I have read, understood, and complied with the instructions in the box below. Legible

Signature and LSU ID \#:

- Download a copy of this test. If you have a device with a stylus that can write directly on the pdf file, please use it. Just click on "comment" in the right-hand margin and then click on the icon for a stylus that appears at the top, and you should be able write, and erase using the icon for an eraser at the top. Otherwise, print a copy of this test on 8.5 by 11 inch letter size paper. If no printer is available, make a hand-written facsimile. Be sure to copy and sign the statement above even if you make a hand-written facsimile. But you do not need to hand-copy this large box of instructions. Do copy each question statement and number however on your facsimile.
- Show All Work in the space provided. Grading is based on the correctness of the work shown to justify the answers. We can give credit only for what you write! Indicate clearly if you continue a problem on a second page. There are 4 problems.
- You may use your text book, Zoom recordings of our class meetings, your class notes, and your homework! However, no other sources or communication devices may be used. All work must be your own. If you use a calculator, you must still write out all operations performed on the calculator. Do not replace precise answers, such as $\sqrt{2}, \pi$, or $\cos \frac{\pi}{7}$ with decimal approximations. Make all obvious simplifications. Submit only your own work!
- This is a take-home test on an honor system. You may take as much time as you like, but I must receive your completed test by email no later than 12:30 PM on Saturday, March 6. If you have no device that scans your work directly to a single pdf file, then photograph your pages in the correct order with your phone, being sure to orient all pages the same way, and save as jpeg, then try this please: put the jpeg files into your computer, highlight the whole group of pictures, right click PRINT and then select PRINT TO PDF. That way I can receive a multipage PDF file which is possible to grade in a way you will be able to read later. Email that file to me rich@math.lsu.edu as soon as you are ready but no later than Saturday, March 6, at 12:30 PM. These instructions express my trust and confidence in your integrity and good character.

Before you send me your pdf file containing all your pages as one single file, with the problems in the correct order, and please make sure everything is legible. Use a sufficiently dark writing instrument for your test and make sharp, clear images, so I can read them. I simply cannot grade what I cannot read. Thank you for your consideration in this!

1. (40) Let \mathcal{C} be the curve defined by the parametric equations $x=\cos t$ and $y=2 \sin t, 0 \leq t \leq 2 \pi$.
a. (15) Find $\frac{d y}{d x}$ as a function of t.
b. (5) Use the result of part (a) to find the slope of the straight line tangent to \mathcal{C} at the point corresponding to $t=\frac{\pi}{4}$.
c. (15) Use the result of part (a) to Find $\frac{d^{2} y}{d x^{2}}$ as a function of t.
d. (5) Use the result of part (c) to find the interval $a<t<b$ on which the curve \mathcal{C} is concave down.
2. (20) Find the area of the region R that lies inside the circle given by the polar equation $r=2 \sin \theta$ but outside the circle $r=1$. (You will need to find the values of θ at which the two circles intersect. A sketch is helpful.)
3. (20) Consider the conic section with polar equation $r=\frac{3}{1-2 \cos \theta}, \theta \neq \pm \frac{\pi}{3}$.
a. (5) Find the eccentricity e and name the type of conic section.
b. (5) Remembering that the origin is at a focus F, find the distance d from F to the directrix line D, and a rectangular (i.e. an $x, y-$) equation for D.
c. (5) Find polar coordinates for the vertices (the points where the polar (i.e. x-) axis crosses the graph). (Hint: remember that r can be negative and what this means graphically.)
d. (5) Find the points on the graph corresponding to $\theta= \pm \frac{\pi}{2}$ and make a rough sketch of the conic section, labeling the points mentioned in parts (c) and (d).
4. (20)
a. (7) Express the endless decimal $0 . \overline{09}=0.090909 \ldots$ as a ratio of two whole numbers. (Hint: Interpret the endless decimal as the sum of a geometric series.)
b. (7) Find the sum of the telescoping series $\sum_{n=1}^{\infty}\left(\frac{1}{2 n}-\frac{1}{2 n+2}\right)$.
c. (6) Find all values of x for which $\sum_{n=1}^{\infty} 2^{n} x^{n}$ converges.

Solutions

1.

a. $\frac{d y}{d x}=-2 \cot t, t \neq n \pi$
b. The slope is -2 .
c. $\frac{d^{2} y}{d x^{2}}=-2 \csc ^{3} t, t \neq n \pi$
d. The curve \mathcal{C} is concave down on $0<t<\pi$.
2. $A=\int_{\frac{\pi}{6}}^{\frac{5 \pi}{6}} \frac{1}{2}\left(4 \sin ^{2} \theta\right)-\frac{1}{2} 1^{2} d \theta=\frac{\pi}{3}+\frac{\sqrt{3}}{2}=\frac{2 \pi+3 \sqrt{3}}{6}$
3.
a. $e=2$; hyperbola
b. $d=\frac{3}{2} ; x=-\frac{3}{2}$ is a rectangular equation for D.
c. polar coordinates for the vertices: $V_{1}(1, \pi)$ and $V_{2}(-3,0)$, which could also be expressed as $(3, \pi)$.
d. (5) $\left(3, \pm \frac{\pi}{2}\right)$. See Figure (1) below. The figure also shows the asymptotes but you don't need to draw these for credit.
4.
a. $0 . \overline{09}=0.090909 \ldots=\sum_{n=1}^{\infty} 9\left(\frac{1}{100}\right)^{n}=\frac{1}{11}$.
b. This telescoping series $\sum_{n=1}^{\infty}\left(\frac{1}{2 n}-\frac{1}{2 n+2}\right)=\frac{1}{2}$.
c. We need $|2 x|<1$, so that $x \in\left(-\frac{1}{2}, \frac{1}{2}\right)$.

Figure 1: Hyperbola for Problem 3.

Class Statistics

Grade	Test\#1	Test\#2	Test\#3	Test\#4	Final Exam	Final Grade
$90-100(\mathrm{~A})$	15	14				
$80-89(\mathrm{~B})$	4	5				
$70-79(\mathrm{C})$	3	3				
$60-69(\mathrm{D})$	0	1				
$0-59(\mathrm{~F})$	0	0				
Test Avg	89.5%	88.91%				

