Print Your Name Here: _

- Show all work in the space provided. We can give credit *only* for what you write! *Indicate clearly if you continue on the back side*, and write your name at the top of the scratch sheet if you will turn it in for grading.
- No books or notes (paper or electronic) or communication devices (smart/cell phones, internetconnected devices such as laptops, tablets, or I-watches) are allowed. A scientific calculator (*not capable* of graphing or symbolic calculations) is allowed—but it is not needed. If you use a calculator, you *must still write out all operations performed* on the calculator. Do not replace precise answers such as $\sqrt{2}$, $\frac{1}{3}$, or π with decimal approximations. Keep your eyes on your own paper!
- There are four (4) problems and the Maximum total score = 100.
- 1. Evaluate and simplify using the appropriate part of the Fundamental Theorem of Calculus:

$$\mathbf{a.} (15) \frac{d}{dx} \int_{1}^{e^{3x}} \ln t \, dt$$

b. (10)
$$\int_0^2 x^2 + 2^x dx$$

2. Evaluate the following indefinite and definite integrals, as indicated.

a. (10)
$$\int \frac{x + \sqrt[3]{x} + 1}{x} dx$$

b. (15)
$$\int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}} \frac{1}{\sqrt{1-x^2}} \, dx$$

1

3. Evaluate by the method of substitution:

a. (10)
$$\int (x^2 + 2x)^5 (x+1) \, dx$$

b. (15)
$$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos x}{\sin x} dx$$

4. (25) Sketch the region enclosed between the two curves $x = y^2$ and $x = 2 - y^2$. Find the area of the region, making a judicious choice to integrate with respect to x or to y.)

Solutions

1. Don't forget to use the Chain Rule in part (a)! Use $u = e^{3x}$.

a.
$$\frac{d}{dx} \int_{1}^{e^{3x}} \ln t \, dt = \frac{d}{du} \int_{1}^{u} \ln t \, dt \, \left(\frac{du}{dx}\right) = (\ln u) \left(\frac{du}{dx}\right) = 9xe^{3x}.$$

b. $\int_{0}^{2} x^{2} + 2^{x} \, dx = \frac{8}{3} + \frac{3}{\ln 2}.$

- 2. Beware: $\int \frac{f}{g} \neq \frac{\int f}{\int g} \parallel \parallel$ a. $\int \frac{x + \sqrt[3]{x} + 1}{x} dx = x + 3\sqrt[3]{x} + \ln|x| + C.$
 - **b.** $\int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}} \frac{1}{\sqrt{1-x^2}} dx = \frac{\pi}{6}$. If you don't remember the derivatives of the inverse trigonometric functions, either derive them as shown in class or use the Pythagorean theorem to find a substitution as shown in class.

3.

a.
$$\int (x^2 + 2x)^5 (x+1) \, dx = \frac{(x^2 + 2x)^6}{12} + C.$$
 Substitute $u = (x^2 + 2x).$
b. $\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos x}{\sin x} \, dx = \frac{1}{2} \ln 2.$ Substitute $u = \sin x.$

4.
$$A = \int_{-1}^{1} 2 - 2y^2 \, dy = \frac{8}{3}$$
.

Class Statistics

% Grade	Test#1	Test#2	Test#3	Test 4	Test 5	Final Exam	Final Grade
90-100 (A)	12	16	13	13			
80-89 (B)	10	8	7	6			
70-79 (C)	4	3	6	4			
60-69 (D)	5	2	2	3			
0-59 (F)	1	3	2	3			
Test Avg	83.3%	84.5%	84.7%	82.6%	%	%	%