Print Your Name Here:

Show all work in the space provided and keep your eyes on your own paper. Indicate clearly if you continue on the back. Write your name at the top of the scratch sheet if you will hand it in to be graded. No books, notes, smart/cell phones, I-watches, communication devices, internet devices, or electronic devices are allowed except for a scientific calculator-which is not needed. The maximum total score is 100 .

Part I: Short Questions. Answer $\mathbf{8}$ of the 12 short questions: 6 points each. Circle the numbers of the 8 questions that you want counted-no more than 8 ! Detailed explanations are not required, but they may help with partial credit and are risk-free! Maximum score: 48 points.

1. Find the sum of the infinite series that begins as follows: $\frac{1}{2}-\frac{1}{3}+\frac{1}{2^{2}}-\frac{1}{3^{2}}+-\cdots+\frac{1}{2^{k}}-\frac{1}{3^{k}}+-\cdots$.
2. Is the series in question 1 conditionally convergent or absolutely convergent?
3. True or False: There exists a rearrangement of $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}$ that converges to $-100 \pi^{2}$.
4. True or False: If every rearrangement of $\sum_{k=1}^{\infty} a_{k}$ is convergent, then $\sum_{k=1}^{\infty} a_{k}$ is absolutely convergent.
5. Let $x, y \in \mathbb{R}$, and form the sequences e and f with $e_{j}=\frac{x^{j}}{j!}$ and $f_{k}=\frac{y^{k}}{k!}, j, k=0,1,2, \ldots$. Write the third term, c_{3}, of the Cauchy product sequence c of e with f.
6. Give an example of a double series $\sum_{(j, k) \in \mathbb{N} \times \mathbb{N}} a_{j, k}$ in which each column sum $c_{k}=\sum_{j=1}^{\infty} a_{j, k}=0$, making the sequence of column sums c_{k} absolutely summable, and yet $\sum_{(j, k) \in \mathbb{N} \times \mathbb{N}}\left|a_{j, k}\right|$ diverges.
7. For all $n \in \mathbb{N}$ define a sequence $x^{(n)} \in l_{1}$ by letting the k th term of $x^{(n)}$ be $x_{k}^{(n)}=\frac{n+1}{n 2^{k}}$, for all $k \in \mathbb{N}$. Find $\left\|x^{(n)}\right\|_{1}$.
8. True or False: the infinite series $\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k^{2}}$ has a rearrangement that converges to π.
9. True or False: If $0 \leq \alpha<1$, then $\sum_{k=1}^{\infty} x^{k}$ converges uniformly on $[-\alpha, \alpha]$.
10. True or False: The sum $\sum_{k=1}^{\infty} x^{k}$ converges uniformly on $[0,1)$.
11. Let x be sequence of real numbers for which $\sum_{k=1}^{\infty} x_{k}^{+}=P \in \mathbb{R}$ and for which $\sum_{k=1}^{\infty} x_{k}^{-}=Q \in \mathbb{R}$. Find $\sum_{k=1}^{\infty}\left|x_{k}\right|$.
12. Using the sequence x from Question 11, find $\sum_{k=1}^{\infty} x_{k}$.

Part II: Proofs. Prove carefully 2 of the following 3 theorems for 26 points each. Circle the letters of the 2 proofs to be counted in the list below-no more than 2! You may write the proofs below, on the back, or on scratch paper. Maximum total credit: 52 points.
A. If c is a summable sequence and if $x \in[0,1]$, prove that $\sum_{k=0}^{\infty} c_{k} x^{k}$ converges.
B. For all $n \in \mathbb{N}$ define a sequence $x^{(n)} \in l_{1}$ by letting the k th term of $x^{(n)}$ be $x_{k}^{(n)}= \begin{cases}1 & \text { if } k \leq n, \\ \frac{1}{k^{2}} & \text { if } k>n .\end{cases}$
(i) Show that $x^{(n)} \in l_{1}$ by showing $\left\|x^{(n)}\right\|_{1}<\infty$.
(ii) Define a sequence x by letting $x_{k}=\lim _{n \rightarrow \infty} x_{k}^{(n)}$, for all $k \in \mathbb{N}$. Is $x \in l_{1}$? Prove your answer, yes or no.
(iii) Is $x^{(n)}$ a Cauchy sequence in l_{1} ? Prove your answer, yes or no.
C. If $\sum_{k=1}^{\infty} x_{k}$ is conditionally convergent, prove that $\sum_{k=1}^{\infty} x_{k}^{+}=\infty=\sum_{k=1}^{\infty} x_{k}^{-}$. (Recall that $x_{k}=x_{k}^{+}-x_{k}^{-}$and $\left.\left|x_{k}\right|=x_{k}^{+}+x_{k}^{-}.\right)$

Solutions and Class Statistics

1. $\frac{1}{2}$
2. absolutely convergent
3. True, since the alternating harmonic series is conditionally convergent.
4. True: If the series were either divergent or only conditionally convergent, then it could not have the stated property.
5. $c_{3}=\frac{x^{3}}{3!}+\frac{x^{2} y}{2}+\frac{x y^{2}}{2}+\frac{y^{3}}{3!}$.
6. For example, let each column sequence begin with 1 and then -1 , and then all 0 's.
7. $\left\|x^{(n)}\right\|_{1}=1+\frac{1}{n}$
8. False: the series is absolutely convergent.
9. True, by the Weierstrass M-test.
10. False: we proved this in class!
11. $\sum_{k=1}^{\infty}\left|x_{k}\right|=P+Q$
12. $\sum_{k=1}^{\infty} x_{k}=P-Q$

Remarks about the proofs

Proofs are graded for logical coherence. Be sure to state what is your hypothesis (the assumption) and what conclusion you are seeking to prove. Then include justifications for each step. Your job is to show me through your writing that you understand the reasoning. If you have questions about the grading of the proofs on this test, or if you are having difficulty writing satisfactory proofs, please bring me your test and also the graded homework from which the questions in Part II came. This will help us to see how you use the corrections to your homework in order to learn to write better proofs. Also please bring your notebook showing how we presented the same proof in class after the homework was graded. It is important to learn from both sources.

A: If $x=1$ then $\sum c_{k} x^{k}=\sum c_{k}$, which converges by hypothesis. If $0 \leq x<1$ then $\sum x^{k}$ is an absolutely convergent geometric series. Since $\sum c_{k}$ converges, $c_{k} \rightarrow 0$ and since the sequence c_{k} converges it is bounded. Therefore $\sum c_{k} x^{k}$ is absolutely convergent, and is thus convergent.

B: (i) $\left\|x^{(n)}\right\|_{1}=n+\sum_{k=n+1}^{\infty} \frac{1}{k^{2}}<\infty$ by the p-series test or by the integral test. Thus $x^{(n)} \in l_{1}$ for each $n \in \mathbb{N}$. (ii) $x \notin l_{1}$ since $\|x\|_{1}=\sum_{k=1}^{\infty} 1$ which diverges to infinity. (iii) $x^{(n)}$ is not Cauchy in the l_{1}-norm since if it were Cauchy then its limit x would have to be in l_{1}, which is a complete normed vector space. But $x \notin l_{1}$.
C: There are only 4 possibilities. If we denote $\sum_{k=1}^{\infty} x_{k}^{+}=P$, and $\sum_{k=1}^{\infty} x_{k}^{-}=Q$ we have the following conclusions. If P and Q are both finite, we need to show that $\sum\left|x_{k}\right|=P+Q<\infty$, which is impossible because we are given that $\sum x_{k}$ is conditionally convergent. If $P=\infty$ and if Q is finite, prove that $\sum x_{k}$ diverges to infinity, which is impossible since the sum is given as (conditionally) convergent. If $Q=\infty$ and if P is finite, prove that $\sum x_{k}$ diverges to $-\infty$, which violates conditional summability. Thus we are left with the conclusion that $P=\infty=Q$.

Class Statistics

Grade	Test\#1	Test\#2	Final Exam	Final Grade
$90-100(\mathrm{~A})$	0	4	3	
$80-89(\mathrm{~B})$	0	1	1	
$70-79$ (C)	3	0	1	
$60-69$ (D)	2	0	0	
$0-59$ (F)	0	0	0	
Test Avg	72%	92.8%	90.6%	$\%$
HW Avg	7.4	7.24	7.15	

