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A vector space V is a set of objects, called vectors on which
there are two operations defined:

» addition
(Vv,w)—vVv+w

» multiplication by scalar
(k,v) — kv

satisfying the following long but natural list of conditions:



Axioms |: Addition

V+W=W-+V . addition is commutative )
u+(v+w)=(Uu+v)+w : addition is associatative



Axioms |: Addition

V+W=W+V : addition is commutative )
u+(v+w)=(Uu+v)+w : addition is associatative

The associativity condition allows us to write either of
u+(v+w)and (u+v)-+wsimply as

u-+v+w,

without any ambiguity.



Axioms Il: Zero and Negatives

There is a special vector 0, the zero vector, for which
u+0=u forallvectorsuinV (2)

Note that, because of commutativity of addition, we also then
have
O0+u=u forallvectorsuinV 3)



Axioms Il: Zero and Negatives

There is a special vector 0, the zero vector, for which
u+0=u forallvectorsuinV (2)

Note that, because of commutativity of addition, we also then
have

O0+u=u forallvectorsuinV 3)

For every vector u there is a ‘negative’ —u for which

u+(-u)=0 4



Axioms IlI: Multiplication by Scalars

For the multiplication by scalars the conditions are

v =v
(a+ b)vav + bv
a(v+w)=av +aw
a(bv) = (ab)v

(5)



Vectors in plane geometry

Fix a point A in the plane.



Vectors in plane geometry

Fix a point A in the plane.
To each point P in the plane we then have the ordered pair
(A, P), which we think of geometrically as a vector

—

AP



Addition of geometric vectors

Geometric vectors are added by the parallelogram law:




Multiplication by scalars of geometric vectors
2AP

is the vector Ab, where Q is along the ray from A to P, but of
twice the length of AP.



Multiplication by scalars of geometric vectors
2AP

is the vector A?Q, where Q is along the ray from A to P, but of
twice the length of AP.

(-1)AP = —AP

is the vector from A to the point P’ on the ray away from AP but
at equal distance from A as P:

Q



Tangent space

The set of all geometric vectors in the plane starting at some
point P is a vector space.



Tangent space

The set of all geometric vectors in the plane starting at some
point P is a vector space.

It is sometimes called the tangent space to the plane at A.



Tangent space

The set of all geometric vectors in the plane starting at some
point P is a vector space.

It is sometimes called the tangent space to the plane at A.

A tangent vector AP is often identified with a tangent vector Bb
if they are parallel, have the same direction, and magnitude.



The two-dimensional space R?

The vector space R?:

R* = {(x,y) : X,y € R}

Addition:

X, y) +(w,z) = (x +w,y +2)

Multiplication by scalar

k(x,y) = (kx,ky)

v=(-1,6)«

aUu+v=(37)

u=(4,1)




The three-dimensional space R3
The vector space R?:

R® ={(x,y,z) : X,y,z € R}
Addition:
(a1,a2,83) + (b1, b2, b3) = (a1 + by, 8, + bz, a3 + bs)
Multiplication by scalar

k(x,y,z) = (kx,ky, kz)

u=(1,1,2)

Z-axis

v/4’,\2.25, 1.5)
X-axis

u+v=(6,3.25,3.5)




Some Simple Theorems

Theorem
The zero vector is unique, i.e. if 0’ is also vector for which

v+0 =v forallv e V

then
0=0



Proof of Uniqueness of the Zero Vector

Proof. The idea is to look at the sum of 0 and the potential
other candidate 0'.



Proof of Uniqueness of the Zero Vector

Proof. The idea is to look at the sum of 0 and the potential
other candidate 0’. One one hand,

0+0 =0

because 0 added to any vector is that vector.



Proof of Uniqueness of the Zero Vector

Proof. The idea is to look at the sum of 0 and the potential
other candidate 0’. One one hand,

0+0 =0

because 0 added to any vector is that vector.
On the other hand,
0+0 =0

because 0’ added to any vector is that vector.



Proof of Uniqueness of the Zero Vector

Proof. The idea is to look at the sum of 0 and the potential
other candidate 0’. One one hand,

0+0 =0

because 0 added to any vector is that vector.
On the other hand,

0+0 =0
because 0’ added to any vector is that vector.
Hence
0=0

Done.



Some Simple Theorems

Theorem
For any vector u,

Ou=0



Proof for Zero times any Vector is the Zero Vector
Proof. Let
x =0u



Proof for Zero times any Vector is the Zero Vector
Proof. Let
x =0u

Then
X 4+ X =0u + Ou

(6)



Proof for Zero times any Vector is the Zero Vector
Proof. Let

X = 0u
Then
X 4+ X =0u + Ou
= (0+0)u
6
_ou (6)
=X
Thus
X+ X=X

Now add —x to both sides to get (using associativity)
X+ X+ (=X =X+ (—X)

and so
X =0.

Done.



Uniqueness of the Negative of a Vector

Theorem
For any vector u, there is exactly one vector with the property
that when added to u the result is O.



Proof for Uniquenss of Negative

Proof. Suppose u’ and u” both have the property that when
added to u the result is 0.



Proof for Uniquenss of Negative

Proof. Suppose u’ and u” both have the property that when
added to u the result is 0.

Then

u=u+0



Proof for Uniquenss of Negative

Proof. Suppose u’ and u” both have the property that when
added to u the result is 0.

Then
u=u+0
— u/+ (u +u//)
=(u"+u) +u” 7)
=0+u”
— ul/

Thus, u’ is equal to u”.



Proof for Uniquenss of Negative

Proof. Suppose u’ and u” both have the property that when
added to u the result is 0.

Then
u=u+0
— u/+ (u +U//)
=(u"+u) +u” 7)
=0+u”
— ul/

Thus, u’ is equal to u”.

The unique vector which when added to u produces —u may
thus be called the negative of u, and it is denoted

—u



Negative of a Vector and Multiplication by —1

Theorem
For any vector u,
(—1)u = —u



Proof for (—1)u = —u

Proof. We have
u+(—1u=(1+(-1))u
=0u (8)
=0



Proof for (—1)u = —u

Proof. We have
u+(—1u=(1+(-1))u
=0u (8)
=0

Thus, (—1)u, when added to u, gives the zero vector. Hence,
(—1)u is the negative of u.



Linear combinations

A linear combination of vectors is a sum of multiples of the
vectors.



Linear combinations

A linear combination of vectors is a sum of multiples of the
vectors.

Thus,
2v + (—3)w + 14y

is a linear combination of the vectors v, w, and y.



Basis

A basis for a vector space V is a set of vectors such that every
vector can be expressed in a unique way as a linear
combination of the basis vectors.

Thus, two vectors u; and u, would form a basis of a vector
space if every vector v in the space can be expressed as

vV = au; + buy,

where a and b are scalars, and there is no other way to express
v as a linear combination of u; and u,.



Standard Basis of R?

Any two non-zero vectors which are not along the same line
form a basis of R2.



Standard Basis of R?

Any two non-zero vectors which are not along the same line
form a basis of R2.

The standard basis of R? is given by the vectors

er—i—(1,0)
€2 :j = (07 1) (9)
j=(0,1)

i = (1,0)




Standard Basis of R?3

Any three non-zero vectors which do not lie on the same plane
form a basis of R3.



Standard Basis of R?3

Any three non-zero vectors which do not lie on the same plane
form a basis of R3.

The standard basis of R? is given by the vectors

e, =i= (1,0,0)
€2 :J = (Oa 17 0) (10)
es =k = (0,0,1)




Scalar Product

A scalar product on a vector space V associates to any pair of
vectors v,w € V a scalar v - w, satisfying:

V-W=W-V
V-W+2z)=Vv-W+V-Z (12)
(kv) -w =Kk(v-w)

and we also require that
v-v>0 forallv € V, and

v - v = 0 holds only for the zero vector v = 0.



Scalar product with the zero vector is zero
We can check that

v-0=0 forallveV.



Scalar product with the zero vector is zero
We can check that

v-0=0 forallveV.

To see this, let

Then

v
=v-0 (12)
X



Scalar product with the zero vector is zero
We can check that

v-0=0 forallveV.

To see this, let

X=v-0
Then
X+Xx=v-(0+0)
=v-0 (12)
=X
Thus,
X +X =X
and hence



Scalar product of geometric vectors

AP - AQ = |AP||AQ| cos(anglebetween AP andA®)



Length

For a geometric vector AP then

AP - AP = |AP||AP|cos0 = |AP?



Length

For a geometric vector AP then

AP - AP = |AP||AP|cos0 = |AP?

Thus, the scalar product of a vector with itself is the square of
the length of the vector.



Orthogonality

Notice that the scalar product is 0 if and only if:



Orthogonality

Notice that the scalar product is 0 if and only if:
» one of the vectors AP and AE) is 0; OR
» the vectors are perpendicular
Two vectors are said to be orthogonal if their scalar product is 0.



Scalar product in R?

(X1,¥1) - (X2,¥2) = X1X2 + Y12



Scalar product in R?

(X1,¥1) - (X2,¥2) = X1X2 + Y1Y2
For example,

(1,-4)-(5,3)=1+5+(—4)«x3=-7



Scalar product in R3

(X1,Y1,21) - (X2,Y2,22) = X1Xo + Y1Y2 + 212>



Scalar product in R3

(X1,Y1,21) - (X2,Y2,22) = X1Xo + Y1Y2 + 212>

For example,

(1,-4,2)-(5,3,4) =15+ (-4)*3+2x4=1



Scalar product and lengths and angles

For the vector
v =(a,b,c)

the scalar product with itself is
_ _ 2 2, 2
v-v=axa+bxb+cxc=a"+b"+c

Geometrically it is, by Pythagoras, the square of the length of v.



Magnitude or Norm

The length or magnitude or norm of a general vector v is taken

to be
V| =V -V (13)



Scalar product, lengths, and angles

The angle 6 between vectors v and w can be worked out from
the formula
V-Ww = |v||w|cosd

The vectors are perpendicular if their scalar product is 0, but
neither vector is 0.



Diagonals of a Cube

Exercise. Find the angle between the diagonals of a cube.

(0,0,a)

(0,a,0)

(a,0,0)




Diagonals of a Cube: solution

Sol: For convenience of calculation, take a coordinate system
with origin at one corner, and axes along the edges. Say each
side has length a. Then the two diagonal vectors are

d; =(a,a,a) and d, = (a,—a,a)

Work out the lengths of these two vectors, and their scalar
product. Then work out

where ¢ is the angle between the diagonals.



Angle between Diagonals of a Cube

Now
di| = Va2 +a2+a2=+3a2=aV3
di| = Va2 + a2 + a2 = v/3a2 = aV3
d;-dy=axa+ax(—a)+axa=a’
Then
a2 a2 1
cosf=—— = —— ==
V3a2v3a2 3a? 3
and so

1
6 = arccos =
3



Orthonormal Basis

A unit vector is a vector whose norm is 1.



Orthonormal Basis

A unit vector is a vector whose norm is 1.

In a vector space, a basis is said to be orthonormal if the
vectors in the basis are each unit vectors and they are all
perpendicular to each other.



Orthonormal Basis

A unit vector is a vector whose norm is 1.

In a vector space, a basis is said to be orthonormal if the
vectors in the basis are each unit vectors and they are all
perpendicular to each other.

Thus the standard basis i, j, k is an orthonormal basis of R3:



Wedge Product

To model a parallelogram with sides given by vectors v and w,
and with a chosen orientation, we consider a new object, the
wedge product

VAW

One can form a new vector space by using wedge products of
pairs of vectors in a vector space V; this space is

A2V



Wedge Product Rules: Alternating and Bilinear

The wedge product is alternating, i.e. the wedge of a vector
with itself is zero:
VAV =0 (14)

(Okay, to be sure the 0 here is the zero vector in A%V.)



Wedge Product Rules: Alternating and Bilinear

The wedge product is alternating, i.e. the wedge of a vector
with itself is zero:
VAV =0 (14)

(Okay, to be sure the 0 here is the zero vector in A%V.)
The wedge product is bilinear:
UA(V+W)=UAV + UAW

(U+V)AW =UAW + VAW (15)
uAkv =k(uAv)=(ku)Av

for all vectors u,v,w € V and all scalars k € R.



Wedge Product Rules: Basis behavior

Dont worry about this too much at this stage ...



Wedge Product Rules: Basis behavior

Dont worry about this too much at this stage ...
If
€1,€2,....,EN

is a basis of V then the wedge products
€1 N€er,e; Nez,...,e1 Aen,Ex A€z, ....,en_1 N\ ey

form a basis of A2V.



Wedge Product for R3: working it out
Consider

U = Uqi + Upj + uszk, V = Vii + Vo] + v3k



Wedge Product for R3: working it out
Consider

U = Uqi + Upj + uszk, V = Vii + Vo] + v3k
Then

v— o o .
uaA ulvll\/\)+u1v2|/\1+u1v3|/\k
0 —KAi
+ UpV1 J AT 4 UxVoj Aj + Upvzj AK
~~

Zin
+ ugvik AT + ugvo K Aj +usvsk Ak
~—

—jnk

= (Upv3z — UgVo)j A K + (ugvy — ugva)k Ai + (Ugva — Upvy)i A
(16)



Wedge Product for R3: the formula

UAV = (UaVvz — UgV2)j AK + (Ugvy — UpVa)K Ai + (UpVa — UpVp )i A
(17)



Hodge Star in R3

The Hodge star operator in R® associates two a wedge u AV a
certain vector in R® using the following scheme for the basis
vectors:

AN
KAD) =] (18)
VAN



Cross Product in R3: Definition

The cross product of vectors in R3 is given by

UxVv=xUuAv) (19)



Cross Product in R3: Definition

The cross product of vectors in R3 is given by

uxv=sx(uAv)

Thus,
jxk=i
kKxi=j
ixj=k

(19)

(20)



Cross Product in R3: formula

U x vV = (Ugvz — UgVp)i — (U1vz — UgVvy)j + (U1ve — ugvy )k (21)



Triple Wedge

Just as A2V we can also form A3V. The elements are sums of
triple wedge products

UAvV AW



Triple Wedge rules

UAV AW

is multilinear, i.e. it is linear in each of the vectors u, v, w; for
example,

UAQBV +4V)AW =3UAVAW+4uAV AW

and it is alternating, i.e. it is O whenever two of u,v,w are
equal; for instance,
UAVAU=0

and
uUAuAw=0



Skew-symmetry

From the multilinearity it follows that the triple wedge is O if at
least one of the vectors is 0.



Skew-symmetry

From the multilinearity it follows that the triple wedge is O if at
least one of the vectors is 0.

One other interesting fact we proved in class is skew-symmetry:
if you switch any two of the vectors then the triple product
changes sign:

UAVAW=—-VAUAW

and
UAVAW =—-WAV AU

and
UAVAW = —UAWAV



A triple product exercise

2/ A (3] AK—BKAT+4iA])=6/AjAK — 10 JAKAT +8fATA]
——

—-jAITAK
N—_——
iAjAk
=0+ 10iAjAk+0
(22)



A triple product exercise

2/ A (3] AK—BKAT+4iA])=6/AjAK — 10 JAKAT +8fATA]
——

—-jAITAK
N—_——
iAjAk
=0+ 10iAjAk+0
(22)

Check that
KATAj=iA]AK



Triple product worked out

Let's work out the triple wedge of vectors
a= (a1, az,a3), b= (bg,bz,bs), c=(cy,C2,C3)

anbAcC
= (aqi + apj + agk)A
[(bocz — b3co)j Ak — (bicz — bzca)k Ai + (bicy — bacy)i Aj]
= aj(bacz — bscy)ij Ak —az(bicz — bscy)j Ak A
+ag(bicy — bocr )k AT A
= [a1(b2C3 — bacy) — ax(biCs — bscy) + +az(bico — bocy)]i AjAK



Triple product and Determinant

Thus
anbAc=det(a,b,c)injAk (23)

where the quantity det[- - - | on the right is the determinant:

a; bl Cy
det |la, by ©5

az bz c3 (24)

= aj(byc3 — bscy) — ax(bics — bscq) + ag(bicy — bycy)



Properties of the Determinant

From the properties of the triple wedge propduct we see that

the determinant
a; by ¢

det ao bz Co
az bz c3

» is equal to O if two of the columns are the same (i.e. if two
of the vectors a, b, ¢ are equal);

» switched sign if two columns are interchanged (i.e., for
instance, a A b A c flips to its negative when two of the
vectors are interchanged).



Scalar Triple Product and the Determinant

Recall that
b x ¢ = (b2c3 — b3cy)i — (b1C3 — bscy)j + (b1C2 — baca)k
Taking the scalar product of this with the vector
a=ai+ay+ask
gives

a-(bxc)
= ay(byC3 — bacy) — az(bics — bscy) + az(bicy — bacy)
(25)

which is exactly the determinant det[a, b, c].



Scalar Triple Product and the Determinant

Thus,
a; bl C1
a-(bxc)=det |a; b, ¢ (26)

ag bz c3



Properties of the scalar triple product

Using the triple product’s relationship with the determinant see
that

a-(bxc)

is 0 if any pair of the vectors a, b, ¢ are equal to each other.



Properties of the scalar triple product

Using the triple product’s relationship with the determinant see
that
a-(bxc)

is 0 if any pair of the vectors a, b, ¢ are equal to each other.
Also it flips sign if two of the vectors are interchanged.



Direction of the cross product

Now
a-(axb)=0 and b-(axb)=0

Thus, a and b are both perpendicular to a x b.



Direction of the cross product

Now
a-(axb)=0 and b-(axb)=0

Thus, a and b are both perpendicular to a x b.
Thus, a x b points perpendicularly to the plane containing a
and b.



Direction of the cross product

Now
a-(axb)=0 and b-(axb)=0

Thus, a and b are both perpendicular to a x b.

Thus, a x b points perpendicularly to the plane containing a
and b.

Of course, if a equals b, or if either is 0, then a x b is also 0.



Cross and Scalar

(a-b)® + [axb[* =a?|b|? (27)

This can be verified by longhand calculation!



The cross product again

axb

is a vector which is perpendicular to the plane containing a and
b. Its magnitude is

la x b| =|a||b| sind

where 6 is the angle between a and b (taken between 0 and ).



The cross product again

axb

is a vector which is perpendicular to the plane containing a and
b. Its magnitude is

la x b| =|a||b| sind

where 6 is the angle between a and b (taken between 0 and ).

The eaxct direction of a x b is obtained by the “right hand rule”.



Cross product and area

The magnitude of the cross product of a and b is

lax b|=|al|b| sing

which is the area of the parallelogram formed by a and b.



Summary of some properties of the Scalar Triple
Product

a-(bxc)=(axb)-c

a-(bxc)=c-(axb)=b-(cxa)



Scalar triple product and volume

a- (b x c) =det[a,b,c]

is the volume of the parallelopiped formed by the three vectors
a, b,c.



Scalar triple product and volume

a- (b x c) =det[a,b,c]

is the volume of the parallelopiped formed by the three vectors
a, b,c.

In particular, this is 0 if the solid body collapses to something
lower dimensional, for instance if a lies in the plane of b and c.



A vector triple product identity

ax(bxc)=(a-c)b—(a-b)c



