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Abstract

Let f : {0, 1}n → R be a pseudo-Boolean function and let f̂ : [0, 1]n → R denote
the Lovász extension of f . We show that the best linear approximation to f with
respect to a binomial probability distribution on {0, 1}n is the limit of the best
linear approximations to f̂ with respect to probability distributions on [0, 1]n defined
by certain independent beta random variables. When n = 2, we give an explicit
formula for the best linear approximation to f̂ that involves beta functions and
hypergeometric series. In this case, we also show that when the two parameters of
the beta random variables are equal, then the coefficients of x and y in the best
linear approximation are each 1/2.
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1 Introduction.

A pseudo-Boolean function of n variables is a function from {0, 1}n to the real
numbers. Such functions are used in 0-1 optimization problems, cooperative
game theory, multicriteria decision making, and as fitness functions. Such a
function f(x1, . . . , xn) has a unique expression as a multilinear polynomial

f(x1, . . . , xn) =
∑

T⊆N

[

aT

∏

i∈T

xi

]

, (1)
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where N = {1, . . . , n} and the aT are real numbers ([10, p. 22]). By the degree
of a pseudo-Boolean function, we mean the degree of its multilinear polynomial
representation.

Several authors have considered the problem of finding the best pseudo-Boolean
function of degree ≤ k approximating a given pseudo-Boolean function f ,
where “best” means a least squares criterion. Hammer and Holzman [9] de-
rived a system of equations for finding such a best degree ≤ k approximation,
and gave explicit solutions when k = 1 and k = 2. Grabisch, Marichal, and
Roubens [8] solved the system of equations derived by Hammer and Holzman,
and gave the following explicit formula for the coefficients of the best degree
≤ k function.

Theorem 1 [8] If f ∗
k =

∑

T⊆N [b∗T
∏

i∈T xi] is the best degree ≤ k approxima-
tion to f , then

b∗T = aT + (−1)k−|T |
∑

R⊇T,|R|>k

(
1

2
)|R|−|T |

(

|R| − |T | − 1

k − |T |

)

aR, (2)

for all T ⊆ N with |T | ≤ k.

Given a pseudo-Boolean function f of n variables, L. Lovász [11] defined an
extension f̂ of f so that f̂ is defined on all n-tuples of nonnegative real num-
bers. Let Sn denote the set of all permutations on N . For each σ ∈ Sn, let Aσ

denote the n-simplex given by

Aσ = {(x1, . . . , xn) ∈ [0, 1]n | xσ(1) ≤ · · · ≤ xσ(n)}.

The n! simplices Aσ, σ ∈ Sn, give a triangulation of [0, 1]n, which is called the
“standard” triangulation of [0, 1]n in [12]. I. Singer [15] showed that f̂ is the
unique affine function on Aσ that agrees with f at the n + 1 vertices of this
simplex. By the “Lovász extension of f ,” we will mean here the extension f̂
restricted to the n-cube [0, 1]n. Lovász extensions of pseudo-Boolean functions
also appear as discrete Choquet integrals in aggregation theory ([13]). Grabisch
et al. [8] observed that, given f as in (1), the Lovász extension of f is given
by

f̂(x) =
∑

T⊆N

[

aT

∧

i∈T

xi

]

, (3)

where
∧

denotes the min operation. As in [14], we will refer to the right
side of the above equation as a “min-polynomial.” The degree of such a min-
polynomial is defined to be the degree of the multilinear polynomial given in
(1).

Let Vk denote the set of all min-polynomials f̂k : [0, 1]n → R of degree at most
k. Given f̂ ∈ Vn, J.-L. Marichal and P. Mathonet [14] defined the best kth

2



approximation of f̂ to be the min-polynomial f̂k ∈ Vk that minimizes
∫

[0,1]n

[

f̂(x1, . . . , xn) − ĝ(x1, . . . , xn)
]2

dx1 · · · dxn (4)

among all min-polynomials ĝ ∈ Vk, and they obtained the following result.

Theorem 2 [14] If f̂ ∗
k =

∑

T⊆N [b∗T
∧

i∈T xi] is the best kth approximation to

f̂ , then

b∗T = aT + (−1)k−|T |
∑

R⊇T,|R|>k

(

k+|T |+1
k+1

)(

|R|−|T |−1
k−|T |

)

(

k+|R|+1
k+1

) aR, (5)

for all T ⊆ N with |T | ≤ k.

The similarities between (2) and (5) raise the question of whether these two
formulas might be special cases or limiting cases of a more general formula.
While we will only be able to provide such a formula in the simplest possible
case, we will show that these two approximation problems, one discrete and
one continuous, are linked. The connection between the two involves jointly
distributed beta random variables on the n-cube.

In the next section, we consider probability distributions on {0, 1}n and on
[0, 1]n, and we modify the notion of “best approximation” taking into account
these distributions. In the final section, we consider the n = 2 case and we will
see that this apparently simple case is quite nontrivial. We thank W. George
Cochran for very helpful conversations.

2 Probability distributions

Put B = {0, 1}. Let F denote the space of all pseudo-Boolean functions in n
variables; i.e.,

F = {f : B
n → R}.

Then F has the structure of a 2n-dimensional real vector space. A basis for
this vector space is {∏i∈T xi : T ⊆ N}.

As in [5] and [6], we wish to allow a weighting on the elements of B
n. By

scaling, we may assume this weighting defines a probability mass function
µ(x) on B

n. As in [5], define a pseudo-inner product 〈 , 〉µ on F by

〈f, g〉µ =
∑

x∈Bn

f(x)g(x)µ(x).

This is a “pseudo” (or semidefinite) inner product because we may have
〈f, g〉µ = 0 for all g without f being identically zero. Indeed, if µ(x) = 0
and if f satisfies f(x) = 1 and f(y) = 0 for all y 6= x, then 〈f, g〉µ = 0 for all
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g. On the other hand, it is easy to see that if µ(x) > 0 for all x ∈ B
n, then

this pseudo-inner product will be an inner product. For the remainder of this
work, we assume that µ(x) > 0 for all x ∈ B

n. This is not a serious practi-
cal restriction, since if one would like some n-tuples to have zero weight, then
those n-tuples could be assigned an extremely small positive weight; moreover,
we will be focusing on binomial distributions, which satisfy this positivity re-
quirement. We note that 〈f, g〉µ is the expected value Eµ(fg) of the random

variable fg. Put ‖ f ‖µ=
√

〈f, f〉µ. Then ‖ ‖µ is a norm, under our positivity
assumption above.

Let L ⊆ F be an affine space (a translation of a subspace; also known as a
linear variety). For example, L might be the subspace of all pseudo-Boolean
functions of degree at most k, for some fixed k. Given f ∈ F , the best ap-
proximation to f with respect to µ by functions in L is the function f ∗

L,µ ∈ L
that minimizes

‖ f − g ‖µ =
√

∑

x∈Bn

(f(x) − g(x))2µ(x)

over all g ∈ L. Notice that if we take the uniform distribution on B
n, so that

µ(x) = (1/2)n for all x ∈ B
n, then the best approximation to f in L is the

function f ∗ ∈ L that also minimizes
∑

x∈Bn(f(x)−g(x))2, over all g ∈ L. This
is the usual least squares condition used in [9] and [8], and in this case one
may simply use the usual Euclidean inner product in R

2n

.

If x1, . . . , xn are independent identically distributed Bernoulli random vari-
ables with p being the probability of a 1, then we call the resulting joint
distribution on B

n the (n, p) binomial distribution. In [5], we proved the fol-
lowing generalization of Theorem 1.

Theorem 3 [5] Let µ be the (n, p) binomial distribution on B
n. If f ∗

k,µ =
∑

T⊆N [b∗T
∏

i∈T xi] is the best degree ≤ k approximation to f with respect to µ,
then

b∗T = aT + (−1)k−|T |
∑

R⊇T,|R|>k

p|R|−|T |

(

|R| − |T | − 1

k − |T |

)

aR, (6)

for all T ⊆ N with |T | ≤ k.

Now suppose we have an absolutely continuous probability measure on [0, 1]n

with density function ν. Then we can define an inner product on the space Vn

by

〈f̂ , ĝ〉ν =
∫

[0,1]n
f̂ ĝ ν dx1 · · · dxn;

that is, 〈f̂ , ĝ〉ν = Eν(f̂ ĝ). We also have the corresponding norm

‖ f̂ ‖ν=
√

〈f̂ , f̂〉ν .

Given f̂ ∈ Vn, we define the best kth approximation to f̂ with respect to ν to
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be the min-polynomial f̂ ∗
k,ν ∈ Vk that minimizes ‖ f̂ − ĝ ‖ν among all ĝ ∈ Vk.

If a and b are positive real numbers, then recall that the distribution deter-
mined by the beta-(a, b) random variable has density function







1
B(a,b)

xa−1(1 − x)b−1 if 0 < x < 1

0 otherwise,

where B(a, b) =
∫ 1
0 xa−1(1 − x)b−1 dx. Notice that the beta-(1, 1) distribution

is simply the uniform distribution on [0, 1].

We wish to relate the best linear approximation of the Lovász extension of a
pseudo-Boolean function f with the best linear approximation of f itself with
respect to a binomial distribution, which we may consider as a probability
distribution on the n-cube [0, 1]n whose support is the set {0, 1}n of vertices
of the cube. We will be interested in probability distributions on [0, 1]n de-
termined by beta random variables because of the following result (cf. [7, pp.
288–289]).

Proposition 4 Let X denote the Bernoulli random variable with P (X = 1) =
p, P (X = 0) = q. For each positive real number a, let Xa denote the beta-
(a, (q/p)a) random variable. As a → 0+, the random variables Xa converge in
distribution to X.

PROOF. Put c = q/p. We have

E(Xn
a )=

1

B(a, ca)

∫ 1

0
xa+n−1(1 − x)ca−1 dx =

B(a + n, ca)

Ba, ca

=
Γ(a + n)

Γ(a)

Γ((c + 1)a)

Γ((c + 1)a + n)

=
n−1
∏

m=0

a + m

(c + 1)a + m
,

where Γ denotes the gamma function. It follows that, for each n ≥ 1, we have

lim
a→0+

E(Xn
a ) =

1

c + 1
= p.

Since these moments are the same as the moments of our Bernoulli random
variable, the proposition follows by the “method of moments” [4, Theorem
4.5.5]. 2

Let µ denote the (n, p) binomial distribution on B
n and consider the proba-

bility distribution on [0, 1]n whose density νa is the product of the densities
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of n independent beta-(a, (q/p)a) random variables. Let f denote a pseudo-
Boolean function of n variables and let f̂ denote its Lovász extension. Then,
as a consequence of the above result, we have the following corollary.

Corollary 5 Eµ(f) = lima→0+ Eνa
(f̂).

Theorem 6 If f ∗
1,µ denotes the best linear approximation to f with respect to

µ and f̂ ∗
1,νa

denotes the best linear approximation to f̂ with respect to νa, then

f ∗
1,µ = lima→0+ f̂ ∗

1,νa

.

PROOF. Let V denote the real vector space generated by 1, x1, . . . , xn. We
will consider orthonormal bases of V with respect to different inner products.
First, we view each of these functions as being defined on {0, 1} and we con-
sider the inner product 〈 , 〉µ on the pseudo-Boolean functions of n variables.
Since the inner product of two functions is the expected value of their prod-
uct, it is not hard to see, as in [6], that we obtain an orthonormal basis with
respect to this inner product by standardizing x1, . . . , xn when we view each of
these as a Bernoulli random variable on {0, 1}. Specifically, since the expected
value of each of these variables is p and the standard deviation is

√
pq, our

orthonormal basis is 1, z1, . . . , zn, where

zi =
xi − p√

pq
for i = 1, 2, . . . , n.

The best linear approximation to f with respect to µ is then

f ∗
1,µ = 〈f, 1〉µ +

n
∑

i=1

〈f, zi〉µ zi. (7)

Now we view each of the functions 1, x1, . . . , xn as being continuous on [0, 1]
and we consider the inner product 〈 , 〉νa

on V = V1, the vector space of
min-polynomials of degree at most 1. We obtain an orthonormal basis with
respect to this inner product by standardizing x1, . . . , xn when we view each
of these as a beta-(a, (q/p)a) random variable on [0, 1]. The expected value of
each of these variables is

a

a + (q/p)a
=

1

1 + (q/p)
= p

and the standard deviation of each of these variables is

σ =

√

√

√

√

a(a + (q/p)a)

(a + (q/p)a)2(a + (q/p)a + 1)
=

√

pq
p

a + p
.
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An orthonormal basis of V1 with respect to this inner product is then 1, w1, . . . , wn,
where

wi =
xi − p

σ
for i = 1, 2, . . . , n.

The best linear approximation to f̂ with respect to νa is then

f̂ ∗
1,νa

= 〈f̂ , 1〉νa
+

n
∑

i=1

〈f̂ , wi〉νa
wi. (8)

Now let a → 0+. Notice that at any vertex (c1, . . . , cn) of the n-cube, we
have lima→0+ wi(c1, . . . , cn) = zi(c1, . . . , cn). Then, since our inner products
are expected values, we have from Corollary 5 that

lim
a→0+

〈f̂ , wi〉νa
= 〈f, zi〉µ,

and the theorem follows. 2

3 The n = 2 case

In order to get an explicit formula for the best linear approximation to a Lovász
extension with respect to the distribution νa of Theorem 6, one would need to
compute moments of order statistics of jointly distributed independent beta
random variables on the n-cube. While some results in that direction have
been obtained in [1] and [16], those authors assumed that the parameters of
the beta random variables were integers (so that the binomial expansion of
(1 − x)b−1 is a polynomial). We will be able to give such an explicit formula
for the best linear approximation only in the n = 2 case.

Consider the probability distribution on the unit square [0, 1]2 with density

ν = ν(a,b) =
1

B(a, b)2
xa−1(1 − x)b−1ya−1(1 − y)b−1.

To be able to find the best linear approximation (with respect to ν) of any
min-polynomial in V2, we need to find the best linear approximation to x∧ y,
the minimum of x and y. Our calculations of 〈x∧y, 1〉ν and 〈x∧y, x〉ν will in-
volve hypergeometric functions. Recall that the (generalized) hypergeometric
function pFq(a1, . . . , ap; b1, . . . , bq; x) is given by the power series

pFq(a1, . . . , ap; b1, . . . , bq; x) =
∞
∑

k=0

(a1)k · · · (ap)k

(b1)k · · · (bq)k

xk

k!
,

where (a)k = Γ(a + k)/Γ(k) is the “rising factorial” or Pochhammer symbol.
When p = q+1, which will be of interest to us, this series converges absolutely
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for |x| < 1, and if Re(
∑

bi −
∑

ai) > 0, then it also converges absolutely for
|x| = 1 [2, Theorem 2.1.1].

Using symmetry, we have

〈x ∧ y, 1〉ν =
1

B(a, b)2

[

∫ 1

0

∫ x

0
y xa−1(1 − x)b−1ya−1(1 − y)b−1 dy dx +

∫ 1

0

∫ y

0
xxa−1(1 − x)b−1ya−1(1 − y)b−1 dx dy

]

=
2

B(a, b)2

∫ 1

0
xa−1(1 − x)b−1Bx(a + 1, b) dx,

where Bx(a, b) =
∫ x
0 ya−1(1 − y)b−1 dy is the incomplete beta function. An

elementary calculation, using the binomial series, shows that

Bx(a, b) =
xa

a
2F1(a, 1 − b; a + 1; x).

Hence, we have

〈x ∧ y, 1〉ν =
2

B(a, b)2

∫ 1

0
xa−1(1 − x)b−1 xa+1

a + 1
2F1(a + 1, 1 − b; a + 2; x) dx

=
2

(a + 1)B(a, b)2

∫ 1

0
x2a(1 − x)b−1

2F1(a + 1, 1 − b; a + 2; x) dx.

The last integral is a beta transform of a hypergeometric function and by [2,
(2.2.2)], we get that

〈x∧y, 1〉ν =
2B(2a + 1, b)

(a + 1)B(a, b)2 3F2(2a + 1, a + 1, 1 − b; 2a + b + 1, a + 2; 1). (9)

We next compute 〈x ∧ y, x〉ν, which is the same as 〈x ∧ y, y〉ν by symmetry.
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We have

〈x ∧ y, x〉ν =
1

B(a, b)2

[

∫ 1

0

∫ x

0
xy xa−1(1 − x)b−1ya−1(1 − y)b−1 dy dx+

∫ 1

0

∫ y

0
x2 xa−1(1 − x)b−1ya−1(1 − y)b−1 dx dy

]

=
1

B(a, b)2

[

∫ 1

0
xa(1 − x)b−1 Bx(a + 1, b) dx+

∫ 1

0
ya−1(1 − y)b−1By(a + 2, b) dy

]

=
1

B(a, b)2

[ 1

a + 1

∫ 1

0
x2a+1(1 − x)b−1

2F1(a + 1, 1 − b; a + 2; x) dx+

1

a + 2

∫ 1

0
ya+1(1 − y)b−1

2F1(a + 2, 1 − b; a + 3; y) dy
]

=
B(2a + 2, b)

B(a, b)2

[ 1

a + 1
3F2(2a + 2, a + 1, 1 − b; 2a + b + 2; a + 2; 1)+

1

a + 2
3F2(2a + 2, a + 2, 1 − b; 2a + b + 2, a + 3; 1)

]

(10)

The expected value and standard deviation of a beta-(a, b) random variable
are a/(a + b) and

σ = σ(a,b) =

√

ab

(a + b)2(a + b + 1)
,

respectively. Hence, an orthonormal basis (with respect to 〈 , 〉ν) for V1 is

1,
x − a

a+b

σ
,
y − a

a+b

σ
.

Using (8), we then have the following result.

Theorem 7 The best linear approximation to x ∧ y with respect to ν = ν(a,b)

is c0(a, b) + c1(a, b)x + c1(a, b)y, where

c0(a, b)= 〈x ∧ y, 1〉ν −
2a

(a + b)σ2

[

〈x ∧ y, x〉ν −
a

a + b
〈x ∧ y, 1〉ν

]

c1(a, b)=
1

σ2

[

〈x ∧ y, x〉ν −
a

a + b
〈x ∧ y, 1〉ν

]

,

and where these inner products are given in terms of beta functions and hy-
pergeometric series in (9) and (10).

We now consider the special case of the uniform distribution with n = 2.
For the uniform distribution on {0, 1}n, the best linear approximation to the
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pseudo-Boolean function xy (by [9] or Theorem 1) is

−1

4
+

1

2
x +

1

2
y. (11)

For the uniform distribution on [0, 1]n, the best linear approximation to the
Lovász extension x ∧ y (by Theorem 2 or Theorem 7 with a = b = 1) is

−1

6
+

1

2
x +

1

2
y. (12)

By our Theorem 6, these two approximations are related by considering the
ν(a,a) distribution on [0, 1]n, with the uniform distribution on [0, 1]n being
the case a = 1 and the uniform distribution on {0, 1}n being the limiting
distribution as a approaches 0. The above two formulas suggest that perhaps
the coefficient of x (and y) in the best linear approximation to x∧ y is always
1/2 with respect to the ν(a,a) distribution. Our final result will be a proof
of this. From Theorem 7 and our inner product calculations, we have the
following.

Corollary 8 The coefficient of x in the best linear approximation to x ∧ y
with respect to the ν(a,a) distribution is

4(2a + 1)B(2a + 1, a)

B(a, a)2

[

2a + 1

3a + 1

(

1

a + 1
3F2(2a + 2, a + 1, 1 − a; 3a + 2, a + 2; 1)

1

a + 2
3F2(2a + 2, a + 2, 1 − a; 3a + 2, a + 3; 1)

)

−
1

a + 1
3F2(2a + 1, a + 1, 1 − a; 3a + 1, a + 2; 1)

]

.

(13)

Our claim is that (13) is 1/2 for a any positive real number. The three hy-
pergeometric series involved in (13) are contiguous 3F2(1) series. As noted by
W. N. Bailey [3], any three contiguous series of the type 3F2(1) satisfy a linear
dependence relation. We will find such a relation by using Wilson’s method,
as explained in [2, 3.7].

Let F = F (A, B, C; D, E; 1) denote a general 3F2(1). Using the equations
and method on page 157 of [2], it is not hard to derive the following three
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contiguous relations:

F (A, B + 1, C; D, E + 1; 1) − F (A, B, C; D, E; 1) =

AC(E − B)

DE(E + 1)
F (A + 1, B + 1, C + 1; D + 1, E + 2; 1)

DF (A, B, C; D, E; 1)− (D − A)F (A, B + 1, C + 1; D + 1, E + 1; 1) =

A(E − B)(E − C)

E(E + 1)
F (A + 1, B + 1, C + 1; D + 1, E + 2; 1)

F (A − 1, B, C; D − 1, E; 1) − F (A, B, C; D, E; 1) =

BC(A − D)

(D − 1)DE
F (A, B + 1, C + 1; D + 1, E + 1; 1)

Eliminating F (A+1, B +1, C +1; D +1, E +2; 1) and F (A, B +1, C +1; D +
1, E +1; 1) from these equations gives us the contiguous relation we will need:

(D − B − 1)F (A, B, C; D, E; 1) + (1 − D)F (A − 1, B, C; D − 1, E; 1) =

B(C − E)

E
F (A, B + 1, C; D, E + 1; 1)

(14)

Now, put

F = 3F2(2a + 2, a + 1, 1 − a; 3a + 2, a + 2; 1)

G= 3F2(2a + 2, a + 2, 1 − a; 3a + 2, a + 3; 1)

H = 3F2(2a + 1, a + 1, 1 − a; 3a + 1, a + 2; 1)

Applying (14) and doing some algebra, we obtain

2a + 1

(3a + 1)(a + 2)
G − 1

a + 1
H =

2a

(a + 1)(3a + 1)
F. (15)

Substituting (15) into (13), we see that the coefficient of x in the best linear
approximation to x ∧ y with respect to the ν(a,a) distribution can be written
as

4(2a + 1)(4a + 1)B(2a + 1, a)

(a + 1)(3a + 1)B(a, a)2 3F2(2a + 2, a + 1, 1 − a; 3a + 2, a + 2; 1). (16)

Now, some, but not all (cf. [17]), 3F2(1)’s have a closed form as a rational
expression involving evaluating the gamma function at the images of the pa-
rameters of the 3F2 under certain affine mappings. The 3F2(1) in (16) is one
that has such a closed form. Indeed, by Dixon’s Formula [2, Theorem 3.4.1],

11



we have

3F2(2a + 2, a + 1, 1 − a; 3a + 2, a + 2; 1) =
Γ(a + 2)2Γ(3a + 2)Γ(a)

Γ(2a + 3)Γ(2a + 1)2
. (17)

Using the facts that Γ(x + 1) = xΓ(x) and B(a, b) = Γ(a)Γ(b)/Γ(a + b), it is
easy to see that

B(2a + 1, a)Γ(a + 2)2Γ(3a + 2)Γ(a)

B(a, a)2Γ(2a + 3)Γ(2a + 1)2
=

(a + 1)(3a + 1)

8(2a + 1)
. (18)

Finally, by (16), (17), and (18), we see that the coefficient of x in the best
linear approximation to x ∧ y with respect to the ν(a,a) distribution is 1/2.
Combining this result with Theorem 7 and our calculation of 〈x∧ y, 1〉ν gives
us the following corollary.

Corollary 9 The best linear approximation to x ∧ y with respect to the ν(a,a)

distribution is c0(a) + 1
2
x + 1

2
y, where

c0(a) =
2B(2a + 1, a)

(a + 1)B(a, a)2 3F2(2a + 1, a + 1, 1 − a; 3a + 1, a + 2; 1) − 1

2
.

Notice that when a = 1, which is the uniform distribution on [0, 1]2, we get

c0(1) =
2B(3, 1)

2B(1, 1)2
− 1

2
=

1

3
− 1

2
= −1

6
,

in agreement with (12). We also remark that as a consequence of Theorem 6,
(11), and the above Corollary, we have that

lim
a→0+

2B(2a + 1, a)

(a + 1)B(a, a)2 3F2(2a + 1, a + 1, 1 − a; 3a + 1, a + 2; 1) =
1

4
.

It is not clear to us how to prove this directly.

We note that the above Corollary about the coefficients of x and y in the best
linear approximation to x ∧ y being 1/2 no longer holds with respect to the
ν(a,b) distribution if a 6= b. For example, a calculation with Mathematica shows
that the coefficient of x in the best linear approximation to x∧ y with respect
to the ν( 1

2
, 1
3
) distribution is approximately 0.58477.
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