Vector Spaces
 Math 1553 Fall 2009

Ambar Sengupta

A vector space V is a set of objects, called vectors on which there are two operations defined:

- addition

$$
(v, w) \mapsto v+w
$$

- multiplication by scalar

$$
(k, v) \mapsto k v
$$

satisfying the following long but natural list of conditions:

Axioms I: Addition

$$
\begin{align*}
v+w & =w+v \quad: \text { addition is commutative } \\
u+(v+w) & =(u+v)+w \quad: \text { addition is associatative } \tag{1}
\end{align*}
$$

Axioms I: Addition

$$
\begin{align*}
v+w & =w+v \quad: \text { addition is commutative } \tag{1}\\
u+(v+w) & =(u+v)+w \quad: \text { addition is associatative }
\end{align*}
$$

The associativity condition allows us to write either of $u+(v+w)$ and $(u+v)+w$ simply as

$$
u+v+w
$$

without any ambiguity.

Axioms II: Zero and Negatives

There is a special vector $\mathbf{0}$, the zero vector, for which

$$
\begin{equation*}
u+\mathbf{0}=u \text { for all vectors } u \text { in } V \tag{2}
\end{equation*}
$$

Note that, because of commutativity of addition, we also then have

$$
\begin{equation*}
\mathbf{0}+u=u \text { for all vectors } u \text { in } V \tag{3}
\end{equation*}
$$

Axioms II: Zero and Negatives

There is a special vector $\mathbf{0}$, the zero vector, for which

$$
\begin{equation*}
u+\mathbf{0}=u \text { for all vectors } u \text { in } V \tag{2}
\end{equation*}
$$

Note that, because of commutativity of addition, we also then have

$$
\begin{equation*}
\mathbf{0}+u=u \text { for all vectors } u \text { in } V \tag{3}
\end{equation*}
$$

For every vector u there is a 'negative' - u for which

$$
\begin{equation*}
u+(-u)=\mathbf{0} \tag{4}
\end{equation*}
$$

Axioms III: Multiplication by Scalars

For the multiplication by scalars the conditions are

$$
\begin{gather*}
1 v=v \\
(a+b) v a v+b v \\
a(v+w)=a v+a w \tag{5}\\
a(b v)=(a b) v
\end{gather*}
$$

Vectors in plane geometry

Fix a point A in the plane.

Vectors in plane geometry

Fix a point A in the plane.
To each point P in the plane we then have the ordered pair (A, P), which we think of geometrically as a vector

$$
\overrightarrow{A P}
$$

Addition of geometric vectors

Geometric vectors are added by the parallelogram law:

Multiplication by scalars of geometric vectors

$2 \overrightarrow{A P}$

is the vector $\overrightarrow{A Q}$, where Q is along the ray from A to P, but of twice the length of $A P$.

Multiplication by scalars of geometric vectors

$2 \overrightarrow{A P}$

is the vector $\overrightarrow{A Q}$, where Q is along the ray from A to P, but of twice the length of $A P$.

$$
(-1) \overrightarrow{A P}=-\overrightarrow{A P}
$$

is the vector from A to the point P^{\prime} on the ray away from $\overrightarrow{A P}$ but at equal distance from A as P :

Tangent space

The set of all geometric vectors in the plane starting at some point P is a vector space.

Tangent space

The set of all geometric vectors in the plane starting at some point P is a vector space.

It is sometimes called the tangent space to the plane at A.

Tangent space

The set of all geometric vectors in the plane starting at some point P is a vector space.

It is sometimes called the tangent space to the plane at A.
A tangent vector $\overrightarrow{A P}$ is often identified with a tangent vector $\overrightarrow{B Q}$ if they are parallel, have the same direction, and magnitude.

The two-dimensional space \mathbb{R}^{2}
The vector space \mathbb{R}^{2} :

$$
\mathbb{R}^{2}=\{(x, y): x, y \in \mathbb{R}\}
$$

Addition:

$$
(x, y)+(w, z)=(x+w, y+z)
$$

Multiplication by scalar

$$
k(x, y)=(k x, k y)
$$

The three-dimensional space \mathbb{R}^{3}

The vector space \mathbb{R}^{2} :

$$
\mathbb{R}^{3}=\{(x, y, z): x, y, z \in \mathbb{R}\}
$$

Addition:

$$
\left(a_{1}, a_{2}, a_{3}\right)+\left(b_{1}, b_{2}, b_{3}\right)=\left(a_{1}+b_{1}, a_{2}+b_{2}, a_{3}+b_{3}\right)
$$

Multiplication by scalar

$$
k(x, y, z)=(k x, k y, k z)
$$

Some Simple Theorems

Theorem
The zero vector is unique, i.e. if $\mathbf{0}^{\prime}$ is also vector for which

$$
\mathbf{v}+\mathbf{0}^{\prime}=\mathbf{v} \quad \text { for all } \mathbf{v} \in V
$$

then

$$
\mathbf{0}^{\prime}=\mathbf{0}
$$

Proof of Uniqueness of the Zero Vector

Proof. The idea is to look at the sum of $\mathbf{0}$ and the potential other candidate $\mathbf{0}^{\prime}$.

Proof of Uniqueness of the Zero Vector

Proof. The idea is to look at the sum of $\mathbf{0}$ and the potential other candidate $\mathbf{0}^{\prime}$. One one hand,

$$
\mathbf{0}+\mathbf{0}^{\prime}=\mathbf{0}^{\prime}
$$

because $\mathbf{0}$ added to any vector is that vector.

Proof of Uniqueness of the Zero Vector

Proof. The idea is to look at the sum of $\mathbf{0}$ and the potential other candidate $\mathbf{0}^{\prime}$. One one hand,

$$
\mathbf{0}+\mathbf{0}^{\prime}=\mathbf{0}^{\prime}
$$

because $\mathbf{0}$ added to any vector is that vector.
On the other hand,

$$
\mathbf{0}+\mathbf{0}^{\prime}=\mathbf{0}
$$

because $\mathbf{0}^{\prime}$ added to any vector is that vector.

Proof of Uniqueness of the Zero Vector

Proof. The idea is to look at the sum of $\mathbf{0}$ and the potential other candidate $\mathbf{0}^{\prime}$. One one hand,

$$
\mathbf{0}+\mathbf{0}^{\prime}=\mathbf{0}^{\prime}
$$

because $\mathbf{0}$ added to any vector is that vector.
On the other hand,

$$
\mathbf{0}+\mathbf{0}^{\prime}=\mathbf{0}
$$

because $\mathbf{0}^{\prime}$ added to any vector is that vector. Hence

$$
\mathbf{0}=\mathbf{0}^{\prime}
$$

Done. \square

Some Simple Theorems

Theorem
For any vector u,

$$
0 \mathbf{u}=\mathbf{0}
$$

Proof for Zero times any Vector is the Zero Vector Proof. Let

$$
\mathbf{x}=0 \mathbf{u}
$$

Proof for Zero times any Vector is the Zero Vector Proof. Let

$$
\mathbf{x}=0 \mathbf{u}
$$

Then

$$
\begin{align*}
\mathbf{x}+\mathbf{x} & =0 \mathbf{u}+0 \mathbf{u} \\
& =(0+0) \mathbf{u} \\
& =0 \mathbf{u} \tag{6}\\
& =\mathbf{x}
\end{align*}
$$

Proof for Zero times any Vector is the Zero Vector Proof. Let

$$
\mathbf{x}=0 \mathbf{u}
$$

Then

$$
\begin{align*}
\mathbf{x}+\mathbf{x} & =0 \mathbf{u}+0 \mathbf{u} \\
& =(0+0) \mathbf{u} \tag{6}\\
& =0 \mathbf{u} \\
& =\mathbf{x}
\end{align*}
$$

Thus

$$
\mathbf{x}+\mathbf{x}=\mathbf{x}
$$

Now add $-\mathbf{x}$ to both sides to get (using associativity)

$$
\mathbf{x}+\mathbf{x}+(-\mathbf{x}=\mathbf{x}+(-\mathbf{x})
$$

and so

$$
\mathbf{x}=\mathbf{0}
$$

Done.

Uniqueness of the Negative of a Vector

Theorem
For any vector \mathbf{u}, there is exactly one vector with the property that when added to \mathbf{u} the result is $\mathbf{0}$.

Proof for Uniquenss of Negative

Proof. Suppose \mathbf{u}^{\prime} and $\mathbf{u}^{\prime \prime}$ both have the property that when added to \mathbf{u} the result is $\mathbf{0}$.

Proof for Uniquenss of Negative

Proof. Suppose \mathbf{u}^{\prime} and $\mathbf{u}^{\prime \prime}$ both have the property that when added to \mathbf{u} the result is $\mathbf{0}$.

Then

$$
\mathbf{u}^{\prime}=\mathbf{u}^{\prime}+\mathbf{0}
$$

Proof for Uniquenss of Negative

Proof. Suppose \mathbf{u}^{\prime} and $\mathbf{u}^{\prime \prime}$ both have the property that when added to \mathbf{u} the result is $\mathbf{0}$.

Then

$$
\begin{align*}
\mathbf{u}^{\prime} & =\mathbf{u}^{\prime}+\mathbf{0} \\
& =\mathbf{u}^{\prime}+\left(\mathbf{u}+\mathbf{u}^{\prime \prime}\right) \\
& =\left(\mathbf{u}^{\prime}+\mathbf{u}\right) \quad+\mathbf{u}^{\prime \prime} \tag{7}\\
& =\mathbf{0}+\mathbf{u}^{\prime \prime} \\
& =\mathbf{u}^{\prime \prime}
\end{align*}
$$

Thus, \mathbf{u}^{\prime} is equal to $\mathbf{u}^{\prime \prime} . \square$

Proof for Uniquenss of Negative

Proof. Suppose \mathbf{u}^{\prime} and $\mathbf{u}^{\prime \prime}$ both have the property that when added to \mathbf{u} the result is $\mathbf{0}$.

Then

$$
\begin{aligned}
\mathbf{u}^{\prime} & =\mathbf{u}^{\prime}+\mathbf{0} \\
& =\mathbf{u}^{\prime}+\quad\left(\mathbf{u}+\mathbf{u}^{\prime \prime}\right) \\
& =\left(\mathbf{u}^{\prime}+\mathbf{u}\right) \quad+\mathbf{u}^{\prime \prime} \\
& =\mathbf{0}+\mathbf{u}^{\prime \prime} \\
& =\mathbf{u}^{\prime \prime}
\end{aligned}
$$

Thus, \mathbf{u}^{\prime} is equal to $\mathbf{u}^{\prime \prime} . \square$
The unique vector which when added to \mathbf{u} produces $-\mathbf{u}$ may thus be called the negative of \mathbf{u}, and it is denoted

Negative of a Vector and Multiplication by -1

Theorem
For any vector u,

$$
(-1) \mathbf{u}=-\mathbf{u}
$$

Proof for $(-1) \mathbf{u}=-\mathbf{u}$

Proof. We have

$$
\begin{align*}
\mathbf{u}+(-1) \mathbf{u} & =(1+(-1)) \mathbf{u} \\
& =0 \mathbf{u} \tag{8}\\
& =\mathbf{0}
\end{align*}
$$

Proof for $(-1) \mathbf{u}=-\mathbf{u}$

Proof. We have

$$
\begin{align*}
\mathbf{u}+(-1) \mathbf{u} & =(1+(-1)) \mathbf{u} \\
& =0 \mathbf{u} \tag{8}\\
& =\mathbf{0}
\end{align*}
$$

Thus, $(-1) \mathbf{u}$, when added to \mathbf{u}, gives the zero vector. Hence, $(-1) \mathbf{u}$ is the negative of \mathbf{u}.

Linear combinations

A linear combination of vectors is a sum of multiples of the vectors.

Linear combinations

A linear combination of vectors is a sum of multiples of the vectors.

Thus,

$$
2 \mathbf{v}+(-3) \mathbf{w}+14 \mathbf{y}
$$

is a linear combination of the vectors \mathbf{v}, \mathbf{w}, and \mathbf{y}.

Basis

A basis for a vector space V is a set of vectors such that every vector can be expressed in a unique way as a linear combination of the basis vectors.

Thus, two vectors \mathbf{u}_{1} and \mathbf{u}_{2} would form a basis of a vector space if every vector \mathbf{v} in the space can be expressed as

$$
\mathbf{v}=a \mathbf{u}_{1}+b \mathbf{u}_{2}
$$

where a and b are scalars, and there is no other way to express \mathbf{v} as a linear combination of \mathbf{u}_{1} and \mathbf{u}_{2}.

Standard Basis of \mathbb{R}^{2}

Any two non-zero vectors which are not along the same line form a basis of \mathbb{R}^{2}.

Standard Basis of \mathbb{R}^{2}

Any two non-zero vectors which are not along the same line form a basis of \mathbb{R}^{2}.

The standard basis of \mathbb{R}^{2} is given by the vectors

$$
\begin{align*}
& \mathbf{e}_{1}=\mathbf{i}=(1,0) \tag{9}\\
& \mathbf{e}_{2}=\mathbf{j}=(0,1)
\end{align*}
$$

Standard Basis of \mathbb{R}^{3}

Any three non-zero vectors which do not lie on the same plane form a basis of \mathbb{R}^{3}.

Standard Basis of \mathbb{R}^{3}

Any three non-zero vectors which do not lie on the same plane form a basis of \mathbb{R}^{3}.

The standard basis of \mathbb{R}^{3} is given by the vectors

$$
\begin{align*}
& \mathbf{e}_{1}=\mathbf{i}=(1,0,0) \\
& \mathbf{e}_{2}=\mathbf{j}=(0,1,0) \tag{10}\\
& \mathbf{e}_{3}=\mathbf{k}=(0,0,1)
\end{align*}
$$

Scalar Product

A scalar product on a vector space V associates to any pair of vectors $v, w \in V$ a scalar $v \cdot w$, satisfying:

$$
\begin{align*}
v \cdot w & =w \cdot v \\
v \cdot(w+z) & =v \cdot w+v \cdot z \tag{11}\\
(k v) \cdot w & =k(v \cdot w)
\end{align*}
$$

and we also require that

$$
\mathbf{v} \cdot \mathbf{v} \geq 0 \quad \text { for all } \mathbf{v} \in V \text {, and }
$$

$\mathbf{v} \cdot \mathbf{v}=0$ holds only for the zero vector $\mathbf{v}=\mathbf{0}$.

Scalar product with the zero vector is zero

We can check that

$$
\mathbf{v} \cdot \mathbf{0}=0 \quad \text { for all } \mathbf{v} \in V
$$

Scalar product with the zero vector is zero

We can check that

$$
\mathbf{v} \cdot \mathbf{0}=0 \quad \text { for all } \mathbf{v} \in V
$$

To see this, let

$$
x=\mathbf{v} \cdot \mathbf{0}
$$

Then

$$
\begin{align*}
x+x & =\mathbf{v} \cdot(\mathbf{0}+\mathbf{0}) \\
& =\mathbf{v} \cdot \mathbf{0} \tag{12}\\
& =x
\end{align*}
$$

Scalar product with the zero vector is zero

We can check that

$$
\mathbf{v} \cdot \mathbf{0}=0 \quad \text { for all } \mathbf{v} \in V
$$

To see this, let

$$
x=\mathbf{v} \cdot \mathbf{0}
$$

Then

$$
\begin{align*}
x+x & =\mathbf{v} \cdot(\mathbf{0}+\mathbf{0}) \\
& =\mathbf{v} \cdot \mathbf{0} \tag{12}\\
& =x
\end{align*}
$$

Thus,

$$
x+x=x
$$

and hence

$$
x=0
$$

Scalar product of geometric vectors

$\overrightarrow{A P} \cdot \overrightarrow{A Q}=|\overrightarrow{A P}||\overrightarrow{A Q}| \cos$ (angle between $A P$ and $A Q$)

Length

For a geometric vector $\overrightarrow{A P}$ then

$$
\overrightarrow{A P} \cdot \overrightarrow{A P}=|\overrightarrow{A P}||\overrightarrow{A P}| \cos 0=|\overrightarrow{A P}|^{2}
$$

Length

For a geometric vector $\overrightarrow{A P}$ then

$$
\overrightarrow{A P} \cdot \overrightarrow{A P}=|\overrightarrow{A P}||\overrightarrow{A P}| \cos 0=|\overrightarrow{A P}|^{2}
$$

Thus, the scalar product of a vector with itself is the square of the length of the vector.

Orthogonality

Notice that the scalar product is 0 if and only if:

Orthogonality

Notice that the scalar product is 0 if and only if:

- one of the vectors $\overrightarrow{A P}$ and $\overrightarrow{A Q}$ is 0 ; OR
- the vectors are perpendicular

Two vectors are said to be orthogonal if their scalar product is 0 .

Scalar product in \mathbb{R}^{2}

$$
\left(x_{1}, y_{1}\right) \cdot\left(x_{2}, y_{2}\right)=x_{1} x_{2}+y_{1} y_{2}
$$

Scalar product in \mathbb{R}^{2}

$$
\left(x_{1}, y_{1}\right) \cdot\left(x_{2}, y_{2}\right)=x_{1} x_{2}+y_{1} y_{2}
$$

For example,

$$
(1,-4) \cdot(5,3)=1 * 5+(-4) * 3=-7
$$

Scalar product in \mathbb{R}^{3}

$$
\left(x_{1}, y_{1}, z_{1}\right) \cdot\left(x_{2}, y_{2}, z_{2}\right)=x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}
$$

Scalar product in \mathbb{R}^{3}

$$
\left(x_{1}, y_{1}, z_{1}\right) \cdot\left(x_{2}, y_{2}, z_{2}\right)=x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}
$$

For example,

$$
(1,-4,2) \cdot(5,3,4)=1 * 5+(-4) * 3+2 * 4=1
$$

Scalar product and lengths and angles

For the vector

$$
\mathbf{v}=(a, b, c)
$$

the scalar product with itself is

$$
\mathbf{v} \cdot \mathbf{v}=a * a+b * b+c * c=a^{2}+b^{2}+c^{2}
$$

Geometrically it is, by Pythagoras, the square of the length of \mathbf{v}.

Magnitude or Norm

The length or magnitude or norm of a general vector \mathbf{v} is taken to be

$$
\begin{equation*}
|\mathbf{v}|=\sqrt{\mathbf{v} \cdot \mathbf{v}} \tag{13}
\end{equation*}
$$

Scalar product, lengths, and angles

The angle θ between vectors \mathbf{v} and \mathbf{w} can be worked out from the formula

$$
\mathbf{v} \cdot \mathbf{w}=|\mathbf{v} \| \mathbf{w}| \cos \theta
$$

The vectors are perpendicular if their scalar product is 0 , but neither vector is $\mathbf{0}$.

Diagonals of a Cube

Exercise. Find the angle between the diagonals of a cube.

Diagonals of a Cube: solution

Sol: For convenience of calculation, take a coordinate system with origin at one corner, and axes along the edges. Say each side has length a. Then the two diagonal vectors are

$$
\mathbf{d}_{1}=(a, a, a) \quad \text { and } \quad \mathbf{d}_{2}=(a,-a, a)
$$

Work out the lengths of these two vectors, and their scalar product. Then work out

$$
\cos \theta=\frac{\mathbf{d}_{1} \cdot \mathbf{d}_{2}}{\left|\mathbf{d}_{1}\right|\left|\mathbf{d}_{2}\right|}
$$

where θ is the angle between the diagonals.

Angle between Diagonals of a Cube

Now

$$
\begin{aligned}
& \left|\mathbf{d}_{1}\right|=\sqrt{a^{2}+a^{2}+a^{2}}=\sqrt{3 a^{2}}=a \sqrt{3} \\
& \left|\mathbf{d}_{1}\right|=\sqrt{a^{2}+a^{2}+a^{2}}=\sqrt{3 a^{2}}=a \sqrt{3} \\
& \mathbf{d}_{1} \cdot \mathbf{d}_{2}=a * a+a *(-a)+a * a=a^{2}
\end{aligned}
$$

Then

$$
\cos \theta=\frac{a^{2}}{\sqrt{3 a^{2}} \sqrt{3 a^{2}}}=\frac{a^{2}}{3 a^{2}}=\frac{1}{3}
$$

and so

$$
\theta=\arccos \frac{1}{3}
$$

Orthonormal Basis

A unit vector is a vector whose norm is 1 .

Orthonormal Basis

A unit vector is a vector whose norm is 1 .
In a vector space, a basis is said to be orthonormal if the vectors in the basis are each unit vectors and they are all perpendicular to each other.

Orthonormal Basis

A unit vector is a vector whose norm is 1 .
In a vector space, a basis is said to be orthonormal if the vectors in the basis are each unit vectors and they are all perpendicular to each other.
Thus the standard basis $\mathbf{i}, \mathbf{j}, \mathbf{k}$ is an orthonormal basis of \mathbb{R}^{3} :

$$
\begin{aligned}
& \mathbf{i} \cdot \mathbf{i}=\mathbf{j} \cdot \mathbf{j}=\mathbf{k} \cdot \mathbf{k}=1 \\
& \mathbf{i} \cdot \mathbf{j}=\mathbf{j} \cdot \mathbf{k}=\mathbf{k} \cdot \mathbf{i}=0
\end{aligned}
$$

Wedge Product

To model a parallelogram with sides given by vectors v and w, and with a chosen orientation, we consider a new object, the wedge product

$$
v \wedge w
$$

One can form a new vector space by using wedge products of pairs of vectors in a vector space V; this space is
$\Lambda^{2} V$

Wedge Product Rules: Alternating and Bilinear

The wedge product is alternating, i.e. the wedge of a vector with itself is zero:

$$
\begin{equation*}
v \wedge v=0 \tag{14}
\end{equation*}
$$

(Okay, to be sure the 0 here is the zero vector in $\Lambda^{2} V$.)

Wedge Product Rules: Alternating and Bilinear

The wedge product is alternating, i.e. the wedge of a vector with itself is zero:

$$
\begin{equation*}
v \wedge v=0 \tag{14}
\end{equation*}
$$

(Okay, to be sure the 0 here is the zero vector in $\Lambda^{2} V$.)
The wedge product is bilinear.

$$
\begin{align*}
u \wedge(v+w) & =u \wedge v+u \wedge w \\
(u+v) \wedge w & =u \wedge w+v \wedge w \tag{15}\\
u \wedge k v & =k(u \wedge v)=(k u) \wedge v
\end{align*}
$$

for all vectors $u, v, w \in V$ and all scalars $k \in \mathbb{R}$.

Wedge Product Rules: Basis behavior

Dont worry about this too much at this stage ...

Wedge Product Rules: Basis behavior

Dont worry about this too much at this stage ... If

$$
e_{1}, e_{2}, \ldots ., e_{N}
$$

is a basis of V then the wedge products

$$
e_{1} \wedge e_{2}, e_{1} \wedge e_{3}, \ldots, e_{1} \wedge e_{N}, e_{2} \wedge e_{3}, \ldots ., e_{N-1} \wedge e_{N}
$$

form a basis of $\Lambda^{2} V$.

Wedge Product for \mathbb{R}^{3} : working it out
Consider

$$
\mathbf{u}=u_{1} \mathbf{i}+u_{2} \mathbf{j}+u_{3} \mathbf{k}, \quad \mathbf{v}=v_{1} \mathbf{i}+v_{2} \mathbf{j}+v_{3} \mathbf{k}
$$

Wedge Product for \mathbb{R}^{3} : working it out

Consider

$$
\mathbf{u}=u_{1} \mathbf{i}+u_{2} \mathbf{j}+u_{3} \mathbf{k}, \quad \mathbf{v}=v_{1} \mathbf{i}+v_{2} \mathbf{j}+v_{3} \mathbf{k}
$$

Then

$$
\begin{aligned}
\mathbf{u} \wedge \mathbf{v}= & u_{1} v_{1} \underbrace{\mathbf{i} \wedge \mathbf{i}}_{\mathbf{0}}+u_{1} v_{2} \mathbf{i} \wedge \mathbf{j}+u_{1} v_{3} \underbrace{\mathbf{i} \wedge \mathbf{k}}_{-\mathbf{k} \wedge \mathbf{i}} \\
& +u_{2} v_{1} \underbrace{\mathbf{j} \wedge \mathbf{i}}_{-\mathbf{i} \wedge \mathbf{j}}+u_{2} v_{2} \mathbf{j} \wedge \mathbf{j}+u_{2} v_{3} \mathbf{j} \wedge \mathbf{k}
\end{aligned}
$$

$$
+u_{3} v_{1} \mathbf{k} \wedge \mathbf{i}+u_{3} v_{2} \underbrace{\mathbf{k} \wedge \mathbf{j}}_{-\mathbf{j} \wedge \mathbf{k}}+u_{3} v_{3} \mathbf{k} \wedge \mathbf{k}
$$

$$
\begin{equation*}
=\left(u_{2} v_{3}-u_{3} v_{2}\right) \mathbf{j} \wedge \mathbf{k}+\left(u_{3} v_{1}-u_{1} v_{3}\right) \mathbf{k} \wedge \mathbf{i}+\left(u_{1} v_{2}-u_{2} v_{1}\right) \mathbf{i} \wedge \mathbf{j} \tag{16}
\end{equation*}
$$

Wedge Product for \mathbb{R}^{3} : the formula

$$
\mathbf{u} \wedge \mathbf{v}=\left(u_{2} v_{3}-u_{3} v_{2}\right) \mathbf{j} \wedge \mathbf{k}+\left(u_{3} v_{1}-u_{1} v_{3}\right) \mathbf{k} \wedge \mathbf{i}+\left(u_{1} v_{2}-u_{2} v_{1}\right) \mathbf{i} \wedge \mathbf{j}
$$

Hodge Star in \mathbb{R}^{3}

The Hodge star operator in \mathbb{R}^{3} associates two a wedge $u \wedge v$ a certain vector in \mathbb{R}^{3} using the following scheme for the basis vectors:

$$
\begin{align*}
*(\mathbf{j} \wedge \mathbf{k}) & =\mathbf{i} \\
*(\mathbf{k} \wedge \mathbf{i}) & =\mathbf{j} \tag{18}\\
*(\mathbf{i} \wedge \mathbf{j}) & =\mathbf{k}
\end{align*}
$$

Cross Product in \mathbb{R}^{3} : Definition

The cross product of vectors in \mathbb{R}^{3} is given by

$$
\begin{equation*}
\mathbf{u} \times \mathbf{v}=*(\mathbf{u} \wedge \mathbf{v}) \tag{19}
\end{equation*}
$$

Cross Product in \mathbb{R}^{3} : Definition

The cross product of vectors in \mathbb{R}^{3} is given by

$$
\begin{equation*}
\mathbf{u} \times \mathbf{v}=*(\mathbf{u} \wedge \mathbf{v}) \tag{19}
\end{equation*}
$$

Thus,

$$
\begin{align*}
\mathbf{j} \times \mathbf{k} & =\mathbf{i} \\
\mathbf{k} \times \mathbf{i} & =\mathbf{j} \tag{20}\\
\mathbf{i} \times \mathbf{j} & =\mathbf{k}
\end{align*}
$$

Cross Product in \mathbb{R}^{3} : formula

$$
\mathbf{u} \times \mathbf{v}=\left(u_{2} v_{3}-u_{3} v_{2}\right) \mathbf{i}-\left(u_{1} v_{3}-u_{3} v_{1}\right) \mathbf{j}+\left(u_{1} v_{2}-u_{2} v_{1}\right) \mathbf{k}(21)
$$

Triple Wedge

Just as $\Lambda^{2} V$ we can also form $\Lambda^{3} V$. The elements are sums of triple wedge products

$$
u \wedge v \wedge w
$$

Triple Wedge rules

$$
u \wedge v \wedge w
$$

is multilinear, i.e. it is linear in each of the vectors u, v, w; for example,

$$
u \wedge\left(3 v+4 v^{\prime}\right) \wedge w=3 u \wedge v \wedge w+4 u \wedge v^{\prime} \wedge w
$$

and it is alternating, i.e. it is 0 whenever two of u, v, w are equal; for instance,

$$
u \wedge v \wedge u=0
$$

and

$$
u \wedge u \wedge w=0
$$

Skew-symmetry

From the multilinearity it follows that the triple wedge is 0 if at least one of the vectors is 0 .

Skew-symmetry

From the multilinearity it follows that the triple wedge is 0 if at least one of the vectors is 0 .

One other interesting fact we proved in class is skew-symmetry: if you switch any two of the vectors then the triple product changes sign:

$$
u \wedge v \wedge w=-v \wedge u \wedge w
$$

and

$$
u \wedge v \wedge w=-w \wedge v \wedge u
$$

and

$$
u \wedge v \wedge w=-u \wedge w \wedge v
$$

A triple product exercise

$$
\begin{align*}
2 \mathbf{j} \wedge(3 \mathbf{j} \wedge \mathbf{k}-5 \mathbf{k} \wedge \mathbf{i}+4 \mathbf{i} \wedge \mathbf{j}) & =6 \mathbf{j} \wedge \mathbf{j} \wedge \mathbf{k}-10 \underbrace{\mathbf{j} \wedge \mathbf{i}}_{-\underbrace{\mathbf{j} \wedge \mathbf{i} \wedge \mathbf{k}}_{i \wedge \mathfrak{j} \wedge \mathbf{k}}}+8 \mathbf{j} \wedge \mathbf{i} \wedge \mathbf{j} \\
& =0+10 \mathbf{i} \wedge \mathbf{j} \wedge \mathbf{k}+0 \tag{22}
\end{align*}
$$

A triple product exercise

$$
\begin{align*}
2 \mathbf{j} \wedge(3 \mathbf{j} \wedge \mathbf{k}-5 \mathbf{k} \wedge \mathbf{i}+4 \mathbf{i} \wedge \mathbf{j}) & =6 \mathbf{j} \wedge \mathbf{j} \wedge \mathbf{k}-10 \underbrace{\mathbf{j} \mathbf{k} \wedge \mathbf{i}}_{-\underbrace{\mathbf{j} \wedge \mathbf{i} \wedge \mathbf{k}}_{i \wedge \wedge \wedge \mathbf{k}}}+8 \mathbf{j} \wedge \mathbf{i} \wedge \mathbf{j} \\
& =0+10 \mathbf{i} \wedge \mathbf{j} \wedge \mathbf{k}+0 \tag{22}
\end{align*}
$$

Check that

$$
\mathbf{k} \wedge \mathbf{i} \wedge \mathbf{j}=\mathbf{i} \wedge \mathbf{j} \wedge \mathbf{k}
$$

Triple product worked out

Let's work out the triple wedge of vectors

$$
\mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right), \quad \mathbf{b}=\left(b_{1}, b_{2}, b_{3}\right), \quad \mathbf{c}=\left(c_{1}, c_{2}, c_{3}\right)
$$

$\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c}$
$=\left(a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}\right) \wedge$

$$
\left[\left(b_{2} c_{3}-b_{3} c_{2}\right) \mathbf{j} \wedge \mathbf{k}-\left(b_{1} c_{3}-b_{3} c_{1}\right) \mathbf{k} \wedge \mathbf{i}+\left(b_{1} c_{2}-b_{2} c_{1}\right) \mathbf{i} \wedge \mathbf{j}\right]
$$

$$
=a_{1}\left(b_{2} c_{3}-b_{3} c_{2}\right) \mathbf{i} \mathbf{j} \wedge \mathbf{k}-a_{2}\left(b_{1} c_{3}-b_{3} c_{1}\right) \mathbf{j} \wedge \mathbf{k} \wedge \mathbf{i}
$$

$$
+a_{3}\left(b_{1} c_{2}-b_{2} c_{1}\right) \mathbf{k} \wedge \mathbf{i} \wedge \mathbf{j}
$$

$=\left[a_{1}\left(b_{2} c_{3}-b_{3} c_{2}\right)-a_{2}\left(b_{1} c_{3}-b_{3} c_{1}\right)++a_{3}\left(b_{1} c_{2}-b_{2} c_{1}\right)\right] \mathbf{i} \wedge \mathbf{j} \wedge \mathbf{k}$

Triple product and Determinant

Thus

$$
\begin{equation*}
\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c}=\operatorname{det}(\mathbf{a}, \mathbf{b}, \mathbf{c}) \mathbf{i} \wedge \mathbf{j} \wedge \mathbf{k} \tag{23}
\end{equation*}
$$

where the quantity $\operatorname{det}[\cdots]$ on the right is the determinant:

$$
\begin{align*}
& \operatorname{det}\left[\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right] \tag{24}\\
& =a_{1}\left(b_{2} c_{3}-b_{3} c_{2}\right)-a_{2}\left(b_{1} c_{3}-b_{3} c_{1}\right)+a_{3}\left(b_{1} c_{2}-b_{2} c_{1}\right)
\end{align*}
$$

Properties of the Determinant

From the properties of the triple wedge propduct we see that the determinant

$$
\operatorname{det}\left[\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right]
$$

- is equal to 0 if two of the columns are the same (i.e. if two of the vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are equal);
- switched sign if two columns are interchanged (i.e., for instance, $\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c}$ flips to its negative when two of the vectors are interchanged).

Scalar Triple Product and the Determinant

Recall that

$$
\mathbf{b} \times \mathbf{c}=\left(b_{2} c_{3}-b_{3} c_{2}\right) \mathbf{i}-\left(b_{1} c_{3}-b_{3} c_{1}\right) \mathbf{j}+\left(b_{1} c_{2}-b_{2} c_{1}\right) \mathbf{k}
$$

Taking the scalar product of this with the vector

$$
\mathbf{a}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}
$$

gives

$$
\begin{align*}
& \mathbf{a} \cdot(\mathbf{b} \times \mathbf{c}) \\
& \quad=a_{1}\left(b_{2} c_{3}-b_{3} c_{2}\right)-a_{2}\left(b_{1} c_{3}-b_{3} c_{1}\right)+a_{3}\left(b_{1} c_{2}-b_{2} c_{1}\right) \tag{25}
\end{align*}
$$

which is exactly the determinant $\operatorname{det}[\mathbf{a}, \mathbf{b}, \mathbf{c}]$.

Scalar Triple Product and the Determinant

Thus,

$$
\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=\operatorname{det}\left[\begin{array}{lll}
a_{1} & b_{1} & c_{1} \tag{26}\\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right]
$$

Properties of the scalar triple product

Using the triple product's relationship with the determinant see that

$$
\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})
$$

is 0 if any pair of the vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are equal to each other.

Properties of the scalar triple product

Using the triple product's relationship with the determinant see that

$$
\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})
$$

is 0 if any pair of the vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are equal to each other. Also it flips sign if two of the vectors are interchanged.

Direction of the cross product

Now

$$
\mathbf{a} \cdot(\mathbf{a} \times \mathbf{b})=0 \quad \text { and } \quad \mathbf{b} \cdot(\mathbf{a} \times \mathbf{b})=0
$$

Thus, \mathbf{a} and \mathbf{b} are both perpendicular to $\mathbf{a} \times \mathbf{b}$.

Direction of the cross product

Now

$$
\mathbf{a} \cdot(\mathbf{a} \times \mathbf{b})=0 \quad \text { and } \quad \mathbf{b} \cdot(\mathbf{a} \times \mathbf{b})=0
$$

Thus, \mathbf{a} and \mathbf{b} are both perpendicular to $\mathbf{a} \times \mathbf{b}$. Thus, $\mathbf{a} \times \mathbf{b}$ points perpendicularly to the plane containing \mathbf{a} and \mathbf{b}.

Direction of the cross product

Now

$$
\mathbf{a} \cdot(\mathbf{a} \times \mathbf{b})=0 \quad \text { and } \quad \mathbf{b} \cdot(\mathbf{a} \times \mathbf{b})=0
$$

Thus, \mathbf{a} and \mathbf{b} are both perpendicular to $\mathbf{a} \times \mathbf{b}$.
Thus, $\mathbf{a} \times \mathbf{b}$ points perpendicularly to the plane containing \mathbf{a} and \mathbf{b}.
Of course, if \mathbf{a} equals \mathbf{b}, or if either is $\mathbf{0}$, then $\mathbf{a} \times \mathbf{b}$ is also $\mathbf{0}$.

Cross and Scalar

$$
\begin{equation*}
(\mathbf{a} \cdot \mathbf{b})^{2}+|\mathbf{a} \times \mathbf{b}|^{2}=|\mathbf{a}|^{2}|\mathbf{b}|^{2} \tag{27}
\end{equation*}
$$

This can be verified by longhand calculation!

The cross product again

$$
\mathbf{a} \times \mathbf{b}
$$

is a vector which is perpendicular to the plane containing a and b. Its magnitude is

$$
|\mathbf{a} \times \mathbf{b}|=|\mathbf{a}||\mathbf{b}| \sin \theta
$$

where θ is the angle between \mathbf{a} and \mathbf{b} (taken between 0 and π).

The cross product again

$$
\mathbf{a} \times \mathbf{b}
$$

is a vector which is perpendicular to the plane containing a and b. Its magnitude is

$$
|\mathbf{a} \times \mathbf{b}|=|\mathbf{a}||\mathbf{b}| \sin \theta
$$

where θ is the angle between \mathbf{a} and \mathbf{b} (taken between 0 and π).
The eaxct direction of $\mathbf{a} \times \mathbf{b}$ is obtained by the "right hand rule".

Cross product and area

The magnitude of the cross product of \mathbf{a} and \mathbf{b} is

$$
|\mathbf{a} \times \mathbf{b}|=|\mathbf{a}||\mathbf{b}| \sin \theta
$$

which is the area of the parallelogram formed by \mathbf{a} and \mathbf{b}.

Summary of some properties of the Scalar Triple Product

$$
\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}
$$

$$
\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=\mathbf{c} \cdot(\mathbf{a} \times \mathbf{b})=\mathbf{b} \cdot(\mathbf{c} \times \mathbf{a})
$$

Scalar triple product and volume

$$
\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=\operatorname{det}[\mathbf{a}, \mathbf{b}, \mathbf{c}]
$$

is the volume of the parallelopiped formed by the three vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$.

Scalar triple product and volume

$$
\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=\operatorname{det}[\mathbf{a}, \mathbf{b}, \mathbf{c}]
$$

is the volume of the parallelopiped formed by the three vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$.

In particular, this is 0 if the solid body collapses to something lower dimensional, for instance if a lies in the plane of \mathbf{b} and \mathbf{c}.

A vector triple product identity

$$
\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \cdot \mathbf{c}) \mathbf{b}-(\mathbf{a} \cdot \mathbf{b}) \mathbf{c}
$$

