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Preface

Geometry is nothing but an expression of a symmetry group. Fortunately,
geometry escaped this stifling straitjacket description, an urban legend for-
mulation of Felix Klein’s Erlangen Program. Nonetheless, there is a valuable
ge(r)m of truth in this vision of geometry. Arithmetic and geometry have
been intertwined since Euclid’s development of arithmetic from geometric
constructions. A group, in the abstract, is a set of elements, devoid of con-
crete form, with just one operation satisfying a minimalist set of axioms.
Representation theory is the study of how such an abstract group appears
in different avatars as symmetries of geometries over number fields or more
general fields of scalars. This book is an initiating journey into this subject.

A large part of the route we take passes through the representation theory
of semisimple algebras. We will also make a day-tour out of the realm of
finite groups to look at the representation theory of unitary groups. These
are infinite, continuous groups, but their representation theory is intricately
interlinked with the representation theory of permutation groups, and hence
this detour from the main route of the book seems worthwhile.

Our navigation system is set to avoiding speedways as well as slick short-
cuts. Efficiency and speed are not high priorities in this journey. For many of
the ideas we view the same set of results from several vantage points. Some-
times we pause to look back at the territory covered or to peer into what lies
ahead. We stop to examine glittering objects - specific examples - up close.

The role played by the characteristic of the field underlying a representa-
tion is described carefully in each result. We stay almost always within the
semisimple territory, etched out by the requirement that the characteristic of
the field does not divide the number of elements of the group. By not making
any special choice for the field F we are able to see the role of semisimplicity
at every stage and in every result.

Authors generally threaten readers with the admonishment that they
must do the exercises to appreciate the text. This could give rise to in-
somnia if one wishes to peruse parts of this text at bedtime. However, for
daytime readers, there are several exercises to engage in, some of which may
call for breaking intellectual sweat, if the eyes glaze over from simply reading.

The style of presentation I have used is unconventional in some ways.
Aside from the very informal tone, I have departed from rigid mathematical
custom by repeating definitions instead of sending the reader scurrying back
and forth to consult them. I have also included all hypotheses (such as those
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on the ground field F of a representation) in the statement of every result,
instead of stating them at the beginnings of sections or chapters. This should
help the reader who wishes to take just a quick look at some result or sees
the statement on a sample page online.

For whom is this book? For students, graduate and undergraduate, for
teachers, researchers, and also those who want to simply explore this beauti-
ful subject for itself. This book is an introduction to the subject; at the end,
or even part way through, the reader will have enough equipment and expe-
rience to take up more specialized monographs to pursue roads not traveled
here.

A disclaimer on originality needs to be stated. To the best of my knowl-
edge, there is no result in this book not already “known.” Mathematical
results evolve in form, from original discovery through mutations and cul-
tural forces, and I have added historical remarks or references only for some
of the major results. The reader interested in a more thorough historical
analysis should consult works by historians of the subject.

Acknowledgment for much is due to many. To friends, family, strangers,
colleagues, students, and a large number of fellow travelers in life and math-
ematics, I owe thanks for comments, corrections, criticism, encouragement
and discouragement. Many discussions with Thierry Lévy have influenced
my view of topics in representation theory. I have enjoyed many anecdotes
shared with me by Hui-Hsiung Kuo on the frustrations and rewards of writing
a book. I am grateful to William Adkins, Daniel Cohen, Subhash Chaturvedi,
and Thierry Lévy for specific comments and corrections. It is a pleasure to
thank Sergio Albeverio for his kind hospitality at the University of Bonn
where this work was completed. Comments by referees, ranging from the
insightful to the infuriating, led to innumerable improvements in presenta-
tion and content. Vaishali Damle, my editor at Springer, was a calm and
steady guide all through the process of turning the original rough notes to
the final form of the book. Financial support for my research program from
Louisiana State University, a Mercator Guest Professorship at the Univer-
sity of Bonn, and US National Science Foundation Grant DMS-0601141 is
gratefully acknowledged. Here I need to add the required disclaimer: Any
opinions, findings and conclusions or recommendations expressed in this ma-
terial are those of the author and do not necessarily reflect the views of the
National Science Foundation. Beyond all this, I thank Ingeborg for support
that can neither be quantified in numbers nor articulated in words.
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Chapter 1

Concepts and Constructs

A group is an abstract mathematical object, a set with elements and an op-
eration satisfying certain axioms. A representation of a group realizes the
elements of the group concretely as geometric symmetries. The same group
may have many different such representations. A group that arises natu-
rally as a specific set of symmetries may have representations as geometric
symmetries at different levels.

In quantum physics the group of rotations in three dimensional space gives
rise to symmetries of a complex Hilbert space whose rays represent states of
a physical system; the same abstract group appears once, classically, in the
avatar of rotations in space and then expresses itself at the level of a more
‘implicate order’ [6] in the quantum theory as unitary transformations on
Hilbert spaces.

In this chapter we acquaint ourselves with the basic concepts, defining
group representations, irreducibility and characters. We work through cer-
tain useful standard constructions with representations, and explore a few
results that follow very quickly from the basic notions.

All through this chapter G denotes a group, and F a field. We will work
with vector spaces, usually denoted V , W , or Z, over the field F. There are
no standing hypotheses on G or F, and any conditions needed will be stated
where needed.

5
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1.1 Representations of Groups

A representation ρ of a group G on a vector space V associates to each
element g ∈ G a linear map

ρ(g) : V → V : v 7→ ρ(g)v

such that

ρ(gh) = ρ(g)ρ(h) for all g, h ∈ G, and

ρ(e) = I,
(1.1)

where I : V → V is the identity map and e is the identity element in G.
Here our vector space V is over a field F, and we denote by

EndF(V )

the set of all endomorphisms of V . A representation ρ of G on V is thus a
map

ρ : G→ EndF(V )

satisfying (1.1). The homomorphism condition (1.1), applied with h = g−1,
implies that each ρ(g) is invertible and

ρ(g−1) = ρ(g)−1 for all g ∈ G.

A representation ρ of G on V is said to be faithful if ρ(g) 6= I when g is
not the identity element in G. Thus, a faithful representation ρ provides an
isomorphic copy ρ(G) of G sitting inside EndF(V ).

A complex representation is a representation on a vector space over the
field C of complex numbers.
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