1. p. 12, Additional Exercise. Suppose $x=\frac{p}{q} \neq 0$ with p and $q \in \mathbb{N}$ and such that $x^{2} \in \mathbb{N}$. Fix such an x for the remainder of this exercise. Prove by the following steps that $x \in \mathbb{N}$. (This can be expressed as follows: A natural number that is not a perfect square has no rational square root.)
(a) Show that the set $S=\{a+b x \mid a, b \in \mathbb{Z}\}$ is closed under both addition and multiplication, where x is as given and fixed above.
(b) Show that if $s \in S \backslash\{0\}$ then $|s| \geq \frac{1}{q}$.
(c) Show that if $x \notin \mathbb{N}$ and $\lfloor x\rfloor$ is the greatest integer in x, then $(x-\lfloor x\rfloor)^{k} \rightarrow 0$ as $k \rightarrow \infty$ and is a sequence of nonzero numbers in S. Show that this is a contradiction, so that $x \in \mathbb{N}$.
