Print Your Name Here:

- Show all work in the space provided. We can give credit only for what you write! Indicate clearly if you continue on the back side, and write your name at the top of the scratch sheet if you will turn it in for grading.
- No books or notes (paper or electronic) or communication devices (smart/cell phones, internetconnected devices such as laptops, tablets, or I-watches) are allowed. A scientific calculator (not capable of graphing or symbolic calculations) is allowed-but it is not needed. If you use a calculator, you must still write out all operations performed on the calculator. Do not replace precise answers such as $\sqrt{2}, \frac{1}{3}$, or π with decimal approximations. Keep your eyes on your own paper!
- There are five (5) problems and the Maximum total score $=100$.

1. (20) Use l'Hospital's Rule to evaluate the following limits.
a. $\lim _{x \rightarrow \infty} \frac{\ln x}{\sqrt{x}}$
b. $\lim _{x \rightarrow 0} \frac{\sin x-x}{x^{3}}$
2. (20) Find the most general antiderivative $F(x)$ of the given function and check by differentiating.
a. $f(x)=x^{2}-x^{\frac{1}{2}}$
b. $f(x)=e^{2 x}+\sec ^{2} x$
3. (30) A farmer wishes to enclose with fencing a rectangular field with a total area of 1000 square meters, and then partition the field into two sections with a fence parallel to one side of the rectangle. Find the minimum length s of fencing that is needed.
4. (30) Consider the function $f(x)=\frac{x+1}{x^{2}}, x \neq 0$. Use the formula for derivatives of quotients (making use of cancellations for simplification) to find the following information.
a. horizontal asymptote(s): \qquad
b. vertical asymptote(s): \qquad
c. f increasing on: \qquad
d. f decreasing on: \qquad
e. local maximum at: \qquad
f. local minimum at: \qquad
g. concave up on: \qquad
h. concave down on: \qquad
i. point(s) of inflection at: \qquad
j. sketch!

Solutions

1. Please do not write that a limiit equals $\frac{0}{0}$ or $\frac{\infty}{\infty}$ since these are undefined operations. Do not omit the limit from an equality where it is needed because the resulting equation would be a false statement. Please see the examples of correct solutions below.
a. $\lim _{x \rightarrow \infty} \frac{\ln x}{\sqrt{x}}=\lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{\frac{1}{2 \sqrt{x}}}=\lim _{x \rightarrow \infty} \frac{2}{\sqrt{x}}=0$.
b. $\lim _{x \rightarrow 0} \frac{\sin x-x}{x^{3}}=\lim _{x \rightarrow 0} \frac{\cos x-1}{3 x^{2}}=\lim _{x \rightarrow 0} \frac{-\sin x}{6 x}=\lim _{x \rightarrow 0} \frac{-\cos x}{6}=\frac{-1}{6}$.
2. Don't forget the arbitrary additive constants!
a. $F(x)=\frac{x^{3}}{3}-\frac{2}{3} x^{\frac{3}{2}}+C$
b. $F(x)=\frac{1}{2} e^{2 x}+\tan x+C$
3. If x and y are dimensions of the rectangle we can write $s=3 x+2 y$ and $x y=1000$, so that $s=3 x+\frac{2000}{x}$. Since $s \rightarrow \infty$ as $x \rightarrow 0+$ and as $x \rightarrow \infty$, the minimum occurs where $s^{\prime}(x)=0$. Thus $x=10 \sqrt{\frac{20}{3}}=\frac{20}{3} \sqrt{15}$ and $y=100 \sqrt{\frac{3}{20}}=10 \sqrt{15}$. The minimum total length of fencing needed is $40 \sqrt{15}$ meters or the equivalent.
4. For graphing problems it is necessary to find f^{\prime} and $f^{\prime \prime}$ very carefully!
a. horizontal asymptote(s): $y=0$
b. vertical asymptote(s): $x=0$
c. f increasing on: $(-2,0)$
d. f decreasing on: $(-\infty,-2),(0, \infty)$
e. local maximum at: none
f. local minimum at: $x=-2, y=-\frac{1}{4}$
g. concave up on: $(-3,0),(0, \infty)$
h. concave down on: $(-\infty,-3)$
i. point(s) of inflection at: $x=-3, y=-\frac{2}{9}$
j. See Figure 1 below.

Figure 1: $y=\frac{x+1}{x^{2}}$.

Class Statistics

\% Grade	Test\#1	Test\#2	Test\#3	Test 4	Test 5	Final Exam	Final Grade
$90-100(\mathrm{~A})$	12	16	13				
$80-89(\mathrm{~B})$	10	8	7				
$70-79(\mathrm{C})$	4	3	6				
$60-69(\mathrm{D})$	5	2	2				
$0-59(\mathrm{~F})$	1	3	2				
Test Avg	83.3%	84.5%	84.7%	$\%$	$\%$	$\%$	$\%$

