Print Your Name Here:

- Show all work in the space provided. We can give credit *only* for what you write! *Indicate clearly if you continue on the back side*, and write your name at the top of the scratch sheet if you will turn it in for grading.
- No books or notes (paper or electronic) or communication devices (smart/cell phones, internetconnected devices such as laptops, tablets, or I-watches) are allowed. A scientific calculator (*not capable* of graphing or symbolic calculations) is allowed—but it is not needed. If you use a calculator, you *must still write out all operations performed* on the calculator. Do not replace precise answers such as $\sqrt{2}$, $\frac{1}{3}$, or π with decimal approximations. Keep your eyes on your own paper!
- There are five (5) problems and the *Maximum total score* = 100.
- 1. (20) Use l'Hospital's Rule to evaluate the following limits.

a.
$$\lim_{x \to \infty} \frac{\ln x}{\sqrt{x}}$$

b.
$$\lim_{x \to 0} \frac{\sin x - x}{x^3}$$

- **2.** (20) Find the most general antiderivative F(x) of the given function and check by differentiating.
 - **a**. $f(x) = x^2 x^{\frac{1}{2}}$

b.
$$f(x) = e^{2x} + \sec^2 x$$

3. (30) A farmer wishes to enclose with fencing a rectangular field with a *total area* of 1000 square meters, and then *partition* the field into two sections with a fence parallel to one side of the rectangle. Find the *minimum length* s of fencing that is needed.

4. (30) Consider the function $f(x) = \frac{x+1}{x^2}$, $x \neq 0$. Use the formula for derivatives of quotients (making use of cancellations for simplification) to find the following information.

a. horizontal asymptote(s): _____

b. vertical asymptote(s):_____

c. *f* increasing on:_____

d. *f* decreasing on:_____

e. local maximum at:_____

f. local minimum at:_____

- g. concave up on:_____
- h. concave down on:_____
- i. point(s) of inflection at:_____

j. sketch!

Solutions

1. Please do not write that a limit equals $\frac{0}{0}$ or $\frac{\infty}{\infty}$ since these are undefined operations. Do not omit the limit from an equality where it is needed because the resulting equation would be a false statement. Please see the examples of correct solutions below.

a.
$$\lim_{x \to \infty} \frac{\ln x}{\sqrt{x}} = \lim_{x \to \infty} \frac{\frac{1}{x}}{\frac{1}{2\sqrt{x}}} = \lim_{x \to \infty} \frac{2}{\sqrt{x}} = 0.$$

b.
$$\lim_{x \to 0} \frac{\sin x - x}{x^3} = \lim_{x \to 0} \frac{\cos x - 1}{3x^2} = \lim_{x \to 0} \frac{-\sin x}{6x} = \lim_{x \to 0} \frac{-\cos x}{6} = \frac{-1}{6}.$$

2. Don't forget the arbitrary additive constants!

a. $F(x) = \frac{x^3}{3} - \frac{2}{3}x^{\frac{3}{2}} + C$ **b.** $F(x) = \frac{1}{2}e^{2x} + \tan x + C$

3. If x and y are dimensions of the rectangle we can write s = 3x + 2y and xy = 1000, so that $s = 3x + \frac{2000}{x}$. Since $s \to \infty$ as $x \to 0+$ and as $x \to \infty$, the minimum occurs where s'(x) = 0. Thus $x = 10\sqrt{\frac{20}{3}} = \frac{20}{3}\sqrt{15}$ and $y = 100\sqrt{\frac{3}{20}} = 10\sqrt{15}$. The minimum total length of fencing needed is $40\sqrt{15}$ meters or the equivalent.

- 4. For graphing problems it is necessary to find f' and f'' very carefully!
 - **a**. horizontal asymptote(s): y = 0
 - **b**. vertical asymptote(s): x = 0
 - c. f increasing on: (-2,0)
 - **d**. f decreasing on: $(-\infty, -2)$, $(0, \infty)$
 - e. local maximum at: none
 - f. local minimum at: x = -2, $y = -\frac{1}{4}$
 - **g**. concave up on: $(-3,0), (0,\infty)$
 - **h**. concave down on: $(-\infty, -3)$
 - i. point(s) of inflection at: x = -3, $y = -\frac{2}{9}$
 - j. See Figure 1 below.

Figure 1: $y = \frac{x+1}{x^2}$.

Class Statistics

	% Grade	Test#1	Test#2	Test#3	Test 4	Test 5	Final Exam	Final Grade
	90-100 (A)	12	16	13				
	80-89 (B)	10	8	7				
	70-79 (C)	4	3	6				
Γ	60-69 (D)	5	2	2				
	0-59~(F)	1	3	2				
	Test Avg	83.3%	84.5%	84.7%	%	%	%	%