Print Your Name Here:

- Show all work in the space provided. We can give credit only for what you write! Indicate clearly if you continue on the back side, and write your name at the top of the scratch sheet if you will turn it in for grading.
- No books or notes (paper or electronic) or communication devices (smart/cell phones, internetconnected devices such as laptops, tablets, or I-watches) are allowed. A scientific calculator (not capable of graphing or symbolic calculations) is allowed-but it is not needed. If you use a calculator, you must still write out all operations performed on the calculator. Do not replace precise answers such as $\sqrt{2}, \frac{1}{3}$, or π with decimal approximations. Keep your eyes on your own paper!
- There are four (4) problems and the Maximum total score $=100$.

1. Evaluate and simplify using the appropriate part of the Fundamental Theorem of Calculus:
a. (15) $\frac{d}{d x} \int_{1}^{e^{3 x}} \ln t d t$
b. (10) $\int_{0}^{2} x^{2}+2^{x} d x$
2. Evaluate the following indefinite and definite integrals, as indicated.
a. (10) $\int \frac{x+\sqrt[3]{x}+1}{x} d x$
b. (15) $\int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}} \frac{1}{\sqrt{1-x^{2}}} d x$
3. Evaluate by the method of substitution:
a. (10) $\int\left(x^{2}+2 x\right)^{5}(x+1) d x$
b. (15) $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos x}{\sin x} d x$
4. (25) Sketch the region enclosed between the two curves $x=y^{2}$ and $x=2-y^{2}$. Find the area of the region, making a judicious choice to integrate with respect to x or to y.)

Solutions

1. Don't forget to use the Chain Rule in part (a)! Use $u=e^{3 x}$.
a. $\frac{d}{d x} \int_{1}^{e^{3 x}} \ln t d t=\frac{d}{d u} \int_{1}^{u} \ln t d t\left(\frac{d u}{d x}\right)=(\ln u)\left(\frac{d u}{d x}\right)=9 x e^{3 x}$.
b. $\int_{0}^{2} x^{2}+2^{x} d x=\frac{8}{3}+\frac{3}{\ln 2}$.
2. Beware: $\int \frac{f}{g} \neq \frac{\int f}{\int g}!!!!$
a. $\int \frac{x+\sqrt[3]{x}+1}{x} d x=x+3 \sqrt[3]{x}+\ln |x|+C$.
b. $\int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}} \frac{1}{\sqrt{1-x^{2}}} d x=\frac{\pi}{6}$. If you don't remember the derivatives of the inverse trigonometric functions, either derive them as shown in class or use the Pythagorean theorem to find a substitution as shown in class.
3.

a. $\int\left(x^{2}+2 x\right)^{5}(x+1) d x=\frac{\left(x^{2}+2 x\right)^{6}}{12}+C$. Substitute $u=\left(x^{2}+2 x\right)$.
b. $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos x}{\sin x} d x=\frac{1}{2} \ln 2$. Substitute $u=\sin x$.
4. $\quad A=\int_{-1}^{1} 2-2 y^{2} d y=\frac{8}{3}$.

Class Statistics

\% Grade	Test\#1	Test\#2	Test\#3	Test 4	Test 5	Final Exam	Final Grade
$90-100$ (A)	12	16	13	13			
$80-89(\mathrm{~B})$	10	8	7	6			
$70-79$ (C)	4	3	6	4			
$60-69$ (D)	5	2	2	3			
$0-59(\mathrm{~F})$	1	3	2	3			
Test Avg	83.3%	84.5%	84.7%	82.6%	$\%$	$\%$	$\%$

