total score* = 100.
- 1. (15) Evaluate the limit or say why it does not exist: $\lim_{t \to 2} \frac{t^2 + t 6}{t^2 4}$.

2. (15) Give a formal proof that $\lim_{x\to 2} 3x + 4 = 10$ as follows. Let $\epsilon > 0$. Find a corresponding $\delta > 0$ such that $0 < |x-2| < \delta$ implies $|(3x+4) - 10| < \epsilon$.

3. (20) Suppose $f(x) = \begin{cases} c - x^2, & x < 2 \\ d, & x = 2 \\ 2x - c, & x > 2. \end{cases}$ Find the values of c and d that make f continuous at x = 2.

4. (20) Find $\lim_{x \to \infty} \left(\sqrt{x^2 + 4x} - \sqrt{x^2 + x} \right)$ or explain why it does not exist.

5. (30) Let
$$f(x) = \frac{1}{x}, x \neq 0.$$

a. (20) Find f'(x) by evaluating $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ if it exists.

b. (10) Write an equation for the tangent line to the graph of y = f(x) at the point $\left(2, \frac{1}{2}\right)$.

Solutions

1. Factoring the numerator and denominator we see that $\lim_{x \to 2} \frac{t^2 + t - 6}{t^2 - 4} = \lim_{x \to 2} \frac{t + 3}{t + 2} = \frac{5}{4}.$

2. Solving the inequality $|(3x + 4) - 10| < \epsilon$ for |x - 2| we find that it is necessary and sufficient that $|x - 2| < \frac{\epsilon}{3}$. Thus we can use any $\delta > 0$ such that $\delta \le \frac{\epsilon}{3}$.

3. For continuity at x = 2 we need both $\lim_{x \to 2^-} f(x) = d$ and $\lim_{x \to 2^+} f(x) = d$. Thus c - 4 = d and 4 - c = d. Hence d = 0 and c = 4.

4. Rationalizing the numerator and then dividing numerator and denominator by x shows that the limit is $\frac{3}{2}$. There were many errors with signs in expanding the difference of two squares because of laxity in using parentheses. Also, be careful to use the equal sign "=" only if you really mean that the left side equals the right side. It is incorrect to write "=" as if it were a general connective between one step and the next step.

5.

a.
$$f'(x) = \lim_{h \to 0} \frac{\frac{1}{x+h} - \frac{1}{x}}{h} = \lim_{h \to 0} \frac{-1}{x(x+h)} = \frac{-1}{x^2}$$

b. x + 4y = 4 or any equivalent equation. Be aware that the equation of a straight line is a *linear* equation!

% Grade	Test#1	Test#2	Test#3	Test 4	Test 5	Final Exam	Final Grade
90-100 (A)	12						
80-89 (B)	10						
70-79 (C)	4						
60-69 (D)	5						
0-59~(F)	1						
Test Avg	83.3%	%	%	%	%	%	%

Class Statistics