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A vector space V is a set of objects, called vectors on which
there are two operations defined:

◮ addition
(v , w) 7→ v + w

◮ multiplication by scalar

(k , v) 7→ kv

satisfying the following long but natural list of conditions:



Axioms I: Addition

v + w = w + v : addition is commutative

u + (v + w) = (u + v) + w : addition is associatative
(1)



Axioms I: Addition

v + w = w + v : addition is commutative

u + (v + w) = (u + v) + w : addition is associatative
(1)

The associativity condition allows us to write either of
u + (v + w) and (u + v) + w simply as

u + v + w ,

without any ambiguity.



Axioms II: Zero and Negatives

There is a special vector 0, the zero vector, for which

u + 0 = u for all vectors u in V (2)

Note that, because of commutativity of addition, we also then
have

0 + u = u for all vectors u in V (3)



Axioms II: Zero and Negatives

There is a special vector 0, the zero vector, for which

u + 0 = u for all vectors u in V (2)

Note that, because of commutativity of addition, we also then
have

0 + u = u for all vectors u in V (3)

For every vector u there is a ‘negative’ −u for which

u + (−u) = 0 (4)



Axioms III: Multiplication by Scalars

For the multiplication by scalars the conditions are

1v = v

(a + b)vav + bv

a(v + w) = av + aw

a(bv) = (ab)v

(5)



Vectors in plane geometry

Fix a point A in the plane.



Vectors in plane geometry

Fix a point A in the plane.
To each point P in the plane we then have the ordered pair
(A, P), which we think of geometrically as a vector

~AP

A

P



Addition of geometric vectors

Geometric vectors are added by the parallelogram law:

A

P

Q

~AP + ~AQ



Multiplication by scalars of geometric vectors

2 ~AP

is the vector ~AQ, where Q is along the ray from A to P, but of
twice the length of AP.



Multiplication by scalars of geometric vectors

2 ~AP

is the vector ~AQ, where Q is along the ray from A to P, but of
twice the length of AP.

(−1) ~AP = − ~AP

is the vector from A to the point P ′ on the ray away from ~AP but
at equal distance from A as P:

A

P

Q

P ′



Tangent space

The set of all geometric vectors in the plane starting at some
point P is a vector space.



Tangent space

The set of all geometric vectors in the plane starting at some
point P is a vector space.

It is sometimes called the tangent space to the plane at A.



Tangent space

The set of all geometric vectors in the plane starting at some
point P is a vector space.

It is sometimes called the tangent space to the plane at A.

A tangent vector ~AP is often identified with a tangent vector ~BQ
if they are parallel, have the same direction, and magnitude.



The two-dimensional space R
2

The vector space R
2:

R
2 = {(x , y) : x , y ∈ R}

Addition:
(x , y) + (w , z) = (x + w , y + z)

Multiplication by scalar

k(x , y) = (kx , ky)

u = (4, 1)

v = (−1, 6)
u + v = (3, 7)



The three-dimensional space R
3

The vector space R
2:

R
3 = {(x , y , z) : x , y , z ∈ R}

Addition:

(a1, a2, a3) + (b1, b2, b3) = (a1 + b1, a2 + b2, a3 + b3)

Multiplication by scalar

k(x , y , z) = (kx , ky , kz)

x-axis

z-axis

u = (1, 1, 2)

v = (5, 2.25, 1.5)

u + v = (6, 3.25, 3.5)



Some Simple Theorems

Theorem
The zero vector is unique, i.e. if 0′ is also vector for which

v + 0′ = v for all v ∈ V

then
0′ = 0



Proof of Uniqueness of the Zero Vector

Proof. The idea is to look at the sum of 0 and the potential
other candidate 0′.
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Proof of Uniqueness of the Zero Vector

Proof. The idea is to look at the sum of 0 and the potential
other candidate 0′. One one hand,

0 + 0′ = 0′

because 0 added to any vector is that vector.
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Proof of Uniqueness of the Zero Vector

Proof. The idea is to look at the sum of 0 and the potential
other candidate 0′. One one hand,

0 + 0′ = 0′

because 0 added to any vector is that vector.
On the other hand,

0 + 0′ = 0

because 0′ added to any vector is that vector.
Hence

0 = 0′

Done.



Some Simple Theorems

Theorem
For any vector u,

0u = 0



Proof for Zero times any Vector is the Zero Vector
Proof. Let

x = 0u



Proof for Zero times any Vector is the Zero Vector
Proof. Let

x = 0u

Then

x + x = 0u + 0u

= (0 + 0)u

= 0u

= x

(6)



Proof for Zero times any Vector is the Zero Vector
Proof. Let

x = 0u

Then

x + x = 0u + 0u

= (0 + 0)u

= 0u

= x

(6)

Thus
x + x = x

Now add −x to both sides to get (using associativity)

x + x + (−x = x + (−x)

and so
x = 0.

Done.



Uniqueness of the Negative of a Vector

Theorem
For any vector u, there is exactly one vector with the property
that when added to u the result is 0.



Proof for Uniquenss of Negative

Proof. Suppose u′ and u′′ both have the property that when
added to u the result is 0.



Proof for Uniquenss of Negative

Proof. Suppose u′ and u′′ both have the property that when
added to u the result is 0.

Then

u′ = u′ + 0



Proof for Uniquenss of Negative

Proof. Suppose u′ and u′′ both have the property that when
added to u the result is 0.

Then

u′ = u′ + 0

= u′ + (u + u′′)

= (u′ + u) + u′′

= 0 + u′′

= u′′

(7)

Thus, u′ is equal to u′′.



Proof for Uniquenss of Negative

Proof. Suppose u′ and u′′ both have the property that when
added to u the result is 0.

Then

u′ = u′ + 0

= u′ + (u + u′′)

= (u′ + u) + u′′

= 0 + u′′

= u′′

(7)

Thus, u′ is equal to u′′.

The unique vector which when added to u produces −u may
thus be called the negative of u, and it is denoted

−u



Negative of a Vector and Multiplication by −1

Theorem
For any vector u,

(−1)u = −u



Proof for (−1)u = −u

Proof. We have

u + (−1)u =
(
1 + (−1)

)
u

= 0u

= 0

(8)



Proof for (−1)u = −u

Proof. We have

u + (−1)u =
(
1 + (−1)

)
u

= 0u

= 0

(8)

Thus, (−1)u, when added to u, gives the zero vector. Hence,
(−1)u is the negative of u.



Linear combinations

A linear combination of vectors is a sum of multiples of the
vectors.



Linear combinations

A linear combination of vectors is a sum of multiples of the
vectors.

Thus,
2v + (−3)w + 14y

is a linear combination of the vectors v, w, and y.



Basis

A basis for a vector space V is a set of vectors such that every
vector can be expressed in a unique way as a linear
combination of the basis vectors.

Thus, two vectors u1 and u2 would form a basis of a vector
space if every vector v in the space can be expressed as

v = au1 + bu2,

where a and b are scalars, and there is no other way to express
v as a linear combination of u1 and u2.



Standard Basis of R
2

Any two non-zero vectors which are not along the same line
form a basis of R

2.



Standard Basis of R
2

Any two non-zero vectors which are not along the same line
form a basis of R

2.

The standard basis of R
2 is given by the vectors

e1 = i = (1, 0)

e2 = j = (0, 1)
(9)

i = (1, 0)

j = (0, 1)



Standard Basis of R
3

Any three non-zero vectors which do not lie on the same plane
form a basis of R

3.



Standard Basis of R
3

Any three non-zero vectors which do not lie on the same plane
form a basis of R

3.

The standard basis of R
3 is given by the vectors

e1 = i = (1, 0, 0)

e2 = j = (0, 1, 0)

e3 = k = (0, 0, 1)

(10)

z-axis

x-axis

i = (1, 0, 0)

j = (0, 1, 0)

k = (0, 0, 1)



Scalar Product

A scalar product on a vector space V associates to any pair of
vectors v , w ∈ V a scalar v · w , satisfying:

v · w = w · v

v · (w + z) = v · w + v · z

(kv) · w = k(v · w)

(11)

and we also require that

v · v ≥ 0 for all v ∈ V , and

v · v = 0 holds only for the zero vector v = 0.



Scalar product with the zero vector is zero
We can check that

v · 0 = 0 for all v ∈ V .



Scalar product with the zero vector is zero
We can check that

v · 0 = 0 for all v ∈ V .

To see this, let
x = v · 0

Then

x + x = v · (0 + 0)

= v · 0

= x

(12)



Scalar product with the zero vector is zero
We can check that

v · 0 = 0 for all v ∈ V .

To see this, let
x = v · 0

Then

x + x = v · (0 + 0)

= v · 0

= x

(12)

Thus,
x + x = x

and hence
x = 0



Scalar product of geometric vectors

~AP · ~AQ = | ~AP| | ~AQ| cos(angle between ~AP and ~AQ)



Length

For a geometric vector ~AP then

~AP · ~AP = | ~AP|| ~AP| cos 0 = | ~AP|2



Length

For a geometric vector ~AP then

~AP · ~AP = | ~AP|| ~AP| cos 0 = | ~AP|2

Thus, the scalar product of a vector with itself is the square of
the length of the vector.



Orthogonality

Notice that the scalar product is 0 if and only if:



Orthogonality

Notice that the scalar product is 0 if and only if:
◮ one of the vectors ~AP and ~AQ is 0; OR
◮ the vectors are perpendicular

Two vectors are said to be orthogonal if their scalar product is 0.



Scalar product in R
2

(x1, y1) · (x2, y2) = x1x2 + y1y2



Scalar product in R
2

(x1, y1) · (x2, y2) = x1x2 + y1y2

For example,

(1,−4) · (5, 3) = 1 ∗ 5 + (−4) ∗ 3 = −7



Scalar product in R
3

(x1, y1, z1) · (x2, y2, z2) = x1x2 + y1y2 + z1z2



Scalar product in R
3

(x1, y1, z1) · (x2, y2, z2) = x1x2 + y1y2 + z1z2

For example,

(1,−4, 2) · (5, 3, 4) = 1 ∗ 5 + (−4) ∗ 3 + 2 ∗ 4 = 1



Scalar product and lengths and angles

For the vector
v = (a, b, c)

the scalar product with itself is

v · v = a ∗ a + b ∗ b + c ∗ c = a2 + b2 + c2

Geometrically it is, by Pythagoras, the square of the length of v.



Magnitude or Norm

The length or magnitude or norm of a general vector v is taken
to be

|v| =
√

v · v (13)



Scalar product, lengths, and angles

The angle θ between vectors v and w can be worked out from
the formula

v · w = |v||w| cos θ

The vectors are perpendicular if their scalar product is 0, but
neither vector is 0.



Diagonals of a Cube

Exercise. Find the angle between the diagonals of a cube.

(a, 0, 0)

(0, a, 0)

(0, 0, a)



Diagonals of a Cube: solution

Sol: For convenience of calculation, take a coordinate system
with origin at one corner, and axes along the edges. Say each
side has length a. Then the two diagonal vectors are

d1 = (a, a, a) and d2 = (a,−a, a)

Work out the lengths of these two vectors, and their scalar
product. Then work out

cos θ =
d1 · d2

|d1| |d2|

where θ is the angle between the diagonals.



Angle between Diagonals of a Cube

Now
|d1| =

√

a2 + a2 + a2 =
√

3a2 = a
√

3

|d1| =
√

a2 + a2 + a2 =
√

3a2 = a
√

3

d1 · d2 = a ∗ a + a ∗ (−a) + a ∗ a = a2

Then

cos θ =
a2

√
3a2

√
3a2

=
a2

3a2 =
1
3

and so

θ = arccos
1
3



Orthonormal Basis

A unit vector is a vector whose norm is 1.



Orthonormal Basis

A unit vector is a vector whose norm is 1.

In a vector space, a basis is said to be orthonormal if the
vectors in the basis are each unit vectors and they are all
perpendicular to each other.



Orthonormal Basis

A unit vector is a vector whose norm is 1.

In a vector space, a basis is said to be orthonormal if the
vectors in the basis are each unit vectors and they are all
perpendicular to each other.

Thus the standard basis i, j, k is an orthonormal basis of R
3:

i · i = j · j = k · k = 1

i · j = j · k = k · i = 0



Wedge Product

To model a parallelogram with sides given by vectors v and w ,
and with a chosen orientation, we consider a new object, the
wedge product

v ∧ w

One can form a new vector space by using wedge products of
pairs of vectors in a vector space V ; this space is

Λ2V



Wedge Product Rules: Alternating and Bilinear

The wedge product is alternating, i.e. the wedge of a vector
with itself is zero:

v ∧ v = 0 (14)

(Okay, to be sure the 0 here is the zero vector in Λ2V .)



Wedge Product Rules: Alternating and Bilinear

The wedge product is alternating, i.e. the wedge of a vector
with itself is zero:

v ∧ v = 0 (14)

(Okay, to be sure the 0 here is the zero vector in Λ2V .)

The wedge product is bilinear:

u ∧ (v + w) = u ∧ v + u ∧ w

(u + v) ∧ w = u ∧ w + v ∧ w

u ∧ kv = k(u ∧ v) = (ku) ∧ v

(15)

for all vectors u, v , w ∈ V and all scalars k ∈ R.



Wedge Product Rules: Basis behavior

Dont worry about this too much at this stage ...



Wedge Product Rules: Basis behavior

Dont worry about this too much at this stage ...
If

e1, e2, ...., eN

is a basis of V then the wedge products

e1 ∧ e2, e1 ∧ e3, ..., e1 ∧ eN , e2 ∧ e3, ...., eN−1 ∧ eN

form a basis of Λ2V .



Wedge Product for R
3: working it out

Consider

u = u1i + u2j + u3k, v = v1i + v2j + v3k



Wedge Product for R
3: working it out

Consider

u = u1i + u2j + u3k, v = v1i + v2j + v3k

Then

u ∧ v = u1v1 i ∧ i
︸︷︷︸

0

+ u1v2i ∧ j + u1v3 i ∧ k
︸︷︷︸

−k∧i

+ u2v1 j ∧ i
︸︷︷︸

−i∧j

+ u2v2j ∧ j + u2v3j ∧ k

+ u3v1k ∧ i + u3v2 k ∧ j
︸︷︷︸

−j∧k

+ u3v3k ∧ k

= (u2v3 − u3v2)j ∧ k + (u3v1 − u1v3)k ∧ i + (u1v2 − u2v1)i ∧ j
(16)



Wedge Product for R
3: the formula

u ∧ v = (u2v3 − u3v2)j ∧ k + (u3v1 − u1v3)k ∧ i + (u1v2 − u2v1)i ∧ j
(17)



Hodge Star in R
3

The Hodge star operator in R
3 associates two a wedge u ∧ v a

certain vector in R
3 using the following scheme for the basis

vectors:

∗(j ∧ k) = i

∗(k ∧ i) = j

∗(i ∧ j) = k

(18)



Cross Product in R
3: Definition

The cross product of vectors in R
3 is given by

u × v = ∗(u ∧ v) (19)



Cross Product in R
3: Definition

The cross product of vectors in R
3 is given by

u × v = ∗(u ∧ v) (19)

Thus,

j × k = i

k × i = j

i × j = k

(20)



Cross Product in R
3: formula

u × v = (u2v3 − u3v2)i − (u1v3 − u3v1)j + (u1v2 − u2v1)k (21)



Triple Wedge

Just as Λ2V we can also form Λ3V . The elements are sums of
triple wedge products

u ∧ v ∧ w



Triple Wedge rules

u ∧ v ∧ w

is multilinear, i.e. it is linear in each of the vectors u, v , w ; for
example,

u ∧ (3v + 4v ′) ∧ w = 3u ∧ v ∧ w + 4u ∧ v ′ ∧ w

and it is alternating, i.e. it is 0 whenever two of u, v , w are
equal; for instance,

u ∧ v ∧ u = 0

and
u ∧ u ∧ w = 0



Skew-symmetry

From the multilinearity it follows that the triple wedge is 0 if at
least one of the vectors is 0.



Skew-symmetry

From the multilinearity it follows that the triple wedge is 0 if at
least one of the vectors is 0.

One other interesting fact we proved in class is skew-symmetry:
if you switch any two of the vectors then the triple product
changes sign:

u ∧ v ∧ w = −v ∧ u ∧ w

and
u ∧ v ∧ w = −w ∧ v ∧ u

and
u ∧ v ∧ w = −u ∧ w ∧ v



A triple product exercise

2j ∧ (3j ∧ k − 5k ∧ i + 4i ∧ j) = 6j ∧ j ∧ k − 10 j ∧ k ∧ i
︸ ︷︷ ︸

− j ∧ i ∧ k
︸ ︷︷ ︸

i∧j∧k

+8j ∧ i ∧ j

= 0 + 10i ∧ j ∧ k + 0
(22)



A triple product exercise

2j ∧ (3j ∧ k − 5k ∧ i + 4i ∧ j) = 6j ∧ j ∧ k − 10 j ∧ k ∧ i
︸ ︷︷ ︸

− j ∧ i ∧ k
︸ ︷︷ ︸

i∧j∧k

+8j ∧ i ∧ j

= 0 + 10i ∧ j ∧ k + 0
(22)

Check that
k ∧ i ∧ j = i ∧ j ∧ k



Triple product worked out

Let’s work out the triple wedge of vectors

a = (a1, a2, a3), b = (b1, b2, b3), c = (c1, c2, c3)

a ∧ b ∧ c

= (a1i + a2j + a3k)∧
[(b2c3 − b3c2)j ∧ k − (b1c3 − b3c1)k ∧ i + (b1c2 − b2c1)i ∧ j]

= a1(b2c3 − b3c2)ij ∧ k − a2(b1c3 − b3c1)j ∧ k ∧ i

+ a3(b1c2 − b2c1)k ∧ i ∧ j

= [a1(b2c3 − b3c2) − a2(b1c3 − b3c1) + +a3(b1c2 − b2c1)] i ∧ j ∧ k



Triple product and Determinant

Thus
a ∧ b ∧ c = det(a, b, c)i ∧ j ∧ k (23)

where the quantity det[· · · ] on the right is the determinant:

det





a1 b1 c1

a2 b2 c2

a3 b3 c3





= a1(b2c3 − b3c2) − a2(b1c3 − b3c1) + a3(b1c2 − b2c1)

(24)



Properties of the Determinant

From the properties of the triple wedge propduct we see that
the determinant

det





a1 b1 c1

a2 b2 c2

a3 b3 c3





◮ is equal to 0 if two of the columns are the same (i.e. if two
of the vectors a, b, c are equal);

◮ switched sign if two columns are interchanged (i.e., for
instance, a ∧ b ∧ c flips to its negative when two of the
vectors are interchanged).



Scalar Triple Product and the Determinant

Recall that

b × c = (b2c3 − b3c2)i − (b1c3 − b3c1)j + (b1c2 − b2c1)k

Taking the scalar product of this with the vector

a = a1i + a2j + a3k

gives

a · (b × c)

= a1(b2c3 − b3c2) − a2(b1c3 − b3c1) + a3(b1c2 − b2c1)

(25)

which is exactly the determinant det[a, b, c].



Scalar Triple Product and the Determinant

Thus,

a · (b × c) = det





a1 b1 c1

a2 b2 c2

a3 b3 c3



 (26)



Properties of the scalar triple product

Using the triple product’s relationship with the determinant see
that

a · (b × c)

is 0 if any pair of the vectors a, b, c are equal to each other.



Properties of the scalar triple product

Using the triple product’s relationship with the determinant see
that

a · (b × c)

is 0 if any pair of the vectors a, b, c are equal to each other.
Also it flips sign if two of the vectors are interchanged.



Direction of the cross product

Now
a · (a × b) = 0 and b · (a × b) = 0

Thus, a and b are both perpendicular to a × b.



Direction of the cross product

Now
a · (a × b) = 0 and b · (a × b) = 0

Thus, a and b are both perpendicular to a × b.
Thus, a × b points perpendicularly to the plane containing a
and b.



Direction of the cross product

Now
a · (a × b) = 0 and b · (a × b) = 0

Thus, a and b are both perpendicular to a × b.
Thus, a × b points perpendicularly to the plane containing a
and b.
Of course, if a equals b, or if either is 0, then a × b is also 0.



Cross and Scalar

(a · b)2 + |a × b|2 = |a|2 |b|2 (27)

This can be verified by longhand calculation!



The cross product again

a × b

is a vector which is perpendicular to the plane containing a and
b. Its magnitude is

|a × b| = |a| |b| sin θ

where θ is the angle between a and b (taken between 0 and π).



The cross product again

a × b

is a vector which is perpendicular to the plane containing a and
b. Its magnitude is

|a × b| = |a| |b| sin θ

where θ is the angle between a and b (taken between 0 and π).

The eaxct direction of a × b is obtained by the “right hand rule”.



Cross product and area

The magnitude of the cross product of a and b is

|a × b| = |a| |b| sin θ

which is the area of the parallelogram formed by a and b.



Summary of some properties of the Scalar Triple
Product

a · (b × c) = (a × b) · c

a · (b × c) = c · (a × b) = b · (c × a)



Scalar triple product and volume

a · (b × c) = det[a, b, c]

is the volume of the parallelopiped formed by the three vectors
a, b, c.



Scalar triple product and volume

a · (b × c) = det[a, b, c]

is the volume of the parallelopiped formed by the three vectors
a, b, c.

In particular, this is 0 if the solid body collapses to something
lower dimensional, for instance if a lies in the plane of b and c.



A vector triple product identity

a × (b × c) = (a · c)b − (a · b)c


