Bonds with Parity Constraints

Xujin Chen ${ }^{a *}$ Guoli Ding ${ }^{b \dagger}$ Xingxing Yu $^{c \ddagger}$ Wenan Zang ${ }^{d \S}$
${ }^{a}$ Institute of Applied Mathematics, Chinese Academy of Sciences Beijing 100190, China
${ }^{b}$ Mathematics Department, Louisiana State University Baton Rouge, LA 70803, USA
c School of Mathematics, Georgia Institute of Technology
Atlanta, GA 30332, USA
${ }^{d}$ Department of Mathematics, The University of Hong Kong
Hong Kong, China

Abstract

Given a connected graph $G=(V, E)$ and three even-sized subsets A_{1}, A_{2}, A_{3} of V, when does V have a partition $\left(S_{1}, S_{2}\right)$ such that $G\left[S_{i}\right]$ is connected and $\left|S_{i} \cap A_{j}\right|$ is odd for all $i=1,2$ and $j=1,2,3$? This problem arises in the area of integer flow theory and has theoretical interest in its own right. The special case when $\left|A_{1}\right|=\left|A_{2}\right|=\left|A_{3}\right|=2$ has been resolved by Chakravarti and Robertson, and the general problem can be rephrased as a problem on binary matroids that asks if a given triple of elements is contained in a circuit. The purpose of this paper is to present a complete solution to this problem based on a strengthening of Seymour's theorem on triples in matroid circuits.

[^0]
1 Introduction

Graphs considered in this paper may have multiple edges but contain no loops. Let $G=(V, E)$ be a graph. For each $A \subseteq V$, we use $G[A]$ to denote the subgraph of G induced by A and write $\bar{A}:=V-A$. For each $B \subseteq \bar{A}$, let $[A, B]$ denote the set of edges of G with one end in A and the other in B. We call $[A, B]$ a bond of G if $\emptyset \neq A \neq V, B=\bar{A}$, and both $G[A]$ and $G[B]$ are connected. By a quadruple we mean a connected graph $G=(V, E)$ together with three even-sized subsets A_{1}, A_{2}, A_{3} of V, and we denote it by $\langle G, \mathcal{A}\rangle$, where $\mathcal{A}=\left\{A_{1}, A_{2}, A_{3}\right\}$. We say that $\langle G, \mathcal{A}\rangle$ is feasible if G has a bond $\left[S_{1}, S_{2}\right]$ such that $\left|S_{i} \cap A_{j}\right|$ is odd, for all $i=1,2$ and $j=1,2,3$, and infeasible otherwise. The bond problem is to decide whether a given quadruple $\langle G, \mathcal{A}\rangle$ is feasible. A bond with the desired property is called a feasible solution to the problem or to the quadruple.

In [4], Chakravarti and Robertson obtained a complete solution to the bond problem for the case $\left|A_{1}\right|=\left|A_{2}\right|=\left|A_{3}\right|=2$, where they assumed that A_{1}, A_{2}, A_{3} are the ends of three edges e_{1}, e_{2}, e_{3}. Their theorem, when restricted to a 4-connected graph G with $\left|A_{1} \cup A_{2} \cup A_{3}\right| \geq 4$, asserts that $\langle G, \mathcal{A}\rangle$ is infeasible if and only if G has a plane representation in which e_{1}, e_{2}, e_{3} are contained in a facial cycle. This theorem implies the following result of Jung [1]: Let G be a 4 -connected graph and let $s_{1}, t_{1}, s_{2}, t_{2}$ be four distinct vertices of G. Then G contains no disjoint paths from s_{i} to $t_{i}, i=1,2$, respectively, if and only if G has a plane representation in which vertices $s_{1}, s_{2}, t_{1}, t_{2}$ occur on a facial cycle in cyclic order. To see this implication, let $A_{1}:=\left\{s_{1}, s_{2}\right\}, A_{2}:=\left\{s_{2}, t_{1}\right\}$, and $A_{3}:=\left\{t_{1}, t_{2}\right\}$. It is then a routine matter to check that $\langle G, \mathcal{A}\rangle$ is feasible if and only if G has disjoint paths from s_{i} to $t_{i}, i=1,2$, respectively. For a complete solution to this disjoint paths problem, see Seymour [7], Shiloach [3, 8], and Thomassen [11].

In addition to its theoretical interest, the bond problem has an interesting application in integer flow theory: A subdivision of K_{4} (the complete graph with four vertices) is called a fully odd K_{4} if each of the six edges of the K_{4} is subdivided into a path of odd length. As conjectured by Toft [9] and proved independently by Thomassen [10] and Zang [12], every graph containing no fully odd K_{4} is 3 -colorable. With the same motivation as Tutte's 3 -, 4 -, and 5 -flow conjectures, we strongly believe that the dual of this theorem (conjectured by C.Q. Zhang) also holds; that is, every 2 -edge-connected graph with no fully odd K_{4}-partition admits a nowhere-zero 3 -flow, where a fully odd K_{4}-partition of a graph $G=(V, E)$ is a partition $\left(V_{1}, V_{2}, V_{3}, V_{4}\right)$ of V such that $G\left[V_{i}\right]$ is connected for each $1 \leq i \leq 4$, and that $\left|\left[V_{i}, V_{j}\right]\right|$ is odd for each pair $1 \leq i<j \leq 4$. A crucial step in our proof of this 3 -flow conjecture is to characterize all infeasible quadruples.

The present paper is concerned with the bond problem in its general setting. As we shall see in Section 2, this problem can be rephrased as a problem on binary matroids that asks if a given triple of elements is contained in a circuit, and the later problem has been resolved by Seymour [6]. The purpose of this paper is to present a structural characterization of all infeasible quadruples based on a strengthening of Seymour's theorem on triples in matroid circuits. Since no commonly used graph operations correspond directly to reductions used by Seymour to lift matroid connectivity, and since specializations of Seymour's operations on matroids to graphs involve edge contractions, which cannot be employed in our investigation of the aforementioned nowhere-zero 3flow conjecture, a large portion of this paper will be devoted to further development and refinement of Seymour's work so as to fulfill our needs.

We introduce some notions before presenting our results. A quadruple $\langle G, \mathcal{A}\rangle$ is called trivial if some $A_{i}=\emptyset$, and is called cyclic if $A_{1} \Delta A_{2} \Delta A_{3}=\emptyset$ and acyclic otherwise, where Δ stands for the symmetric difference operator. We write $V(\mathcal{A})=A_{1} \cup A_{2} \cup A_{3}$. Clearly, a trivial quadruple is infeasible, and so is a cyclic quadruple (in which, for any bond $[S, \bar{S}]$, the sum $\sum_{i=1}^{3}\left|S \cap A_{i}\right|$ is
even as every vertex in $V(\mathcal{A})$ contributes 2 to the sum; thus some $\left|S \cap A_{i}\right|$ must be even, showing the infeasibility of the quadruple). We say that \mathcal{A} is linked by a cycle C if there are edge-disjoint paths $P_{i, j}$ with positive length ($i=1,2,3$ and $j=1,2, \ldots, t_{i}$, where $t_{i} \geq 1$) of C such that, for $i=1,2,3$, paths $P_{i, 1}, P_{i, 2}, \ldots, P_{i, t_{i}}$ are vertex-disjoint and A_{i} precisely consists of all ends of these paths. Clearly, a necessary condition for \mathcal{A} to be linked by a cycle C is that C contains all vertices in $V(\mathcal{A})$ and each $\left|A_{i}\right|(i=1,2,3)$ is a positive even number. We point out that $\langle G, \mathcal{A}\rangle$ is infeasible if G has a plane representation in which \mathcal{A} is linked by a facial cycle C. For suppose that $\left[S_{1}, S_{2}\right.$] is a feasible solution. Then $\left|\left[S_{1}, S_{2}\right] \cap E(C)\right| \leq 2$ since C is a facial cycle. Consequently, there exists $i \in\{1,2,3\}$ such that $P_{i, 1}, P_{i, 2}, \ldots, P_{i, t_{i}}$ are all disjoint from $\left[S_{1}, S_{2}\right]$. Therefore, each of these paths is contained in either $G\left[S_{1}\right]$ or $G\left[S_{2}\right]$, which implies that $\left|A_{i} \cap S_{1}\right|$ and $\left|A_{i} \cap S_{2}\right|$ are even, contradicting the feasibility of $\left[S_{1}, S_{2}\right]$.

We shall demonstrate in Section 5 that the bond problem can be easily reduced to the situation when the given graph is 2 -connected. We shall also use three other reductions to simplify our problem. These operations are illustrated in Figure 1 and will be formally defined in Section 5. We remark that all these reductions preserve the feasibility/infeasibility of a quadruple.

II :

or
 or

III:

IV :

Figure 1: Reductions I, II, III, and IV.

Theorem 1.1 Let $\langle G, \mathcal{A}\rangle$ be a quadruple. Then one of the following statements hold:
(i) $\langle G, \mathcal{A}\rangle$ is feasible;
(ii) $\langle G, \mathcal{A}\rangle$ admits one of reductions I-IV;
(iii) $\langle G, \mathcal{A}\rangle$ is trivial or cyclic;
(iv) G has a plane representation in which \mathcal{A} is linked by a facial cycle.

Since reductions I-IV preserve feasibility/infeasibility, and since conditions (iii) and (iv) imply infeasibility, Theorem 1.1 completely characterizes feasible quadruples. In particular, if G is 4 connected, this theorem says that $\langle G, \mathcal{A}\rangle$ is infeasible if and only if (iii) or (iv) holds.

In our investigation of the aforementioned 3-flow problem, we have observed that the presence of fully odd K_{4}-partitions in a given graph G depends, to a large extent, on the locations of the vertices in $V(\mathcal{A})$. Therefore, we are in need of a transparent global structural description of G. As
both reductions II and IV involve edge contractions, Theorem 1.1 cannot immediately be applied to integer flow problems as the whereabouts of the vertices of $V(\mathcal{A})$ are lost under edge contractions and nowhere-zero-3-flows are not preserved under edge expansions. (To the best of our knowledge, no simple edge contractions have been used successfully to deal with integer flow problems to date.) Therefore, we made a serious effort to improve Theorem 1.1.

In Section 8 we define weakly linkable quadruples. Roughly speaking, $\langle G, \mathcal{A}\rangle$ is weakly linkable if G is 2-connected and, modulo certain small separations, G has a plane representation in which \mathcal{A} is linked by a facial cycle. This is the same type of condition as the one used by Seymour [7] in his solution to the 2-disjoint paths problem.

The main result of this paper is the following.
Theorem 1.2 A quadruple on a 2-connected graph is infeasible if and only if it is trivial, cyclic, or weakly linkable.

We point out that Seymour's theorem on triples in matroid circuits [6] plays an important role in the proof of Theorem 1.1. However, the derivation of Theorem 1.2 relies only on Theorem 1.1 and requires more efforts on exploiting graph structures. What we have to do is to describe the precise locations where the reductions are performed, which makes Theorem 1.2 much stronger than Theorem 1.1.

We conclude this section with some more terminology. Let $G=(V, E)$ be a graph. For $X \subseteq V \cup E$, we use $G \backslash X$ to denote the graph obtained from G by deleting elements of X from G. If $x \in V \cup E$, we write $G \backslash x$ instead of $G \backslash\{x\}$. Let $X \subseteq E$. We denote by $G[X]$ the subgraph of G induced by edges in X, and by G / X the graph obtained from G by contracting all edges in X. For $H=G \backslash X$, we consider $H+X$ as G. We also write G / x instead of $G /\{x\}$, and write $H+x$ instead of $H+\{x\}$ if $X=\{x\}$.

2 The matroid formulation

In this section we show how to rephrase the bond problem as a matroid problem. We refer the reader to Oxley [2] for basic matroid theory. Let $\langle G, \mathcal{A}\rangle$ be a quadruple, where $G=(V, E)$ and $\mathcal{A}=\left\{A_{1}, A_{2}, A_{3}\right\}$. For each $U \subseteq V$, let χ_{U} be the characteristic vector of U (with length $|V|$), which is considered as a vector over $G F(2)$.

We first explain how G defines a binary matroid. For each edge $e=x y$ of G, let $\chi_{e}=\chi_{\{x, y\}}$. Then it is routine to verify that a nonempty set C of edges forms a simple cycle in G if and only if $\sum_{e \in C} \chi_{e}=0$ and $\sum_{e \in C^{\prime}} \chi_{e} \neq 0$ for any nonempty proper subset C^{\prime} of C. This means that simple cycles of G are precisely circuits (minimal dependent sets) of the binary matroid represented by vectors $\left\{\chi_{e}: e \in E\right\}$. Similarly, spanning forests of G are precisely bases (maximal independent sets) of this matroid, which, denoted by $\mathcal{M}(G)$, is known as the graphic matroid of G. To extend $\mathcal{M}(G)$, we require the following lemma.

Lemma 2.1 Let $T \subseteq V$ and $F \subseteq E$. Then χ_{T} is spanned by vectors in $\left\{\chi_{e}: e \in F\right\}$ if and only if $T \subseteq V(G[F])$ and every component of $G[F]$ contains exactly an even number of vertices in T.

Proof. Note that χ_{T} is spanned by vectors in $\left\{\chi_{e}: e \in F\right\}$ if and only if there exists $F^{\prime} \subseteq F$ such that $\chi_{T}=\sum_{e \in F^{\prime}} \chi_{e}$, if and only if there exists $F^{\prime} \subseteq F$ such that the odd-degree vertices of
$G\left[F^{\prime}\right]$ are precisely those in T (in the literature such an F^{\prime} is called a T-join of $G[F]$). Thus the lemma follows (see, for instance, (29.1) of Schrijver [5]).

Taking the even-sized subsets A_{1}, A_{2}, A_{3} of V into account, we reserve the symbol M for the binary matroid represented by the vectors in the set $\left\{\chi_{A_{1}}, \chi_{A_{2}}, \chi_{A_{3}}\right\} \cup\left\{\chi_{e}: e \in E\right\}$. Since G is a connected graph, from Lemma 2.1 we deduce that $\chi_{A_{i}}$ is spanned by $\left\{\chi_{e}: e \in E\right\}$ for $i=1,2,3$. Hence, with $r(\cdot)$ denoting the rank function of M, we obtain

$$
\begin{equation*}
r(M)=r(\mathcal{M}(G))=r(E)=|V|-1 . \tag{2.1}
\end{equation*}
$$

To simplify our notation, let us think of the element set of M as $A \cup E$ (where A consists of a_{1}, a_{2}, and a_{3} corresponding to $\chi_{A_{1}}, \chi_{A_{2}}$, and $\chi_{A_{3}}$, respectively), instead of the set of vectors.

Lemma 2.2 The quadruple $\langle G, \mathcal{A}\rangle$ is feasible if and only if M has a cocircuit containing A.
Proof. Our proof is based on Proposition 2.1.16 of Oxley [2], which asserts that
Cocircuits of a matroid are precisely the minimal sets that meet every basis.
To prove the "only if" part, let $\left[S_{1}, S_{2}\right]$ be a bond of G such that $\left|S_{i} \cap A_{j}\right|$ is odd for all $i=1,2$ and $j=1,2,3$ and set $F:=\left[S_{1}, S_{2}\right]$. We aim to show that $D:=A \cup F$ is a cocircuit of M. For this purpose, let B be a basis of M. If $A \cap B \neq \emptyset$, then $D \cap B \neq \emptyset$; if $A \cap B=\emptyset$, then B forms a spanning tree of G, which implies $D \cap B=F \cap B \neq \emptyset$. Next, for any proper subset D^{\prime} of D, we need to find a basis B^{\prime} with $D^{\prime} \cap B^{\prime}=\emptyset$. If $D^{\prime} \nsupseteq F$, then G has a spanning tree T (obtained from $\left.(G \backslash F) \cup\left(F-D^{\prime}\right)\right)$ which is disjoint from D^{\prime}. In this case, by (2.1), we can take $B^{\prime}=T$. If $D^{\prime} \supseteq F$, we may assume that $a_{1} \notin D^{\prime}$. Let $J \subseteq E-F$ such that J forms a spanning forest of $G \backslash F$, which has exactly two components (whose vertex sets are S_{1} and S_{2}, respectively). If $J \cup\left\{a_{1}\right\}$ is dependent, then $\chi_{A_{1}}$ is spanned by $\left\{\chi_{e}: e \in J\right\}$. It follows from Lemma 2.1 that every component of J has an even number of vertices in A_{1}, contradicting the definition of $\left[S_{1}, S_{2}\right]$. Therefore $J \cup\left\{a_{1}\right\}$ is independent in M, which, in combination of (2.1), implies that $J \cup\left\{a_{1}\right\}$ is a basis of M, so we can take $B^{\prime}=J \cup\left\{a_{1}\right\}$. Hence, by (2.2), D is a cocircuit of M.

To see the "if" part, suppose M has a cocircuit of the form $D=A \cup F$ with $F \subseteq E$. We propose to show that F is a bond of G of the form $F=\left[S_{1}, S_{2}\right]$ such that $\left|S_{i} \cap A_{j}\right|$ is odd for all $i=1,2$ and $j=1,2,3$, which implies that the quadruple $\langle G, \mathcal{A}\rangle$ is feasible. Indeed, for every spanning tree T of G, since T is a basis of M by (2.1), we have $T \cap F=T \cap D \neq \emptyset$. As D is a cocircuit of M, for any proper subset F^{\prime} of F, there exists a basis T^{\prime} of M such that $\left(A \cup F^{\prime}\right) \cap T^{\prime}=\emptyset$. It follows that T^{\prime} is a spanning tree of G with $T^{\prime} \cap F^{\prime}=\emptyset$. We can thus conclude from (2.2) that F is a cocircuit of $\mathcal{M}(G)$ and hence is a bond of G, denoted by $\left[S_{1}, S_{2}\right]$. It remains to verify that both $\left|S_{1} \cap A_{j}\right|$ and $\left|S_{2} \cap A_{j}\right|$ are odd for every $1 \leq j \leq 3$. Since D is a cocircuit of M, by (2.2), M has a basis B such that $B \cap\left(D-\left\{a_{j}\right\}\right)=\emptyset$; that is, $B \subseteq(E-F) \cup\left\{a_{j}\right\}$. It follows that B consists of a_{j} and a spanning forest J of $G \backslash F$ (which has two components with vertex sets S_{1} and S_{2}, respectively). Since a_{j} is not spanned by J, we deduce from Lemma 2.1 that both $\left|S_{1} \cap A_{j}\right|$ and $\left|S_{2} \cap A_{j}\right|$ are odd.

3 Application of Seymour's theorem

The result established by Seymour in [6] is actually stronger than what he stated in the paper. In this section we extract this stronger version, which will be used in the proof of Theorem 1.1.

Let N be a matroid on $E(N)$ and let (X, Y) be a partition of $E(N)$. The order of (X, Y) is defined as

$$
\begin{equation*}
o(X, Y)=r_{N}(X)+r_{N}(Y)-r_{N}(N)+1 \tag{3.1}
\end{equation*}
$$

where $r_{N}(\cdot)$ denotes the rank in N. Let k be a positive integer with $o(X, Y) \leq k$. Then (X, Y) is called

- a k-separation if $\min \{|X|,|Y|\} \geq k$;
- an internal k-separation if $\min \{|X|,|Y|\} \geq k+1$; and
- a vertical k-separation if $\max \left\{r_{N}(X), r_{N}(Y)\right\}<r_{N}(N)$.

We say that N is k-connected (resp. internally k-connected, vertically k-connected) if N has no k^{\prime} separation (resp. internal k^{\prime}-separation, vertical k^{\prime}-separation) for any $k^{\prime}<k$. It is well known that a matroid is k-connected (resp. internally k-connected) if and only if its dual is k-connected (resp. internally k-connected). However, the dual of a vertically k-connected matroid is not necessarily vertically k-connected. By a k-circuit (resp. k-cocircuit) in N we mean a circuit (resp. cocircuit) in N of cardinality k. A 3 -circuit is also called a triangle.

In the rest of this section, N is a binary matroid and $A=\left\{a_{1}, a_{2}, a_{3}\right\}$ consists of three specified elements of N. The following lemmas were proved by Seymour [6].

Lemma 3.1 ((2.3) of [6]) If N is 3 -connected and vertically 4 -connected, then N is internally 4-connected.

Lemma 3.2 ((2.9) of [6]) Suppose N is 3 -connected and has no vertical 3-separation (X, Y) with $A \subseteq X$. Suppose a_{1}, a_{2} are not contained in any triangle in N. Let a_{3}^{\prime} be a new element and let N^{\prime} be the unique binary matroid on $E(N) \cup\left\{a_{3}^{\prime}\right\}$ such that $N^{\prime} \backslash a_{3}^{\prime}=N$ and $\left\{a_{1}, a_{2}, a_{3}^{\prime}\right\}$ is a triangle in N^{\prime}. Then N^{\prime} is 3 -connected and has no vertical 3 -separation (X, Y) with $A \subseteq X$. Moreover, N has a circuit containing A if and only if N^{\prime} has a circuit containing A.

Lemma 3.3 ((2.10) of [6]) Suppose N is 3-connected and has no vertical 3-separation (X, Y) with $A \subseteq X$. If $A-\left\{a_{i}\right\}$ is contained in a triangle for all $i=1,2,3$, then N is vertically 4-connected.

Lemma 3.4 ((3.11) of [6]) Suppose N is 3-connected and internally 4-connected. Then A is not contained in any circuit of N if and only if either A is a cocircuit or $N=\mathcal{M}(H)$ for a graph H, such that members of A are edges in H incident with a common vertex.

Let us now use the above lemmas to derive a statement slightly stronger (see Lemma 3.1) than Lemma 3.4.

Lemma 3.5 Suppose N is 3-connected and has no vertical 3 -separation (X, Y) with $A \subseteq X$. Then A is not contained in any circuit of N if and only if either A is a cocircuit or $N=\mathcal{M}(H)$ for a graph H, such that members of A are edges in H incident with a common vertex.

Proof. The "if" part is obvious. So we proceed to the "only if" part. Suppose N has no circuit containing A. Let us apply the procedure described in Lemma 3.2 to all pairs $\left\{a_{1}, a_{2}\right\}$, $\left\{a_{2}, a_{3}\right\}$, and $\left\{a_{1}, a_{3}\right\}$. Then we obtain a matroid N^{\prime} that is 3 -connected and has no vertical 3separation (X, Y) with $A \subseteq X$. Moreover, $A-\left\{a_{i}\right\}$ is contained in a triangle in N^{\prime} for all $i=1,2,3$, while A is contained in no circuit in N^{\prime}. By Lemma $3.3, N^{\prime}$ is vertically 4 -connected and hence, using Lemma 3.1, internally 4 -connected. From Lemma 3.4 we see that A is a cocircuit of N^{\prime} or
$N^{\prime}=\mathcal{M}\left(H^{\prime}\right)$ for a graph H^{\prime}, such that members of A are edges in H^{\prime} incident with a common vertex. Let $Z=E\left(N^{\prime}\right)-E(N)$. Then $N=N^{\prime} \backslash Z$. In the first case, A contains a cocircuit of N, so A itself is a cocircuit of N because $|A|=3$ and N is 3 -connected. In the second case, $N=\mathcal{M}\left(H^{\prime}\right) \backslash Z=\mathcal{M}\left(H^{\prime} \backslash Z\right)$, which proves that $H=H^{\prime} \backslash Z$ has the desired property.

In our application, we shall use a modified version of the preceding lemma. We say that two elements in a 2-cocircuit (resp. 2-circuit) of a matroid are in series (resp. parallel) with each other, and that a matroid N_{1} is a series-extension of a matroid N_{2} if N_{1} is obtained from N_{2} by adding elements (possibly none), each of which is in series with an element of N_{2}; this, in terms of dual matroids, amounts to that N_{1}^{*} is obtained from N_{2}^{*} by adding elements (possibly none), each of which is in parallel with an element of N_{2}^{*}.

Corollary 3.6 Suppose N is a series-extension of a 3 -connected matroid N^{\prime} with $A \subseteq E\left(N^{\prime}\right)$, and N has no vertical 3 -separation (X, Y) with $A \subseteq X$. Then A is not contained in any circuit of N if and only if either A is a cocircuit of N or $N=\mathcal{M}(H)$ for a graph H, such that members of A are edges in H incident with a common vertex.

Proof. Notice that N^{\prime} has no vertical 3 -separation (X, Y) with $A \subseteq X$, as N has no such separations. Since N is a series-extension of a 3-connected matroid N^{\prime} and $A \subseteq E\left(N^{\prime}\right)$, the following statements hold: (i) A is contained in a circuit of N if and only if A is contained in a circuit of N^{\prime}; (ii) A is a cocircuit of N if and only if A is a cocircuit of N^{\prime}; and (iii) $N=\mathcal{M}(H)$ for a graph H, such that members of A are edges in H incident with a common vertex if and only if $N^{\prime}=\mathcal{M}\left(H^{\prime}\right)$ for a graph H^{\prime}, such that members of A are edges in H^{\prime} incident with a common vertex. Thus the corollary follows instantly from Lemma 3.5.

We remark that assumptions in Corollary 3.6 in fact imply that N is 3 -connected, except that each $a_{i} \in A$ could be in a series class of size two.

We also need a characterization of graphs that have the same matroid. Suppose G is obtained from disjoint graphs G_{1} and G_{2} by identifying $u_{1}, v_{1} \in V\left(G_{1}\right)$ with $u_{2}, v_{2} \in V\left(G_{2}\right)$, respectively. Then the graph obtained from G_{1}, G_{2} by identifying u_{1} with v_{2}, and v_{1} with u_{2} is called a twist of G. It is not difficult to see that if one graph is obtained from another graph by a sequence of twisting operations, then the two graphs have the same matroid. The following theorem of Whitney (5.3.1 of [2]) asserts the converse.

Lemma 3.7 Two 2-connected graphs have the same matroid if and only if one can be obtained from the other by a sequence of twisting operations.

The following is another fact we will use. We omit its proof since it follows immediately from the definition of twist.

Lemma 3.8 Suppose G has a plane representation with a facial cycle C. If G^{\prime} is a twist of G, then G^{\prime} also has a plane representation with C as a facial cycle.

Now let us restrict our attention to the quadruple $\langle G, \mathcal{A}\rangle$ and the matroid M discussed in Section 2, the binary matroid represented by vectors in the set $\left\{\chi_{A_{1}}, \chi_{A_{2}}, \chi_{A_{3}},\right\} \cup\left\{\chi_{e}: e \in E(G)\right\}$. Applying Corollary 3.6 with respect to M^{*}, we obtain the following result.

Lemma 3.9 Suppose $\langle G, \mathcal{A}\rangle$ is nontrivial and G is 2 -connected. If M^{*} is a series-extension of a 3 -connected matroid containing A, and M^{*} has no vertical 3 -separation $\left(F_{1}, F_{2}\right)$ with $A \subseteq F_{1}$, then $\langle G, \mathcal{A}\rangle$ is infeasible if and only if it is cyclic or G has a plane representation in which \mathcal{A} is linked by a facial cycle.

Proof. In view of Lemma $2.2,\langle G, \mathcal{A}\rangle$ is infeasible if and only if A is not contained in any circuit of M^{*}; this, by Corollary 3.6, is equivalent to saying that one of the following statements holds:
(i) A is a circuit of M;
(ii) $M=\mathcal{M}^{*}(H)$ for a graph H, such that a_{1}, a_{2}, a_{3} are edges $v_{1} v_{0}, v_{2} v_{0}, v_{3} v_{0}$ in H, respectively, with a common vertex v_{0}.

Since $\langle G, \mathcal{A}\rangle$ is nontrivial, the following are equivalent:
(i) $\Leftrightarrow \chi_{A_{1}}+\chi_{A_{2}}+\chi_{A_{3}}=0$ over $G F(2) \Leftrightarrow A_{1} \Delta A_{2} \Delta A_{3}=\emptyset \Leftrightarrow\langle G, \mathcal{A}\rangle$ is cyclic.

It remains to prove that (ii) is equivalent to
(iii) G has a plane representation in which \mathcal{A} is linked by a facial cycle C.

Suppose (ii) holds. Without loss of generality, we assume that H has no isolated vertices. Since $\mathcal{M}(H)=M^{*}$ is connected, by Proposition 4.1.8 of [2], H is 2-connected. It follows that, for $i=1,2,3$, edges in H that are incident with v_{i} form a minimal edge cut $\left\{a_{i}\right\} \cup E_{i}$, where $E_{i}=\left[\left\{v_{i}\right\}, V(H)-\left\{v_{i}\right\}\right]-\left\{a_{i}\right\}$. Since $\mathcal{M}^{*}(H / A)=\mathcal{M}^{*}(H) \backslash A=M \backslash A=\mathcal{M}(G)$, matroid $\mathcal{M}(H / A)$ is both graphic and cographic, which implies, by Theorem 5.2.2 of [2], that H / A is planar. Let us consider H / A as a plane graph and let $(H / A)^{*}$ be its geometric dual. Since G is 2-connected, $\mathcal{M}\left((H / A)^{*}\right)=\mathcal{M}^{*}(H / A)=\mathcal{M}(G)$ is connected and thus $(H / A)^{*}$ is 2-connected. Note that all edges in $E_{1} \cup E_{2} \cup E_{3}$ are incident with a common vertex of H / A, hence $E_{1} \cup E_{2} \cup E_{3}$ is contained in a facial cycle of $(H / A)^{*}$. By applying Lemma 3.7 and Lemma 3.8 to graphs $(H / A)^{*}$ and G we deduce that G has a plane representation such that $E_{1} \cup E_{2} \cup E_{3}$ is contained in a facial cycle C. In addition, we also deduce from the 2-connectivity of $(H / A)^{*}$ that H / A has no loops and hence the three sets E_{1}, E_{2}, and E_{3} are pairwise disjoint.

Since $\left\{a_{i}\right\} \cup E_{i}$ is a cocircuit of $\mathcal{M}(H)$, it is a circuit of M, implying $\chi_{A_{i}}+\sum_{e \in E_{i}} \chi_{e}=0$ and hence A_{i} is the set of all odd-degree vertices in the graph $G\left[E_{i}\right]$. Recall that $G\left[E_{i}\right]$ is a subgraph of facial cycle C, so $G\left[E_{i}\right]$ consists of some paths $P_{i, 1}, P_{i, 2}, \ldots, P_{i, t_{i}}$ (with positive lengths) on C whose ends are precisely vertices in A_{i} for $i=1,2,3$, where $t_{i} \geq 1$ as $A_{i} \neq \emptyset$. Since E_{1}, E_{2}, and E_{3} are pairwise disjoint, it is routine to check that \mathcal{A} is linked by C. Hence (ii) \Rightarrow (iii).

To show the reverse implication we will use the following simple fact whose proof we omit. Let N_{1}, N_{2} be two binary matroids on the same ground set F. Suppose $f \in F$ and $Z \subseteq F-\{f\}$ such that $N_{1} \backslash f=N_{2} \backslash f$, and $\{f\} \cup Z$ is a circuit in both N_{1} and N_{2}. Then $N_{1}=N_{2}$.

Assuming (iii), there exist edge-disjoint paths $P_{i, j}$ of $C\left(i=1,2,3\right.$ and $j=1,2, \ldots, t_{i}$, with $t_{i} \geq 1$) such that, for $i=1,2,3$, paths $P_{i, 1}, P_{i, 2}, \ldots, P_{i, t_{i}}$ are vertex-disjoint and their ends form A_{i}. Set $E_{i}:=\cup_{j=1}^{t_{i}} E\left(P_{i, j}\right)$ for $i=1,2,3$. Then the three sets E_{1}, E_{2}, and E_{3} are pairwise disjoint. For $i=1,2,3, E_{i}$ satisfies $\chi_{A_{i}}+\sum_{e \in E_{i}} \chi_{e}=0$ (over $\left.G F(2)\right)$ and E_{i} is a minimal set with this property, which means that $\left\{a_{i}\right\} \cup E_{i}$ is a circuit of M. On the other hand, we consider the dual graph G^{*} of G. Since C is a facial cycle of G, there exists a vertex v^{*} of G^{*} such that edges incident with v^{*} are precisely those in $E(C)$. Let H be obtained from G^{*} by replacing v^{*} with a claw consisting of edges $a_{i}=v_{0} v_{i}(i=1,2,3)$ in a way that edges in E_{i} are incident with $v_{i}(i=1,2,3)$ and edges in $E(C)-\left(E_{1} \cup E_{2} \cup E_{3}\right)$ are incident with v_{0}. Graph H is well defined because E_{1}, E_{2}, and E_{3}
are pairwise disjoint. Clearly, $\mathcal{M}^{*}(H) \backslash A=\mathcal{M}^{*}(H / A)=\mathcal{M}(G)=M \backslash A$. In addition, since G is 2-connected and each $E_{i} \neq \emptyset, H$ must also be 2-connected. As a result, each $\left\{a_{i}\right\} \cup E_{i}$ is a circuit of $\mathcal{M}^{*}(H)$. Now the simple fact mentioned in the last paragraph implies $\mathcal{M}^{*}(H)=M$, which proves (iii) \Rightarrow (ii).

4 Separations in graphs

Throughout this section, we assume that $G=(V, E)$ is a 2-connected graph and $\langle G, \mathcal{A}\rangle$ is a nontrivial quadruple. Let M be the matroid as defined in Section 2 and let $r(\cdot)$ be the rank function of M. For any $F \subseteq E$, let $c(F)$ denote the number of components of $G[F]$. Since the graphic matroid $\mathcal{M}(G)$ is a restriction of M to E, we have $r(F)=|V(G[F])|-c(F)$.

For any partition $\left(E_{1}, E_{2}\right)$ of E, it follows from (3.1) and the submodular inequality of the rank function that

$$
\begin{equation*}
o\left(E_{1}, E_{2}\right)=r\left(E_{1}\right)+r\left(E_{2}\right)-r(E)+1 \geq 1 . \tag{4.1}
\end{equation*}
$$

For $i=1,2$, let $V_{i}=\emptyset$ if $E_{i}=\emptyset$, else let $G_{i}:=G\left[E_{i}\right]$, let $V_{i}:=V\left(G_{i}\right)$, and let $G_{i}^{1}, G_{i}^{2}, \ldots, G_{i}^{t_{i}}$ be all the components of G_{i}, where $t_{i}=c\left(E_{i}\right)$.

Lemma 4.1 Let $V_{0}:=V_{1} \cap V_{2}$ and $k:=o\left(E_{1}, E_{2}\right)$. Then $k=\left|V_{0}\right|-t_{1}-t_{2}+2$. Furthermore,
(i) $k=1$ iff $E_{1}=\emptyset$ or $E_{2}=\emptyset$;
(ii) $k=2$ iff $t_{1}=t_{2}=t=\left|V_{0}\right| / 2$ and $\left|V\left(G_{i}^{j}\right) \cap V_{0}\right|=2$ for all $i=1,2$ and $j=1,2, \ldots, t$;
(iii) $k=3$ iff $\left|V\left(G_{i}^{j}\right) \cap V_{0}\right|=2$ for all $i=1,2$ and $j=1,2, \ldots, t_{i}$, except $\left|V\left(G_{i}^{j}\right) \cap V_{0}\right|=4$ for exactly one G_{i}^{j} or except $\left|V\left(G_{i}^{j}\right) \cap V_{0}\right|=3$ for exactly two G_{i}^{j}.

Proof. By definition, $r\left(E_{i}\right)=\left|V_{i}\right|-t_{i}$ for $i=1,2$. Using (4.1) we obtain

$$
k=\left(\left|V_{1}\right|-t_{1}\right)+\left(\left|V_{2}\right|-t_{2}\right)-(|V|-1)+1=\left|V_{0}\right|-t_{1}-t_{2}+2,
$$

as desired. Equivalently,

$$
\begin{equation*}
t_{1}+t_{2}=\left|V_{0}\right|+2-k \tag{4.2}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
\text { if } E_{1} \neq \emptyset \neq E_{2} \text {, then }\left|V\left(G_{i}^{j}\right) \cap V_{0}\right| \geq 2 \text { for } i=1,2 \text { and } j=1,2, \ldots, t_{i} \text {. } \tag{4.3}
\end{equation*}
$$

To justify this, note that $G_{i}^{1}, G_{i}^{2}, \ldots, G_{i}^{t_{i}}$ are pairwise vertex-disjoint for $i=1,2$ and each has at least one edge. Since G is 2 -connected, $G_{i}^{j}\left(i=1,2\right.$ and $\left.j=1,2, \ldots, t_{i}\right)$ contains at least two vertices from G_{3-i}, which clearly belong to V_{0}. Thus (4.3) holds. It follows that

$$
\begin{equation*}
\text { if } E_{1} \neq \emptyset \neq E_{2} \text {, then } 0<t_{i} \leq\left|V_{0}\right| / 2 \text { for } i=1,2 . \tag{4.4}
\end{equation*}
$$

From (4.2) and (4.4), we conclude (i) instantly. Next, $k=2$ if and only if $t_{1}=\left|V_{0}\right| / 2=t_{2}$. In view of (4.3), we obtain (ii). Finally, using $\sum_{j=1}^{t_{i}}\left|V\left(G_{i}^{j}\right) \cap V_{0}\right|=\left|V_{0}\right|(i=1,2)$ we deduce from (4.2) that: $k=3$ if and only if $2=2\left|V_{0}\right|-2\left(t_{1}+t_{2}\right)=\sum_{i=1}^{2} \sum_{j=1}^{t_{i}}\left(\left|V\left(G_{i}^{j}\right) \cap V_{0}\right|-2\right)$ if and only if the graph structures are as described in (iii) (by (4.3)).

In what follows, we consider a partition $\left(F_{1}, F_{2}\right)$ of $E \cup A=E(M)$ and its restriction $\left(E_{1}, E_{2}\right)$ to E, where $E_{i}=F_{i} \cap E$ for $i=1,2$. From (2.1), (3.1) and (4.1) we see that

$$
\begin{equation*}
r\left(F_{i}\right) \leq r(E) \text { for } i=1,2 \text { and } o\left(F_{1}, F_{2}\right)=r\left(F_{1}\right)+r\left(F_{2}\right)-r(E)+1 \geq o\left(E_{1}, E_{2}\right) \geq 1 . \tag{4.5}
\end{equation*}
$$

Lemma $4.2 M$ is connected.

Proof. First, since G is 2-connected, $M \mid E=\mathcal{M}(G)$ is connected. Second, by (2.1), E is a spanning set of M. Finally, since $\langle G, \mathcal{A}\rangle$ is nontrivial, no element of A is a loop of M, which proves that M is connected.

Lemma 4.3 If M is not a parallel-extension of 3-connected matroid containing A, then one of the following holds:
(i) $A_{i}=A_{j}$ for some $1 \leq i<j \leq 3$;
(ii) E has a partition $\left(E_{1}, E_{2}\right)$ with $o\left(E_{1}, E_{2}\right)=2 \leq \min \left\{r\left(E_{1}\right), r\left(E_{2}\right)\right\}$, such that for each h in $\{1,2,3\}$, there exists $i=i(h) \in\{1,2\}$ for which $A_{h} \subseteq V_{i}$ and $\left|A_{h} \cap V\left(G_{i}^{j}\right)\right|$ is even for all $1 \leq j \leq t_{i}$.

Proof. Depending on the structure of M, we distinguish between two cases.
Case 1. M is a parallel-extension of a 3-connected matroid. In this case, the hypothesis of the lemma allows us to assume that a_{i} and a_{j} are in parallel with each other for some $1 \leq i<j \leq 3$. It follows that $A_{i}=A_{j}$.

Case 2. M is not a parallel-extension of a 3-connected matroid. In particular, M is not 3 -connected. By Lemma 4.2, M admits a 2 -separations (F_{1}, F_{2}) with $o\left(F_{1}, F_{2}\right)=2$. We claim that

$$
\begin{equation*}
M \text { has a 2-separation }\left(F_{1}, F_{2}\right) \text { with } \min \left\{r\left(F_{1}\right), r\left(F_{2}\right)\right\} \geq 2=o\left(F_{1}, F_{2}\right) . \tag{4.6}
\end{equation*}
$$

Otherwise, for every 2-separation $\left(F_{1}, F_{2}\right)$ of M, we have $\min \left\{r\left(F_{1}\right), r\left(F_{2}\right)\right\}=1$, which means either F_{1} or F_{2} consists of parallel elements. Let $s i(M)$ be the simple matroid associated with M (cf. page 46 of Oxley [2]). Then $s i(M)$ would have no 2 -separations and hence is 3 -connected. Clearly, we may assume that $\operatorname{si}(M)$ contains A, for otherwise a_{i} and a_{j} would be in parallel with each other for some $1 \leq i<j \leq 3$ and hence (i) holds. Therefore M is a parallel-extension of 3 -connected matroid $\operatorname{si}(M)$ containing A, contradicting the hypothesis of the lemma. So (4.6) is established.

Let $\left(F_{1}, F_{2}\right)$ be as exhibited in (4.6) and let $\left(E_{1}, E_{2}\right)$ be the restriction of $\left(F_{1}, F_{2}\right)$ to E. We propose to show that $\left(E_{1}, E_{2}\right)$ is as desired. Indeed, from (4.5) and (4.6) we see that max $\left\{r\left(E_{1}\right)\right.$, $\left.r\left(E_{2}\right)\right\} \leq \max \left\{r\left(F_{1}\right), r\left(F_{2}\right)\right\} \leq r(E)-1$, so $E_{1} \neq \emptyset \neq E_{2}$ and hence $o\left(E_{1}, E_{2}\right) \geq 2$ by Lemma 4.1(i). In view of (4.5) and (4.6), we further obtain $o\left(E_{1}, E_{2}\right)=2$. It follows from (4.1) and (4.5) that $r\left(E_{i}\right)=r\left(F_{i}\right) \geq 2$ for $i=1,2$. Hence $\chi_{A_{h}}(h=1,2,3)$ is spanned by $\left\{\chi_{e}: e \in E_{i}\right\}$ if $a_{h} \in F_{i}$, we can thus deduce (ii) from Lemma 2.1.

A subset of V or a subgraph of G is called uniform in a quadruple $\langle G, \mathcal{A}\rangle$ if its intersection with $V(\mathcal{A})=A_{1} \cup A_{2} \cup A_{3}$ is a subset of $A_{1} \cap A_{2} \cap A_{3}$, or a subset of $A_{h}-\left(A_{i} \cup A_{j}\right)$, or a subset of $\left(A_{h} \cap A_{i}\right)-A_{j}$ for some permutation h, i, j of $1,2,3$.

Let us now proceed to vertical 3 -separations in M^{*}. By definition, a partition $\left(F_{1}, F_{2}\right)$ of $E \cup A$ is a vertical 3-separation in M^{*} if and only if $r^{*}\left(F_{1}\right)+r^{*}\left(F_{2}\right)-r^{*}(E \cup A)+1=o\left(F_{1}, F_{2}\right) \leq 3$ and $r^{*}\left(F_{i}\right)<r^{*}(M)$ for $i=1,2$. Since $r^{*}(X)=|X|-r(M)+r((E \cup A)-X)$ for each $X \subseteq E \cup A$, by (2.1), it is easy to verify that the latter holds if and only if

$$
\begin{equation*}
r\left(F_{1}\right)+r\left(F_{2}\right) \leq|V|+1, \text { and } r\left(F_{i}\right)<\left|F_{i}\right| \text { for } i=1,2 . \tag{4.7}
\end{equation*}
$$

In the following lemma we use notation introduced in Lemma 4.1.

Lemma 4.4 If M is a parallel-extension of a 3-connected matroid containing $A,\left(F_{1}, F_{2}\right)$ is a vertical 3-separation of M^{*} with $A \subseteq F_{1}$, and $\left(E_{1}, E_{2}\right)$ is the restriction of $\left(F_{1}, F_{2}\right)$ to E, then $\left|V\left(G_{2}^{\ell}\right)\right| \leq\left|E\left(G_{2}^{\ell}\right)\right|$ for some $1 \leq \ell \leq t_{2}$. Moreover, one of the following holds:
(i) $A_{1} \Delta A_{2} \Delta A_{3}=\emptyset$ or $A_{i}=A_{j}$ for some $1 \leq i<j \leq 3$;
(ii) o($\left.E_{1}, E_{2}\right)=2$ and $V_{2}-V_{0}$ is uniform;
(iii) o($\left.E_{1}, E_{2}\right)=3, A_{1} \cup A_{2} \cup A_{3} \subseteq V_{1}$, and $\left|A_{i} \cap V\left(G_{1}^{j}\right)\right|$ is even for every $1 \leq i \leq 3$ and $1 \leq j \leq t_{1}$.

Proof. Since $A \subseteq F_{1}$, we have $E_{2}=F_{2} \neq \emptyset$ by (4.7). Therefore

$$
\sum_{\ell=1}^{t_{2}}\left(\left|V\left(G_{2}^{\ell}\right)\right|-1\right)=\sum_{\ell=1}^{t_{2}} r\left(E\left(G_{2}^{\ell}\right)\right)=r\left(E_{2}\right)=r\left(F_{2}\right)<\left|F_{2}\right|=\left|E_{2}\right|=\sum_{\ell=1}^{t_{2}}\left|E\left(G_{2}^{\ell}\right)\right|,
$$

which implies $\left|V\left(G_{2}^{\ell}\right)\right| \leq\left|E\left(G_{2}^{\ell}\right)\right|$ for some $1 \leq \ell \leq t_{2}$.
Since $A_{i} \neq \emptyset$ for $i=1,2,3$, we have $r(A) \geq 1$. If $r(A)<|A|=3$, then (i) holds. So we assume hereafter that $r(A)=|A|=3$.

Put $k:=o\left(E_{1}, E_{2}\right)$. Recall that $k \geq 1$. If $k=1$, then $E_{1}=\emptyset$ by Lemma 4.1(i). So $F_{1} \subseteq A$ and hence $F_{1}=A$ by hypothesis. It follows from (4.7) that $r(A)<|A|$, contradicting the preceding assumption. So $k \geq 2$. By (4.5), we obtain $2 \leq k \leq o\left(F_{1}, F_{2}\right) \leq 3$. Observe that

$$
\begin{equation*}
\text { if } o\left(F_{1}, F_{2}\right)=2 \text {, then } \min \left\{r\left(F_{1}\right), r\left(F_{2}\right)\right\}=1 \text {. } \tag{4.8}
\end{equation*}
$$

Otherwise, $r\left(F_{i}\right) \geq 2$ for $i=1,2$. Consequently, as $r(M) \geq r(A) \geq 3, M$ has a separation $\left(F_{1}^{\prime}, F_{2}^{\prime}\right)$ with $o\left(F_{1}^{\prime}, F_{2}^{\prime}\right)=2$ and $r\left(F_{i}^{\prime}\right) \geq 2(i=1,2)$, and such that every parallel class of M is completely contained in either F_{1}^{\prime} or F_{2}^{\prime}. Let $s i(M)$ be a 3 -connected matroid such that M is its parallelextension (see the hypothesis). Then the restriction of $\left(F_{1}^{\prime}, F_{2}^{\prime}\right)$ to $s i(M)$ would be a 2 -separation of $\operatorname{si}(M)$, contradicting its 3 -connectivity.

Let us now consider two cases.
Case 1. $o\left(F_{1}, F_{2}\right)=2$. In this case, $k=2$. Since $r\left(F_{1}\right) \geq r(A)=3$, by (4.8) we obtain $r\left(E_{2}\right)=r\left(F_{2}\right)=1$. It follows that $\left|V_{2}\right|=2$. As the 2-connectivity of G implies $\left|V_{0}\right|=\left|V_{1} \cap V_{2}\right| \geq 2$, we obtain $V_{2}-V_{0}=\emptyset$. Thus (ii) holds now.

Case 2. $o\left(F_{1}, F_{2}\right)=3$. In this case, combining (4.1), (4.5), and the equality $r\left(F_{2}\right)=r\left(E_{2}\right)$, we obtain $r\left(F_{1}\right)=r\left(E_{1}\right)+3-k$. If $k=3$, then $r\left(F_{1}\right)=r\left(E_{1}\right)$. Hence $\chi_{A_{i}}(i=1,2,3)$ is spanned by $\left\{\chi_{e}: e \in E_{1}\right\}$. By Lemma 2.1, we thus obtain (iii). If $k=2$, then $r\left(F_{1}\right)=r\left(E_{1}\right)+1$. By symmetry we may assume the existence of a spanning forest B of G_{1} such that $\left\{a_{1}\right\} \cup B$ is a basis of F_{1}. Consequently, $a_{i}(i=2,3)$ is spanned by $\left\{a_{1}\right\} \cup B$, which implies that $A_{i}-V_{1}=\emptyset$ or $A_{i}-V_{1}=A_{1}-V_{1}$. Therefore (ii) holds, completing the proof.

5 Reductions

In this section, we introduce four reductions which reduce the input quadruple in the bond problem to "smaller" ones. We begin with several definitions and facts on graph separations which will be used to prove reducibility and feasibility of a quadruple.

Let H be a graph. A separation of H is a pair (X, Y) of subgraphs of H with $V(X) \cup V(Y)=$ $V(H), E(X) \cup E(Y)=E(H), E(X) \cap E(Y)=\emptyset$, and $E(X) \neq \emptyset \neq E(Y)$. If, in addition, $|V(X) \cap V(Y)|=k$, then (X, Y) is called a k-separation at $V(X) \cap V(Y)$.

The following simple fact ensures the existence of bonds in the most general sense.

Lemma 5.1 Let H be a connected graph and let X_{1}, X_{2} be nonempty disjoint subsets of $V(H)$. Then H has a bond $\left[Y_{1}, Y_{2}\right]$ with $X_{i} \subseteq Y_{i}$ for $i=1,2$ if and only if there exist vertex-disjoint connected subgraphs H_{1} and H_{2} of H such that $X_{i} \subseteq V\left(H_{i}\right)$ for $i=1,2$.

It is well known that in a 2-connected graph that is not a triangle, every single edge can be either deleted or contracted so that the resulting graph remains 2 -connected. This fact can be used to prove the following statement.

Lemma 5.2 Let H be a 2-connected graph and let X_{1}, X_{2} be nonempty subsets of $V(H)$. Then H has a bond $\left[Y_{1}, Y_{2}\right]$ of H such that $\left|X_{i} \cap Y_{1}\right|=1$ for $i=1,2$.

Proof. We apply induction on $E(H)$. Since the base case when H is a triangle is trivial, we proceed to the induction step, and assume that the assertion holds for all 2-connected graphs H^{\prime} with $\left|E\left(H^{\prime}\right)\right|<|E(H)|$. If there exists $v \in X_{1} \cap X_{2}$, then $Y_{1}=\{v\}$ yields a desired bond of H. So we also assume $X_{1} \cap X_{2}=\emptyset$. Let $e=u_{1} u_{2}$ be an edge of H with $u_{1} \in X_{1}$ and $u_{2} \notin X_{1}$. Recall that either $H \backslash e$ or H / e is 2-connected as H is not a triangle.

If $H \backslash e$ is 2-connected, then the induction hypothesis guarantees the existence of a bond $\left[Y_{1}, Y_{2}\right]$ of $H \backslash e$, which also defines a bond of H, such that $\left|X_{i} \cap Y_{1}\right|=1$ for $i=1,2$. So we assume that $H^{\prime}=H / e$ is 2-connected. If $u_{2} \in X_{2}$, setting $Y_{1}=\left\{u_{1}, u_{2}\right\}$ yields a bond of H as desired. So we assume $u_{2} \notin X_{2}$. Let $v \in V\left(H^{\prime}\right)$ be the vertex resulted from the contraction of e, and let $X_{1}^{\prime}:=\left(X_{1}-\left\{u_{1}\right\}\right) \cup\{v\}$ and $X_{2}^{\prime}:=X_{2}$. By induction hypothesis, there is a bond $\left[Y_{1}^{\prime}, Y_{2}^{\prime}\right]$ of H^{\prime} with $\left|X_{i}^{\prime} \cap Y_{1}^{\prime}\right|=1$ for $i=1,2$. Define $Y_{1}:=Y_{1}^{\prime}$ if $v \notin Y_{1}^{\prime}$ and $Y_{1}:=\left(Y_{1}^{\prime}-\{v\}\right) \cup\left\{u_{1}, u_{2}\right\}$ otherwise, and put $Y_{2}:=V(H)-Y_{1}$. Clearly, $\left[Y_{1}, Y_{2}\right]$ is a bond of H as desired.

Let $\langle G, \mathcal{A}\rangle$ be a nontrivial quadruple, where $G=(V, E)$, and let M be the matroid as defined in Section 2. For each edge $e=x y \in E$, it is easy to verify that M / e corresponds to the quadruple $\langle G / e, \mathcal{A} / e\rangle$ in the same way as M does to $\langle G, \mathcal{A}\rangle$, where, letting $z \in V(G / e)$ be resulted from contracting e, the triple $\mathcal{A} / e=\left\{A_{1}^{\prime}, A_{2}^{\prime}, A_{3}^{\prime}\right\}$ satisfies $A_{i}^{\prime}=\left(A_{i}-\{x, y\}\right) \cup\{z\}$ if $\left|A_{i} \cap\{x, y\}\right|=1$ and $A_{i}^{\prime}=A_{i}-\{x, y\}$ otherwise for $i=1,2,3$. In particular,

$$
\begin{equation*}
A_{i}^{\prime} \text { is an even-sized subset of } A_{i} \cup\{z\} \text { for } i=1,2,3 \text {. } \tag{5.1}
\end{equation*}
$$

Moreover, a feasible solution $\left[S_{1}^{\prime}, S_{2}^{\prime}\right]$ of the quadruple $\langle G / e, \mathcal{A} / e\rangle$ with $z \in S_{1}^{\prime}$ gives a feasible solution $\left[V-S_{2}^{\prime}, S_{2}^{\prime}\right]=\left[\left(S_{1}^{\prime}-\{z\}\right) \cup\{x, y\}, S_{2}^{\prime}\right]$ of $\langle G, \mathcal{A}\rangle$. Thus if $\langle G / e, \mathcal{A} / e\rangle$ is feasible, then so is $\langle G, \mathcal{A}\rangle$. This simple fact can be extended to a quadruple obtained via a sequence of contractions. Let $\langle G / \emptyset, \mathcal{A} / \emptyset\rangle=\langle G, \mathcal{A}\rangle$. For any $e \in F \subseteq E$, we define the contraction of $\langle G, \mathcal{A}\rangle$ (with respect to $F)$, inductively, as $\langle G, \mathcal{A}\rangle / F=\langle G / F, \mathcal{A} / F\rangle=\langle G / F, \mathcal{A} /(F-\{e\}) / e\rangle$. It is straightforward to verify that the result is independent of the order of the contractions. So the feasibility of $\langle G / F, \mathcal{A} / F\rangle$ implies the feasibility of $\langle G, \mathcal{A}\rangle$, though the reverse is not necessarily true. The combination of this fact with Lemma 5.1 instantly gives the following.

Lemma 5.3 Let $H=\left(V^{\prime}, E^{\prime}\right)$ be a subgraph of G with $V(\mathcal{A}) \subseteq V^{\prime}$, and let $F \subseteq E^{\prime}$. If $\langle H, \mathcal{A}\rangle / F$ is feasible, then so is $\langle G, \mathcal{A}\rangle$.

Next we formally define reductions I-IV (illustrated in Section 1) and show that they preserve the feasibility/infeasibility of quadruples. We point out that, when applied to a quadruple $\langle G, \mathcal{A}\rangle$, these reductions produce new quadruples $\left\langle G^{\prime}, \mathcal{A}^{\prime}\right\rangle$ such that G^{\prime} is simpler than G, meaning that
$2\left|E\left(G^{\prime}\right)\right|-\left|V\left(G^{\prime}\right)\right|<2|E(G)|-|V(G)|$. In most cases, G^{\prime} is a proper minor of G, which leads to the inequality. The reduced quadruples $\left\langle G^{\prime}, \mathcal{A}^{\prime}\right\rangle$ will also maintain the evenness of $\mathcal{A}^{\prime}=\left\{A_{1}^{\prime}, A_{2}^{\prime}, A_{3}^{\prime}\right\}$, meaning that $\left|A_{i}^{\prime}\right|$ is always even for $i=1,2,3$. In fact, the evenness in all reductions, except for reduction II-2 (defined below), is guaranteed by the fact that $\mathcal{A}^{\prime}=\mathcal{A} / F$ for some $F \subseteq E(G)$.

Suppose that $\left(G_{1}, G_{2}\right)$, where $G_{i}=\left(V_{i}, E_{i}\right), i=1,2$, is a 1 -separation of G. Clearly, G_{1} and G_{2} are both simpler than G since they are proper minors of G. We say that $\left\langle G_{i}, \mathcal{A}_{i}\right\rangle=\langle G, \mathcal{A}\rangle / E_{3-i}$, $i=1,2$, are obtained from $\langle G, \mathcal{A}\rangle$ by a reduction I.

Lemma 5.4 Let $\left\langle G_{i}, \mathcal{A}_{i}\right\rangle, i=1,2$, be obtained from $\langle G, \mathcal{A}\rangle$ by reduction I. Then $\langle G, \mathcal{A}\rangle$ is feasible if and only if $\left\langle G_{i}, \mathcal{A}_{i}\right\rangle$ is feasible, for some $i \in\{1,2\}$.

Proof. The sufficiency follows from Lemma 5.3. To see the necessity, let $\left[S_{1}, S_{2}\right]$ be a feasible solution to $\langle G, \mathcal{A}\rangle$. By symmetry, we may assume that the only common vertex of V_{1} and V_{2} belongs to S_{1}. Since $G\left[S_{2}\right]$ is connected, S_{2} must be a subset of V_{1} or V_{2}, say V_{2}. Thus $\left[S_{1} \cap V_{2}, S_{2}\right]$ is in fact a bond of G_{2}, which, by the definition of contraction, is a feasible solution to $\left\langle G_{2}, \mathcal{A}_{2}\right\rangle$.

Note that the bond problem is trivial when G is 2 -connected and $A_{1} \cap A_{2} \cap A_{3} \neq \emptyset$, because $[\{u\}, V-\{u\}]$ is obviously a feasible solution for any $u \in A_{1} \cap A_{2} \cap A_{3}$. This simple observation will be used repeatedly in this paper. The remaining reductions II, III, and IV deal with 2 -connected graphs. As we shall see, they all maintain 2-connectedness of graphs.

Suppose that G is 2 -connected and has a 2-separation $\left(G_{1}, G_{2}\right)$ with $G_{i}=\left(V_{i}, E_{i}\right), i=1,2$, such that $V_{2}-V_{1}$ is uniform. Then $\langle G, \mathcal{A}\rangle$ admits a reduction II (see Figure 2 below) if one of the following occurs:
(II-1) $G_{2}=v_{1} u v_{2}$ is a path of length $2, u \notin A_{1} \cap A_{2} \cap A_{3}$, and $\left\{v_{1}, u\right\}=A_{i}$ for some $i \in\{1,2,3\}$: Let $\left\langle G^{\prime}, \mathcal{A}^{\prime}\right\rangle=\langle G, \mathcal{A}\rangle / u v_{2}$.
(II-2) G_{2} is not a path of length at most three with $V_{2}-V_{1} \subseteq V(\mathcal{A})$: Let G^{\prime} be obtained from G by replacing G_{2} with a path P between vertices in $V_{1} \cap V_{2}$ which is of length one if $\left|V(\mathcal{A})-V_{1}\right|=0$, of length two if $\left|V(\mathcal{A})-V_{1}\right|$ is odd, and of length three if $\left|V(\mathcal{A})-V_{1}\right|>0$ is even. For $i=1,2,3$, let $A_{i}^{\prime}:=A_{i}$ if $A_{i} \subseteq V_{1}$ and $A_{i}^{\prime}:=\left(A_{i} \cap V_{1}\right) \cup\left(V(P)-V_{1}\right)$ otherwise. Set $\mathcal{A}^{\prime}:=\left\{A_{1}^{\prime}, A_{2}^{\prime}, A_{3}^{\prime}\right\}$.

In both cases, it is straightforward to verify the evenness for \mathcal{A}^{\prime} and the fact that G^{\prime} is simpler than G. We will say that $\left\langle G^{\prime}, \mathcal{A}^{\prime}\right\rangle$ is obtained from $\langle G, \mathcal{A}\rangle$ by a reduction II based on $\left(G_{1}, G_{2}\right)$ in $\langle G, \mathcal{A}\rangle$.

Figure 2: Reduction II based on 2-separation $\left(G_{1}, G_{2}\right)$ at $\left\{v_{1}, v_{2}\right\}$.

Lemma 5.5 Let $\left\langle G^{\prime}, \mathcal{A}^{\prime}\right\rangle$ be obtained from $\langle G, \mathcal{A}\rangle$ by a reduction II. Then $\langle G, \mathcal{A}\rangle$ is feasible if and only if $\left\langle G^{\prime}, \mathcal{A}^{\prime}\right\rangle$ is feasible.

Proof. In the case of (II-1), the sufficiency is implied by Lemma 5.3, and the necessity follows from the fact that any feasible solution to $\langle G, \mathcal{A}\rangle$ can be expressed as $\left[S_{1}, S_{2}\right]$ such that $v_{1} \in S_{1}$
and $\left\{u, v_{2}\right\} \subseteq S_{2}$ because some A_{i} equals $\left\{v_{1}, u\right\}$, and u has degree 2 in G and does not belong to $A_{1} \cap A_{2} \cap A_{3}$. In the rest of the proof, we assume (II-2). Let $P=v_{1} v_{2} \ldots v_{h}$ be the path used to replace G_{2} in the reduction II- 2 , where $h \in\{2,3,4\}$ and $\left\{v_{1}, v_{h}\right\}=V_{1} \cap V_{2}$. By the reduction, $P \backslash\left\{v_{1}, v_{h}\right\}$ is uniform in $\left\langle G^{\prime}, \mathcal{A}^{\prime}\right\rangle$.

Observe that G^{\prime} is also 2-connected, and that $A_{1} \cap A_{2} \cap A_{3}=\emptyset$ if and only if $A_{1}^{\prime} \cap A_{2}^{\prime} \cap A_{3}^{\prime}=\emptyset$. Hence $A_{1} \cap A_{2} \cap A_{3} \neq \emptyset$ or $A_{1}^{\prime} \cap A_{2}^{\prime} \cap A_{3}^{\prime} \neq \emptyset$ implies the feasibilities of both $\langle G, \mathcal{A}\rangle$ and $\left\langle G^{\prime}, \mathcal{A}^{\prime}\right\rangle$. It remains to consider the case when $A_{1} \cap A_{2} \cap A_{3}=\emptyset=A_{1}^{\prime} \cap A_{2}^{\prime} \cap A_{3}^{\prime}$.

First, assume that $\langle G, \mathcal{A}\rangle$ has a feasible solution $\left[S_{1}, S_{2}\right]$. Since $A_{1} \cap A_{2} \cap A_{3}=\emptyset$, uniform $V_{2}-\left\{v_{1}, v_{h}\right\}$ must be disjoint from at least one of A_{1}, A_{2}, A_{3}, which implies $S_{i} \cap V_{1} \neq \emptyset$ for $i=1,2$. If $V_{2}-\left\{v_{1}, v_{h}\right\} \subseteq S_{i}$ for some $i \in\{1,2\}$, then $S_{i} \cap\left\{v_{1}, v_{h}\right\} \neq \emptyset$, so $\left[S_{3-i}, V\left(G^{\prime}\right)-S_{3-i}\right]$ is a feasible solution to $\left\langle G^{\prime}, \mathcal{A}^{\prime}\right\rangle$. Hence, we may assume that $V_{2}-\left\{v_{1}, v_{h}\right\} \nsubseteq S_{i}$ for $i=1,2$, and further by symmetry that $v_{1} \in S_{1}$ and $v_{h} \in S_{2}$. Let $S_{1}^{\prime}:=\left(S_{1} \cap V_{1}\right) \cup\left\{v_{2}\right\}$ if $\left|\left(S_{1}-V_{1}\right) \cap V(\mathcal{A})\right|$ is odd, and let $S_{1}^{\prime}:=S_{1} \cap V_{1}$ otherwise. Let $S_{2}^{\prime}:=V\left(G^{\prime}\right)-S_{1}^{\prime}$. Since $G\left[S_{i} \cap V_{1}\right]$ is connected for $i=1,2,\left[S_{1}^{\prime}, S_{2}^{\prime}\right]$ is a bond of G^{\prime}. Moreover, since $V_{2}-\left\{v_{1}, v_{h}\right\}$ is uniform, the placement of v_{2} (as an element of $V(P)-V_{1}$ set by II-2) implies that $\left[S_{1}^{\prime}, S_{2}^{\prime}\right]$ is a feasible solution to $\left\langle G^{\prime}, \mathcal{A}^{\prime}\right\rangle$.

Next, assume that $\left\langle G^{\prime}, \mathcal{A}^{\prime}\right\rangle$ has a feasible solution $\left[S_{1}^{\prime}, S_{2}^{\prime}\right]$. Since $A_{1}^{\prime} \cap A_{2}^{\prime} \cap A_{3}^{\prime}=\emptyset$, the uniform $P \backslash\left\{v_{1}, v_{h}\right\}$ contains neither S_{1}^{\prime} nor S_{2}^{\prime}. Furthermore, if some $S_{i}^{\prime}, i=1$ or 2 , contains $V(P)-\left\{v_{1}, v_{h}\right\}$, then it contains v_{1} or v_{h} or both, and $\left[S_{3-i}^{\prime}, V-S_{3-i}^{\prime}\right]$ is a feasible solution of $\langle G, \mathcal{A}\rangle$. So we assume $V(P)-\left\{v_{1}, v_{h}\right\} \nsubseteq S_{i}^{\prime}$ for $i=1,2$, which implies $h=4$ and allows us to assume $\left\{v_{1}, v_{2}\right\} \subseteq S_{1}^{\prime}$ and $\left\{v_{3}, v_{4}\right\} \subseteq S_{2}^{\prime}$. Since P has length 3 , by (II-2) there exists $v \in V(\mathcal{A})-V_{1} \subseteq V_{2}-\left\{v_{1}, v_{4}\right\}$. As (G_{1}, G_{2}) is a 2 -separation of the 2 -connected graph G at $\left\{v_{1}, v_{4}\right\}$, the graph $H=G_{2}+v_{1} v_{4}$ is 2-connected and thus contains a $v-v_{1}$ path P_{1} and a $v-v_{4}$ path P_{2} with $V\left(P_{1}\right) \cap V\left(P_{2}\right)=\{v\}$. Observe that $P_{1} \backslash v$ and $P_{2} \backslash v$ are vertex-disjoint subgraphs of the connected graph $H \backslash v$. Lemma 5.1 guarantees the existence of a bond $\left[Y_{1}, Y_{2}\right]$ of $H \backslash v=\left(G_{2}+v_{1} v_{4}\right) \backslash v$ such that $V\left(P_{i} \backslash v\right)\left(\subseteq Y_{i}\right)$ contains a neighbor of v for $i=1,2$. Hence both $\left[Y_{1} \cup\{v\}, Y_{2}\right]$ and $\left[Y_{1},\{v\} \cup Y_{2}\right]$ are bonds of G_{2}. Since $v \in V(\mathcal{A})$, there exists $Y \in\left\{Y_{1} \cup\{v\}, Y_{1}\right\}$ such that $\left|\left(Y-\left\{v_{1}\right\}\right) \cap V(\mathcal{A})\right|$ is odd, $v_{1} \in Y$, and $v_{4} \notin Y$. Thus $\left|\left(Y-\left\{v_{1}\right\}\right) \cap A_{i}\right| \equiv\left|\left\{v_{2}\right\} \cap A_{i}^{\prime}\right| \equiv\left|S_{1}^{\prime} \cap V\left(P \backslash\left\{v_{1}, v_{4}\right\}\right) \cap A_{i}^{\prime}\right|(\bmod 2)$ for $i=1,2,3$. Setting $S_{1}:=\left(S_{1}^{\prime} \cap V_{1}\right) \cup Y$ yields a feasible solution $\left[S_{1}, V-S_{1}\right]$ to $\langle G, \mathcal{A}\rangle$.

Suppose G is 2 -connected and has a 3 -separation $\left(G_{1}, G_{2}\right)$, where $G_{i}=\left(V_{i}, E_{i}\right)$ is connected for $i=1,2, V_{1} \cap V_{2}=\left\{v_{1}, v_{2}, v_{3}\right\}$, and $V(\mathcal{A}) \subseteq V_{1}$. In addition, either $G_{2}=v_{1} v_{2} v_{3} v_{1}$ is a triangle or $\left|E_{2}\right|>3$ and some component of $G_{2} \backslash\left\{v_{1}, v_{2}, v_{3}\right\}$ is adjacent to all v_{i} for $i=1,2,3$. Then $\langle G, \mathcal{A}\rangle$ admits a reduction III based on $\left(G_{1}, G_{2}\right)$, which reduces the bond problem to one on $\left\langle G^{\prime}, \mathcal{A}\right\rangle$, where G^{\prime} is obtained from G_{1} by adding a vertex v_{0}, called the center, and adding three edges $v_{0} v_{1}, v_{0} v_{2}$, and $v_{0} v_{3}$. Again, it is routine to verify that G^{\prime} is simpler than G.

Lemma 5.6 Let $\left\langle G^{\prime}, \mathcal{A}\right\rangle$ be obtained from $\langle G, \mathcal{A}\rangle$ by a reduction III. Then $\langle G, \mathcal{A}\rangle$ is feasible if and only if $\left\langle G^{\prime}, \mathcal{A}\right\rangle$ is feasible.

Proof. When G_{2} is a triangle, it is routine to check that a solution $\left[S_{1}^{\prime}, S_{2}^{\prime}\right]$ to $\left\langle G^{\prime}, \mathcal{A}\right\rangle$ gives rise to a solution $\left[S_{1}^{\prime}-\left\{v_{0}\right\}, S_{2}^{\prime}-\left\{v_{0}\right\}\right]$ to $\langle G, \mathcal{A}\rangle$. When G_{2} is not a triangle, observe that $\left\langle G^{\prime}, \mathcal{A}\right\rangle$ is a contraction of $\langle H, \mathcal{A}\rangle$ for a subgraph H of G with $V(\mathcal{A}) \subseteq V_{1} \subseteq V(H) \cap V\left(G^{\prime}\right)$, so the sufficiency follows instantly from Lemma 5.3.

To see the necessity, we assume that $\langle G, \mathcal{A}\rangle$ has a feasible solution $\left[S_{1}, S_{2}\right.$] with $\left\{v_{1}, v_{2}\right\} \subseteq S_{2}$. From the 2 -connectivity of G, it is easy to see that $\left[S_{1}-\left(V_{2}-\left\{v_{3}\right\}\right),\left(V_{2}-\left\{v_{3}\right\}\right) \cup S_{2}\right]$ is also a feasible solution to $\langle G, \mathcal{A}\rangle$. Hence $\left[S_{1} \cap V_{1},\left\{v_{0}\right\} \cup\left(S_{2} \cap V_{1}\right)\right]$ is a feasible solution to $\left\langle G^{\prime}, \mathcal{A}\right\rangle$.

Suppose G is 2-connected. We say that $\langle G, \mathcal{A}\rangle$ admits a reduction $I V$ (see Figure 3) if G has a 4-separation $\left(G_{1} \cup G_{2}, G_{3}\right)$ at $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$, where $G_{i}=\left(V_{i}, E_{i}\right)$ with $E_{i} \neq \emptyset$ for $i=1,2,3$, $V_{1} \cap V_{2}=\emptyset, V(\mathcal{A}) \subseteq V_{1} \cup V_{2}$, and $\left(G_{j}, G_{3} \cup G_{3-j}\right)$ is a 2-separation of G at $\left\{v_{2 j-1}, v_{2 j}\right\}$ for $j=1,2$. Moreover, G_{3} contains vertex-disjoint paths P_{1} from v_{1} to v_{3} and P_{2} from v_{2} to v_{4}, such that either
(IV-1) $E_{3}=\left\{v_{1} v_{3}, v_{2} v_{4}\right\}, A_{h}=\left\{v_{1}, v_{3}\right\}$ for some $h \in\{1,2,3\}$, and $\left|A_{i} \cap V_{j}\right|$ is even for every $i \in\{1,2,3\}-\{h\}$ and $j=1,2$; or
(IV-2) $\left|A_{i} \cap V_{j}\right|$ is even for all $i=1,2,3$ and $j=1,2$.

Figure 3: Reduction IV based on even 4-separation $\left(G_{1} \cup G_{2}, G_{3}\right)$ at $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$.
We call $\left(G_{1} \cup G_{2}, G_{3}\right)$ an even 4-separation, and say that $\left\langle G^{\prime}, \mathcal{A}^{\prime}\right\rangle=\left\langle G_{1} \cup G_{2} \cup P_{2}+v_{1} v_{3}, \mathcal{A}\right\rangle / E\left(P_{2}\right)$ is obtained from $\langle G, \mathcal{A}\rangle$ by a reduction IV based on $\left(G_{1} \cup G_{2}, G_{3}\right)$. Observe that $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ contains the edge $v_{1} v_{3}$ and a vertex v^{\prime} to which $E\left(P_{2}\right)$ is contracted. Once again, G^{\prime} is simpler than G as G^{\prime} is a proper minor of G.

Lemma 5.7 Let $\left\langle G^{\prime}, \mathcal{A}^{\prime}\right\rangle$ be obtained from $\langle G, \mathcal{A}\rangle$ by a reduction $I V$. Then $\langle G, \mathcal{A}\rangle$ is feasible if and only if $\left\langle G^{\prime}, \mathcal{A}^{\prime}\right\rangle$ is feasible.

Proof. The sufficiency follows immediately from Lemma 5.3 as $\left\langle G^{\prime}, \mathcal{A}^{\prime}\right\rangle=\left\langle G_{1} \cup P_{1} \cup P_{2} \cup\right.$ $\left.G_{2}, \mathcal{A}\right\rangle /\left(E\left(P_{1} \backslash v_{1}\right) \cup E\left(P_{2}\right)\right)$. To verify the necessity, let $\left[S_{1}, S_{2}\right]$ be a feasible solution to $\langle G, \mathcal{A}\rangle$ and let $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$. In the case of (IV-1), we deduce from $A_{h}=\left\{v_{1}, v_{3}\right\}$ that $v_{1} v_{3} \in\left[S_{1}, S_{2}\right]$, which allows us to assume $v_{1} \in S_{1}$ and $v_{3} \in S_{2}$. From the evenness of $\left|A_{i} \cap V_{j}\right|$ for every $i \in\{1,2,3\}-\{h\}$ and $j=1,2$, we see that $v_{2} v_{4} \notin\left[S_{1}, S_{2}\right]$, for otherwise, $V_{1} \subseteq S_{1}$ and $V_{2} \subseteq S_{2}$, a contradiction. By symmetry we may assume $\left\{v_{2}, v_{4}\right\} \subseteq S_{1}$. Then $\left[S_{2}, V^{\prime}-S_{2}\right]$ is a feasible solution to $\left\langle G^{\prime}, \mathcal{A}^{\prime}\right\rangle$.

It remains to consider the case of (IV-2). If $\left\{v_{2}, v_{4}\right\}$ is contained in one of S_{1} and S_{2}, say S_{2}, in view of the edge $v_{1} v_{3} \in E^{\prime}$, we see that $S_{1}^{\prime}=\left(S_{1} \cap V_{1}\right) \cup\left(S_{1} \cap V_{2}\right)$ induces a connected subgraph of G^{\prime} and further that $\left[S_{1}^{\prime}, V^{\prime}-S_{1}^{\prime}\right]$ is a feasible solution to $\left\langle G^{\prime}, \mathcal{A}^{\prime}\right\rangle$. Thus we may assume $v_{2} \in S_{1}$ and $v_{4} \in S_{2}$. Since $V(\mathcal{A}) \subseteq V_{1} \cup V_{2},\left|A_{i} \cap S_{j}\right|$ is odd, and $\left|A_{i} \cap V_{j}\right|$ is even for all $i=1,2,3, j=1,2$, by symmetry we may assume $S_{1} \cap V_{2} \neq \emptyset$. Since ($G_{1} \cup G_{3}, G_{2}$) is a 2 -separation of G at $\left\{v_{3}, v_{4}\right\}$, the connectivities of $G\left[S_{1}\right]$ and $G\left[S_{2}\right]$ imply that $v_{3} \in S_{1}$ and that $\left[S_{1} \cap V_{2}, S_{2} \cap V_{2}\right]$ is a bond of G_{2}. As $\left|A_{i} \cap V_{2}\right|$ is even, we obtain

$$
\begin{equation*}
\left|S_{1} \cap V_{2} \cap A_{i}\right| \equiv\left|S_{2} \cap V_{2} \cap A_{i}\right| \quad(\bmod 2), \text { for } i=1,2,3 . \tag{5.2}
\end{equation*}
$$

If $S_{2} \cap V_{1}=\emptyset$, then, for $i=1,2,3$, the cardinality of $S_{2} \cap V_{2} \cap A_{i}=S_{2} \cap A_{i}$ is odd. By (5.2), $\left|S_{1} \cap V_{2} \cap A_{i}\right|$ is also odd and thus $\left[S_{1} \cap V_{2}, V^{\prime}-\left(S_{1} \cap V_{2}\right)\right]$ is a feasible solution to $\left\langle G^{\prime}, \mathcal{A}^{\prime}\right\rangle$. If $S_{2} \cap V_{1} \neq \emptyset$, then, similarly, $v_{1} \in S_{2}$ and $\left[S_{1} \cap V_{1}, S_{2} \cap V_{1}\right]$ a bond of G_{1}. Put $S_{1}^{\prime}:=\left(S_{2} \cap V_{1}\right) \cup\left(S_{1} \cap V_{2}\right)$. Then the edge $v_{1} v_{3} \in E^{\prime}$ ensures that $\left[S_{1}^{\prime}, V^{\prime}-S_{1}^{\prime}\right]$ is a bond of G^{\prime}. Moreover, as $S_{1}^{\prime} \subseteq V$, we have
$\left|S_{1}^{\prime} \cap A_{i}^{\prime}\right|=\left|S_{1}^{\prime} \cap A_{i}\right|=\left|\left(S_{2} \cap V_{1}\right) \cap A_{i}\right|+\left|\left(S_{1} \cap V_{2}\right) \cap A_{i}\right|$. Since $V(\mathcal{A}) \subseteq V_{1} \cup V_{2}$, it follows from (5.2) that $\left|S_{1}^{\prime} \cap A_{i}^{\prime}\right| \equiv\left|S_{2} \cap V_{1} \cap A_{i}\right|+\left|S_{2} \cap V_{2} \cap A_{i}\right|=\left|S_{2} \cap A_{i}\right| \equiv 1$ (mod 2) for $i=1,2,3$, so $\left[S_{1}^{\prime}, V^{\prime}-S_{1}^{\prime}\right]$ is a feasible solution to $\left\langle G^{\prime}, \mathcal{A}^{\prime}\right\rangle$.

6 Proof of Theorem 1.1

The purpose of this section is to prove Theorem 1.1. Let $\langle G, \mathcal{A}\rangle$ be a nontrivial quadruple and let M be the matroid as defined in Section 2. Recall that M^{*} is a series-extension of a 3 -connected matroid if and only if M is a parallel-extension of a 3 -connected matroid. We say that the quadruple $\langle G, \mathcal{A}\rangle$ is reducible if it admits one of reductions I-IV and irreducible otherwise.

The following lemma essentially asserts that the hypothesis of Lemma 3.9 is satisfied if $\langle G, \mathcal{A}\rangle$ is irreducible.

Lemma 6.1 Suppose quadruple $\langle G, \mathcal{A}\rangle$ is nontrivial, acyclic, and irreducible. If $A_{i} \neq A_{j}$ for all $1 \leq i<j \leq 3$, then G is 2 -connected, M^{*} is a series-extension of a 3 -connected matroid containing A, and M^{*} has no vertical 3 -separation $\left(F_{1}, F_{2}\right)$ with $A \subseteq F_{1}$.

Proof. Clearly, G is 2-connected as no reduction I applies to $\langle G, \mathcal{A}\rangle$. In this proof the same notation set in Section 4 will be used. We first prove that
(1) M^{*} is a series-extension of a 3 -connected matroid containing A.

Assuming the contrary, then M is not a parallel-extension of a 3 -connected matroid containing A. Thus Lemma 4.3 guarantees the existence of a partition $\left(E_{1}, E_{2}\right)$ of E with $o\left(E_{1}, E_{2}\right)=2 \leq$ $\min \left\{r\left(E_{1}\right), r\left(E_{2}\right)\right\}$, such that for each $h \in\{1,2,3\}$, there exists an $i \in\{1,2\}$ for which

$$
\begin{equation*}
A_{h} \subseteq V_{i} \text {, and }\left|A_{h} \cap V\left(G_{i}^{j}\right)\right| \text { is even for all } 1 \leq j \leq t_{i} \tag{6.1}
\end{equation*}
$$

It follows from Lemma 4.1(ii) that $t_{1}=t_{2}=t=\left|V_{0}\right| / 2$ and $\left|V\left(G_{i}^{j}\right) \cap V_{0}\right|=2$ for $i=1,2$ and $j=1,2, \ldots, t$, where $V_{0}=V_{1} \cap V_{2}$ and $G_{i}=\left(V_{i}, E_{i}\right):=G\left[E_{i}\right]$ is the disjoint union of its components $G_{i}^{1}, G_{i}^{2}, \ldots, G_{i}^{t}$ for $i=1,2$. Symmetry allows us to assume that $A_{1} \cup A_{2} \subseteq V_{1}$. Thus $V(\mathcal{A})-V_{1} \subseteq A_{3}-\left(A_{1} \cup A_{2}\right)$ and hence $V_{2}-V_{0}$ is uniform. Since $\langle G, \mathcal{A}\rangle$ admits no reduction II, from the definition we deduce that each $G_{2}^{j}(1 \leq j \leq t)$ is a path with all internal vertices (if any) belonging to $A_{3}-\left(A_{1} \cup A_{2}\right)$. Observe that G_{2} is not a path of length two, for otherwise its internal vertex belongs to $A_{3}-\left(A_{1} \cup A_{2}\right)$ and hence $A_{3} \subseteq V_{2}$ by (6.1), which also implies that A_{3} consists of two adjacent vertices in G_{2}. So a reduction II-1 applies to $\langle G, \mathcal{A}\rangle$, a contradiction. Let us show that

$$
\begin{equation*}
\text { Every } G_{1}^{j}(1 \leq j \leq t) \text { is incident with two disjoint edges } f_{j} \text { and } g_{j} \text { in } E_{2} \text {. } \tag{6.2}
\end{equation*}
$$

Otherwise, $t=1$ and G_{2} is a path of length at most two linking the two vertices in V_{0}. Hence either G_{2} is a path of length exactly two, contradicting the preceding observation, or $\left|E_{2}\right|=1$, contradicting the inequality $r\left(E_{2}\right) \geq 2$. So (6.2) follows. Moreover,

$$
\begin{equation*}
\text { Each } G \backslash\left\{f_{j}, g_{j}\right\} \text { has precisely two components } H_{1}^{j} \text { and } H_{2}^{j} \text {, with } H_{1}^{j}=G_{1}^{j} \text {. } \tag{6.3}
\end{equation*}
$$

To justify this, let G^{\prime} be the graph obtained from G by replacing each $G_{1}^{j}(1 \leq j \leq t)$ with an edge e_{j} between the two vertices in $V\left(G_{1}^{j}\right) \cap V_{0}$. Then G^{\prime} is a Hamiltonian cycle, because G is 2-connected
and each $G_{2}^{j}(1 \leq j \leq t)$ is a path. It follows that $G^{\prime} \backslash\left\{f_{j}, g_{j}\right\}$ has precisely two components, one of which consists of e_{j} only. So (6.3) holds.

It follows from (6.3) that each pair $\left\{f_{j}, g_{j}\right\}$ defines a 4 -separation $\left(H_{1}^{j} \cup H_{2}^{j}, H_{3}^{j}\right)$ of G, where $H_{3}^{j}=G\left[\left\{f_{j}, g_{j}\right\}\right]$. By (6.1) and the assumption that $A_{1} \cup A_{2} \subseteq V_{1}$, we see that A_{1} and A_{2} both have even-sized intersections with $V\left(G_{1}^{j}\right)$. If A_{3} has an even-sized intersection with some $V\left(G_{1}^{j}\right)$, then $\left(H_{1}^{j} \cup H_{2}^{j}, H_{3}^{j}\right)$ would be an even 4 -separation satisfying (IV-2). So a reduction IV applies to $\langle G, \mathcal{A}\rangle$. This contradiction implies that A_{3} has an odd-sized intersection with every $V\left(G_{1}^{j}\right)$.

From (6.1) and (6.2) we deduce that $A_{3} \subseteq V_{2},\left|A_{3} \cap V\left(G_{2}^{j}\right)\right|$ is even, and $A_{3} \cap V\left(G_{1}^{j}\right)$ consists of precisely one vertex in V_{0} for each $1 \leq j \leq t$. Suppose $f_{1}=a_{1} b_{1}$ and $g_{1}=c_{1} d_{1}$, with $\left\{a_{1}, c_{1}\right\} \subseteq$ $V_{0} \cap V\left(G_{1}^{1}\right)$. Renaming the edges if necessary, we assume $a_{1} \in A_{3}$ and $c_{1} \notin A_{3}$. Observe that $b_{1} \in A_{3}$, for otherwise, let $f_{1} \in E\left(G_{2}^{\ell}\right)$ for some ℓ. Since G_{2}^{ℓ} is a path with all internal vertices (if any) belonging to $A_{3}-\left(A_{1} \cup A_{2}\right)$, we have $V\left(G_{2}^{\ell}\right)=\left\{a_{1}, b_{1}\right\}$, contradicting the fact that $\left|A_{3} \cap V\left(G_{2}^{\ell}\right)\right|$ is even. Next, $b_{1} \in V_{0}$, for otherwise, b_{1} has degree two and is incident with precisely two edges f_{1} and f_{1}^{\prime}. Since each $G_{2}^{j}(1 \leq j \leq t)$ is a path with all internal vertices (if any) belonging to $A_{3}-\left(A_{1} \cup A_{2}\right)$, we see from (6.1) and the fact $c_{1} \notin A_{3}$ that f_{1}^{\prime} is incident with neither c_{1} nor d_{1}. Thus $\left\{f_{1}^{\prime}, g_{1}\right\}$ defines an even 4 -separation satisfying (IV-2) and hence a reduction IV applies to $\langle G, \mathcal{A}\rangle$, a contradiction again.

Without loss of generality, we assume that $f_{1}=f_{2}$. Recalling the statements established in the preceding paragraph, we have $A_{3} \cap V\left(G_{1}^{2}\right)=\left\{b_{1}\right\}$. Observe that $g_{1} \neq g_{2}$, for otherwise, $\left\{f_{1}, g_{1}\right\}$ defines an even 4 -separation ($G_{1}^{1} \cup G_{1}^{2}, H_{3}^{1}$) satisfying (IV-1) and hence a reduction IV applies to $\langle G, \mathcal{A}\rangle$, a contradiction. If g_{1} and g_{2} are disjoint, then $\left\{g_{1}, g_{2}\right\}$ defines an even 4 -separation $\left(H_{1} \cup H_{2}, H_{3}\right)$ satisfying (IV-2), with $H_{1}=\left(G_{1}^{1} \cup G_{1}^{2}\right)+f_{1}, H_{2}=G \backslash V\left(H_{1}\right)$ and $H_{3}=G\left[\left\{g_{1}, g_{2}\right\}\right]$, so a reduction IV applies to $\langle G, \mathcal{A}\rangle$. This contradiction implies that d_{1} is the common end of g_{1} and g_{2} and $d_{1} \in V_{2}-V_{0}$. Since $\left|A_{3} \cap V\left(G_{1}^{j}\right)\right|=1$ for $j=1,2$ and $\left\{a_{1}, b_{1}\right\} \subseteq A_{3}$, the ends of g_{1} and g_{2} in V_{0} are outside A_{3}. Let G_{2}^{ℓ} be the component of G_{2} containing g_{1} and g_{2}. Note that G_{2}^{ℓ} consists of g_{1} and g_{2} only. Since $\left|A_{3} \cap V\left(G_{2}^{\ell}\right)\right|$ is even, we have $d_{1} \notin A_{3}$ and hence $d_{1} \notin V(\mathcal{A})$. It follows that $\left(G \backslash d_{1}, G_{2}^{\ell}\right)$ is a 2 -separation satisfying (II-2) and hence a reduction II-2 applies to $\langle G, \mathcal{A}\rangle$. This contradiction proves (1).

It remains to verify that
(2) M^{*} has no vertical 3-separation $\left(F_{1}, F_{2}\right)$ with $A \subseteq F_{1}$.

Assume, on the contrary, that (F_{1}, F_{2}) is a vertical 3-separation of M^{*} with $A \subseteq F_{1}$. Let (E_{1}, E_{2}) be the restriction of $\left(F_{1}, F_{2}\right)$ to E and let $G_{i}=\left(V_{i}, E_{i}\right):=G\left[E_{i}\right]$ for $i=1,2$. Put $V_{0}:=V_{1} \cap V_{2}$. By Lemma 4.4, we have

$$
\begin{equation*}
\text { Some component } H_{2} \text { of } G_{2} \text { contains a cycle. } \tag{6.4}
\end{equation*}
$$

Let $H_{1}:=G \backslash\left(V\left(H_{2}\right)-V_{0}\right)$ and $\left\{v_{1}, v_{2}, \ldots, v_{h}\right\}:=V\left(H_{1}\right) \cap V\left(H_{2}\right) \subseteq V_{0}$. The assumption and (1) imply that Lemma 4.4 (ii) or (iii) holds. Thus, by Lemma 4.1(ii) and (iii), we have $2 \leq h \leq 4$. Let us now consider two cases.

Case 1. Lemma 4.4(ii) holds; that is, $o\left(E_{1}, E_{2}\right)=2$ and $V_{2}-V_{0}$ is uniform. In this case, $h=2$ by Lemma 4.1(ii) and $H_{2} \backslash\left\{v_{1}, v_{2}\right\}$ is uniform. In view of (6.4), a reduction II-2 applies to $\langle G, \mathcal{A}\rangle$ based on $\left(H_{1}, H_{2}\right)$, a contradiction.

Case 2. Lemma $4.4(\mathrm{iii})$ holds; that is, $o\left(E_{1}, E_{2}\right)=3, V(\mathcal{A}) \subseteq V_{1}$, and $\left|A_{i} \cap V\left(G_{1}^{j}\right)\right|$ is even for every $1 \leq i \leq 3$ and $1 \leq j \leq t_{1}$.

When $h=2$, clearly $\langle G, \mathcal{A}\rangle$ admits a reduction II-2 based on $\left(H_{1}, H_{2}\right)$ in which H_{2} is replaced by an edge $v_{1} v_{2}$.

When $h=3$, if $H_{2}=v_{1} v_{2} v_{3} v_{1}$ is a triangle, or some component of $H_{2} \backslash\left\{v_{1}, v_{2}, v_{3}\right\}$ is adjacent to all of v_{1}, v_{2}, and v_{3} then, by (6.4), G admits a reduction III based on $\left(H_{1}, H_{2}\right)$; else, by symmetry and the 2-connectivity of G, we may assume the existence of a 2-separation $\left(H_{1}^{\prime}, H_{2}^{\prime}\right)$ of G at $\left\{v_{1}, v_{2}\right\}$ such that $H_{1}^{\prime} \supset H_{1}, H_{2}^{\prime} \subseteq H_{2} \backslash v_{3}$, and $\left|E\left(H_{2}^{\prime}\right)\right|>1$, yielding a reduction II-2 for $\langle G, \mathcal{A}\rangle$ based on ($H_{1}^{\prime}, H_{2}^{\prime}$).

When $h=4$, by Lemma 4.1, we see that G_{i}^{j} contains exactly two vertices from V_{0} for all $i=1,2$ and $j=1,2, \ldots, t_{i}$, except for the one denoted by H_{2}. It is easy to see that H_{1} consists of all G_{i}^{j} with $G_{i}^{j} \neq H_{2}$. Moreover, if we replace (in H_{1}) each such G_{i}^{j} with an edge between the vertices of $V\left(G_{i}^{j}\right) \cap V_{0}$, then in the resulting graph all vertices have degree two, except for $v_{1}, v_{2}, v_{3}, v_{4}$ which have degree one. Hence H_{1} consists of two components J_{1} and J_{2} with $\left|V\left(J_{j}\right) \cap\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}\right|=2$ for $j=1,2, V(\mathcal{A}) \subseteq V\left(J_{1}\right) \cup V\left(J_{2}\right)$, and $\left|A_{i} \cap V\left(J_{j}\right)\right|$ is even for all $i=1,2,3$ and $j=1,2$. Since G is 2 -connected, there are two disjoint paths between $V\left(J_{1}\right) \cap\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ and $V\left(J_{2}\right) \cap\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$, which are fully contained in H_{2}. Thus $\langle G, \mathcal{A}\rangle$ admits a reduction IV-2 based on $\left(J_{1} \cup J_{2}, H_{2}\right)$.

So $\langle G, \mathcal{A}\rangle$ is reducible in all subcases, this contradiction completes the proof of (2) and hence of the lemma.

Proof of Theorem 1.1. Suppose $\langle G, \mathcal{A}\rangle$ is nontrivial, acyclic, and irreducible. If $A_{i} \neq A_{j}$ for all i, j with $1 \leq i \neq j \leq 3$, then the assertion follows instantly from Lemma 6.1 and Lemma 3.9. In the opposite case, symmetry allows us to assume that $A_{1}=A_{2}$. Since $\langle G, \mathcal{A}\rangle$ is irreducible, G is 2-connected. Thus Lemma 5.2 guarantees the existence of a bond [S_{1}, S_{2}] of G such that $\left|S_{1} \cap A_{2}\right|=\left|S_{1} \cap A_{3}\right|=1$. Clearly, $\left[S_{1}, S_{2}\right]$ is a feasible solution to $\langle G, \mathcal{A}\rangle$.

7 More on infeasible quadruples

In this section we prove three more lemmas that will be used in proving Theorem 1.2. The first is a corollary of Theorem 1.1.

Lemma 7.1 Suppose $\langle G, \mathcal{A}\rangle$ is nontrivial and acyclic. If G has a plane representation in which $V(\mathcal{A})$ is contained in a facial cycle C, then $\langle G, \mathcal{A}\rangle$ is infeasible if and only if \mathcal{A} is linked by C.

Proof. Let us first show that $\langle G, \mathcal{A}\rangle$ is feasible if and only if $\langle C, \mathcal{A}\rangle$ is feasible. To justify this, note that the "if" part follows instantly from Lemma 5.3. To establish the "only if" part, let [S_{1}, S_{2}] be a feasible solution to $\langle G, \mathcal{A}\rangle$. Since C is a facial cycle and $\left[S_{1}, S_{2}\right]$ is bond, $G\left[S_{i}\right] \cap C(i=1,2)$ is either empty or a path in C or the whole C. On the other hand, since $V(\mathcal{A}) \subseteq V(C)$ and $\left|S_{i} \cap A_{j}\right|$ is odd for all $i=1,2$ and $j=1,2,3$, we deduce that $S_{i} \cap V(C)(i=1,2)$ induces a path on C having an odd-sized intersection with each of A_{1}, A_{2}, A_{3}. It follows that [$S_{1} \cap V(C), S_{2} \cap V(C)$] is a feasible solution to $\langle C, \mathcal{A}\rangle$, as desired.

It remains to prove that $\langle C, \mathcal{A}\rangle$ is infeasible if and only if \mathcal{A} is linked by C. The "if" part was proved in Section 1 so we only need to show the "only if" part. Suppose $\langle C, \mathcal{A}\rangle$ is infeasible. Let C^{\prime} be a disjoint copy of C and let H be the cubic planar graph obtained from $C \cup C^{\prime}$ by adding a perfect matching linking the corresponding vertices. It follows from what we proved in the last paragraph that $\langle H, \mathcal{A}\rangle$ is infeasible. Note that $|V(C)| \geq 4$, for otherwise $A_{1} \cap A_{2} \cap A_{3} \neq \emptyset$, which would mean that $\langle C, \mathcal{A}\rangle$ is feasible. Therefore, H is triangle-free and 3 -connected. It is routine to verify that $\langle H, \mathcal{A}\rangle$ is irreducible. By Theorem 1.1, \mathcal{A} is linked by C.

It is worthy of noting that contractions in reductions I, II-1, and IV-1 might reduce a nontrivial and acyclic instance $\langle G, \mathcal{A}\rangle$ to a trivial or cyclic one. When this happens, although the reduction confirms the infeasibility of $\langle G, \mathcal{A}\rangle$, it only provides us with information on \mathcal{A} and it loses all information on G. Since we want to understand the structure of a nontrivial acyclic infeasible quadruple, we wish to keep a quadruple that way after each reduction. The following lemma says that this is possible. This result is a strengthening of Theorem 1.1 when G is 2 -connected.

Lemma 7.2 Suppose quadruple $\langle G, \mathcal{A}\rangle$ is nontrivial, acyclic, and infeasible. If G is 2-connected, then $\langle G, \mathcal{A}\rangle$ can be reduced by reductions II, III, IV to a nontrivial and acyclic quadruple $\left\langle G^{\prime}, \mathcal{A}^{\prime}\right\rangle$, such that G^{\prime} is 2-connected and has a plane representation in which \mathcal{A}^{\prime} is linked by a facial cycle.

Remark. Since any reduction of a trivial or cyclic quadruple remains trivial or cyclic, respectively, this lemma also implies that when $\langle G, \mathcal{A}\rangle$ is reduced to $\left\langle G^{\prime}, \mathcal{A}^{\prime}\right\rangle$, all intermediate quadruples are nontrivial, acyclic, and infeasible as well. This observation also follows from the proof below.

Proof. Suppose the lemma is false. We consider a counterexample $\langle G, \mathcal{A}\rangle$ with $2|E(G)|-|V(G)|$ as small as possible. By Theorem 1.1, $\langle G, \mathcal{A}\rangle$ admits one of reductions II-IV, which we denote by π. It follows from Lemmas 5.5-5.7 that the result, $\left\langle G^{\prime}, \mathcal{A}^{\prime}\right\rangle$, of applying π is infeasible. Moreover, since G^{\prime} is 2-connected and is simpler than G (meaning $2\left|E\left(G^{\prime}\right)\right|-\left|V\left(G^{\prime}\right)\right|<2|E(G)|-|V(G)|$), we deduce from the minimality of $\langle G, \mathcal{A}\rangle$ that $\left\langle G^{\prime}, \mathcal{A}^{\prime}\right\rangle$ is either trivial or cyclic. Let $\mathcal{A}=\left\{A_{1}, A_{2}, A_{3}\right\}$.

Note that π is not reduction II-2 or III, because otherwise from their definitions it is clear that $\left\langle G^{\prime}, \mathcal{A}^{\prime}\right\rangle$ would be both nontrivial and acyclic. Therefore, we may assume that reductions II- 2 and III do not apply to $\langle G, \mathcal{A}\rangle$, and thus π must be reduction II- 1 or IV.

Suppose π is reduction II-1, based on a 2 -separation $\left(G_{1}, G_{2}\right)$ of G at $\left\{v_{1}, v_{2}\right\}$, where $G_{2}=v_{1} u v_{2}$ and $\left\{v_{1}, u\right\}=A_{i}$ for some i, say $i=1$. Since $\left\langle G^{\prime}, \mathcal{A}^{\prime}\right\rangle$ is trivial or cyclic, either $\left\{u, v_{2}\right\}=A_{2}$ or A_{3}, or $\left\{u, v_{2}\right\} \supseteq A_{1} \Delta A_{2} \Delta A_{3}$. It is a routine matter to check that $G_{1} \backslash\left\{v_{1}, v_{2}\right\}$ is uniform in all these cases. Using our assumption that II-2 does not apply to $\langle G, \mathcal{A}\rangle$ we conclude that G_{1} is a path and thus G is a cycle, contradicting the fact that G is a counterexample (by Lemma 7.1).

It remains to consider the case when π is reduction IV. Suppose the reduction is based on 4-separation $\left(G_{1} \cup G_{2}, G_{3}\right)$ of G at $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$, where G_{3} contains disjoint paths P_{1} from v_{1} to v_{3} and P_{2} from v_{2} to v_{4}. In the subcase of (IV-1), some $A_{h}=\left\{v_{1}, v_{3}\right\}$, say $h=1$. Since $\left\langle G^{\prime}, \mathcal{A}^{\prime}\right\rangle$ is trivial or cyclic, either $\left\{v_{2}, v_{4}\right\}=A_{2}$ or A_{3}, or $\left\{v_{2}, v_{4}\right\} \supseteq A_{1} \Delta A_{2} \Delta A_{3}$. An argument similar to what was used in the last case shows that both G_{1} and G_{2} would be paths, and G would be a cycle, leading to a contraction. In the subcase of (IV-2), the parity condition implies that neither $\left\{v_{1}, v_{3}\right\}$ nor $\left\{v_{2}, v_{4}\right\}$ can be A_{h} for any $h=1,2,3$. Let $i \in\{1,2\}$ such that $\left\{v_{i}, v_{i+2}\right\} \nsupseteq A_{1} \Delta A_{2} \Delta A_{3}$ and let us assume that π is performed such that v_{i} and v_{i+2} get identified. Then $\left\langle G^{\prime}, \mathcal{A}^{\prime}\right\rangle$ is both nontrivial and acyclic, a contradiction, which proves the lemma.

In the end of this section we introduce a simplification of reduction IV-2, which will be useful in proving Theorem 1.2. Let $\langle G, \mathcal{A}\rangle$ be a quadruple and $\left(G_{1} \cup G_{2}, G_{3}\right)$ be a 4 -separation of G that satisfies all requirements in the definition of reduction IV-2. Then reduction $I V^{\prime}$ '(see Figure 4 below) reduces $\langle G, \mathcal{A}\rangle$ to quadruple $\left\langle G^{\prime}, \mathcal{A}\right\rangle$, instead of $\left\langle G^{\prime}, \mathcal{A}\right\rangle / v_{2} v_{4}$, where $G^{\prime}=G_{1} \cup G_{2}+\left\{v_{1} v_{3}, v_{2} v_{4}\right\}$. Note that G^{\prime} is a proper minor of G (and thus is simpler than G) as long as $\left|E\left(G_{3}\right)\right|>2$.

Clearly, reduction IV' maintains the 2-connectivity of a graph, as well as the nontriviality and acyclicity of a quadruple (since \mathcal{A} remains unchanged). In addition, we also have the following.

Lemma 7.3 Let $\left\langle G^{\prime}, \mathcal{A}\right\rangle$ be obtained from $\langle G, \mathcal{A}\rangle$ by a reduction $I V^{\prime}$. Then $\langle G, \mathcal{A}\rangle$ is feasible if and only if $\left\langle G^{\prime}, \mathcal{A}\right\rangle$ is feasible.

Figure 4: Reductions IV ${ }^{\prime}$.

Proof. Note that both $\langle G, \mathcal{A}\rangle$ and $\left\langle G^{\prime}, \mathcal{A}\right\rangle$ can be reduced to the same $\langle H, \mathcal{B}\rangle$ by reductions IV. Using Lemma 5.7 twice, we deduce that $\langle G, \mathcal{A}\rangle$ is feasible if and only if $\langle H, \mathcal{B}\rangle$ is feasible if and only if $\left\langle G^{\prime}, \mathcal{A}\right\rangle$ is feasible.

8 Weakly linkable quadruples

The purpose of this section is to establish Theorem 1.2, which provides a global structure for infeasible quadruples that are nontrival and acyclic. We begin with a few definitions. Let $G=(V, E)$ be a graph, $G_{1}=\left(V_{1}, E_{1}\right)$ be its subgraph, X be the set of vertices in V_{1} that are not incident with any edge in $E-E_{1}$, and $H=(U, F)$ be a graph with $F \cap E=\emptyset$ and $U \cap V=V_{1}-X$. Then $\left(G \backslash\left(X \cup E_{1}\right)\right) \cup H$ is the result of substituting G_{1} with H. Let $\langle G, \mathcal{A}\rangle$ be a quadruple with $\mathcal{A}=\left\{A_{1}, A_{2}, A_{3}\right\}$. A triad is a subgraph of G with three edges $v x, v y, v z$ such that x, y, z are distinct, v is not in $V(\mathcal{A})$, and v has degree three in G. A path in G is an \mathcal{A}-path if its set of internal vertices X satisfies: $\emptyset \neq X \subseteq V(\mathcal{A}), X$ is uniform, and every $x \in X$ has degree two in G. Let C be a cycle in G. A C-rectangle is a 4 -cycle $v_{1} v_{2} v_{4} v_{3} v_{1}$ (not $v_{1} v_{2} v_{3} v_{4} v_{1}$) such that $v_{1} v_{2}, v_{3} v_{4}$ are not in $C, v_{1} v_{3}, v_{2} v_{4}$ are in C, and $v_{1} v_{3}, v_{2} v_{4}$ form a bond of G that separates $V(G)$ into V_{1}, V_{2} with $\left|A_{i} \cap V_{j}\right|$ even for all $i=1,2,3$ and $j=1,2$ (cf. labels in Figure 4).

A quadruple $\langle G, \mathcal{A}\rangle$ is linkable by a cycle C if G has a plane representation in which C is a facial cycle and \mathcal{A} is linked by C. We call $\langle G, \mathcal{A}\rangle$ weakly linkable if there is a quadruple $\left\langle G^{\prime}, \mathcal{A}^{\prime}\right\rangle$ that is linkable by a cycle C^{\prime}, in which there exist a set \mathcal{R} of C^{\prime}-rectangles, a set \mathcal{P} of \mathcal{A}^{\prime}-paths (they have to be in C^{\prime}), a set \mathcal{T} of triads, and a set \mathcal{F} of edges (which are considered as single edge subgraphs), all being mutually edge-disjoint, such that $\langle G, \mathcal{A}\rangle$ is obtained by
(i) substituting each Z in $\mathcal{F} \cup \mathcal{T}$ with a graph H_{Z} for which $H_{Z} \backslash V(Z)$ has a component that is adjacent to all (two or three) vertices in $V\left(H_{Z}\right) \cap V(Z)$;
(ii) substituting each $R=v_{1} v_{2} v_{4} v_{3} v_{1}$ in \mathcal{R} with a graph H_{R} for which there are two vertex disjoint paths, one from v_{1} to v_{3} and one from v_{2} to v_{4};
(iii) substituting each P in \mathcal{P} with a graph H_{P} for which $H_{P}+u v$ is 2-connected, where u, v are ends of P; in this case, if $X=V(P)-\{u, v\}$, we also choose nonempty $Y \subseteq V\left(H_{P}\right)-\{u, v\}$ with $|Y| \equiv|X|(\bmod 2)$, and, for each A_{i} that meets X, we replace A_{i} with $\left(A_{i}-X\right) \cup Y$.

We will call $\left(\left\langle G^{\prime}, \mathcal{A}^{\prime}\right\rangle, C^{\prime},\left\{H_{Q}: Q \in \mathcal{Q}\right\}\right)$, where $\mathcal{Q}=\mathcal{R} \cup \mathcal{P} \cup \mathcal{T} \cup \mathcal{F}$, a certificate for $\langle G, \mathcal{A}\rangle$.
Remark 1. It is clear from this definition that, by reversing the constructions, every weakly linkable quadruple on a 2 -connected graph can be reduced to a linkable quadruple by reductions II-2, III, and IV'. Since linkable quadruples are infeasible, we deduce from Lemmas 5.5, 5.6, 7.3, and
7.1 that weakly linkable quadruples on 2-connected graphs are infeasible. Conversely, Theorem 1.2 asserts that every nontrivial acyclic infeasible quadruple on a 2 -connected graph is weakly linkable.

Remark 2. If A_{i} consists of the two ends of edge $e_{i}(i=1,2,3)$ and $e_{1} e_{2} e_{3}$ is a path of length three, then $\langle G, \mathcal{A}\rangle$ is nontrivial and acyclic. Assuming that G is 2 -connected, we deduce from Theorem 1.2 that $\langle G, \mathcal{A}\rangle$ is infeasible if and only if it is weakly linkable. Note that in any certificate we must have $\mathcal{R} \cup \mathcal{P}=\emptyset$, thus $\langle G, \mathcal{A}\rangle$ is infeasible if and only if, "up to" 2 - and 3 -separations, G has a plane representation such that e_{1}, e_{2}, e_{3} are contained in a facial cycle. As discussed in the introduction, this is exactly Seymour's solution on the 2 -linkage problem [7].

The remainder of this section is a proof of Theorem 1.2. We begin with a lemma.
Lemma 8.1 Suppose G is 2 -connected and $\langle G, \mathcal{A}\rangle$ is weakly linkable. Then there exists a certificate $\left(\left\langle G^{\prime}, \mathcal{A}^{\prime}\right\rangle, C^{\prime},\left\{H_{Q}: Q \in \mathcal{Q}\right\}\right)$ such that each H_{Q} is 2 -connected.

Proof. Choose a certificate $\left(\left\langle G^{\prime}, \mathcal{A}^{\prime}\right\rangle, C^{\prime},\left\{H_{Q}: Q \in \mathcal{Q}\right\}\right)$ such that
(1) $\sigma(\mathcal{Q})=\sum\left\{\left|E\left(H_{Q}\right)\right|: Q \in \mathcal{Q}\right\}$ is minimized, and
(2) subject to (1), $|\mathcal{Q}|$ is maximized.

Suppose that some H_{Q} is not 2-connected. Let $B=V\left(H_{Q}\right) \cap V\left(G^{\prime}\right)$. Note that $|B|=2$, 3, or 4. We first prove that H_{Q} is connected. Suppose otherwise. If $|B|<4$, then a component of H_{Q} contains at most one vertex from B. Since G is 2 -connected, this component must consist of a single vertex in B, which is impossible by constructions (i) and (iii). Thus $|B|=4$ and Q is a C^{\prime}-rectangle $R=v_{1} v_{2} v_{4} v_{3} v_{1}$ as defined in construction (ii). It follows that H_{Q} consists of two components H_{1} and H_{2}, which contain $\left\{v_{1}, v_{3}\right\}$ and $\left\{v_{2}, v_{4}\right\}$, respectively. By Lemma 7.1, $\left\langle G^{\prime} \backslash\left\{v_{1} v_{2}, v_{3} v_{4}\right\}, \mathcal{A}^{\prime}\right\rangle$ remains linkable by C^{\prime}. Thus we get a better certificate (with $|\mathcal{Q}|$ bigger) by deleting R from \mathcal{R} and adding $e_{1}=v_{1} v_{3}$ and $e_{2}=v_{2} v_{4}$ to \mathcal{F} with $H_{e_{i}}=H_{i}(i=1,2)$. This contradiction shows that H_{Q} is connected.

Now we assume that H_{Q} admits a 1-separation $\left(H_{1}, H_{2}\right)$ over a cut vertex z. If $|B|=2$, instead of simulating entire H_{Q} with one path Q we simulate H_{1} and H_{2} with two paths. In other words, we substitute Q in G^{\prime} with a new path $Q_{1} z Q_{2}$, where the lengths of Q_{1}, Q_{2} are determined by reduction II-2 (as in reducing H_{1}, H_{2}), and we also modify \mathcal{A}^{\prime} accordingly. Let $H_{Q_{i}}=H_{i}(i=1,2)$. We delete Q from \mathcal{Q} and add $Q_{i}(i=1,2)$ to \mathcal{Q}, provided that $H_{Q_{i}}$ has three or more vertices (so it can be used in constructions (i) and (iii)). By Lemmas 5.5 and 7.1, it is not difficult to see that we get a new certificate with either a smaller $\sigma(\mathcal{Q})$ (if some H_{i} has only two vertices) or a bigger $|\mathcal{Q}|$, a contradiction. The argument for the case $|B|=3$ is almost identical so we omit the detail.

If $|B|=4$, then Q is a C^{\prime}-rectangle $R=v_{1} v_{2} v_{4} v_{3} v_{1}$. From construction (ii) we may assume (by renaming vertices of R if necessary) one of the following holds:

- $v_{1}, v_{3} \in V\left(H_{1}-z\right)$ and $v_{2}, v_{4} \in V\left(H_{2}-z\right)$;
- $v_{1} \in V\left(H_{1}-z\right)$ and $v_{2}, v_{3}, v_{4} \in V\left(H_{2}-z\right)$;
- $z=v_{3}, v_{1} \in V\left(H_{1}\right)$, and $v_{2}, v_{4} \in V\left(H_{2}\right)$.

As before, in the first case we simulate H_{1}, H_{2} by two triads; in the second case we simulate H_{1}, H_{2} by an edge and a rectangle, respectively; in the third case we simulate H_{1}, H_{2} by an edge and a triad, respectively. It is possible that we want to simulate H_{i} by a triad but it does not satisfy the requirement in construction (i). In this case H_{i} can be simulated by three edges. It is also possible that we want to simulate a graph by an edge yet the graph does not satisfy the requirement in construction (i). This can only happen when the graph has only two vertices. In this case we may leave the graph in G^{\prime} and we do not need to simulate it. In all these cases, it is straightforward
to verify that we end up with a new certificate with either a smaller $\sigma(\mathcal{Q})$ or a bigger $|\mathcal{Q}|$, a contradiction, which completes the proof.

Proof of Theorem 1.2. The "if" part is given by Remark 1 above. To prove the "only if" part we assume that the result is false. Namely, there exists a nontrivial acyclic infeasible quadruple $\left\langle G^{*}, \mathcal{A}^{*}\right\rangle$ on a 2 -connected graph that is not weakly linkable. We choose such a counterexample with $2\left|E\left(G^{*}\right)\right|-\left|V\left(G^{*}\right)\right|$ as small as possible. By Lemma 7.2 , there exists π, a reduction II, III, or IV, such that applying π to $\left\langle G^{*}, \mathcal{A}^{*}\right\rangle$ results in a nontrivial acyclic infeasible quadruple $\langle G, \mathcal{A}\rangle$. Since G is 2-connected and is simpler than G^{*} (meaning $\left.2|E(G)|-|V(G)|<2\left|E\left(G^{*}\right)\right|-\left|V\left(G^{*}\right)\right|\right)$, the minimality of $\left\langle G^{*}, \mathcal{A}^{*}\right\rangle$ implies that $\langle G, \mathcal{A}\rangle$ is weakly linkable. Let $\left(\left\langle G^{\prime}, \mathcal{A}^{\prime}\right\rangle, C^{\prime},\left\{H_{Q}: Q \in \mathcal{Q}\right\}\right)$ be a certificate, where $\mathcal{Q}=\mathcal{R} \cup \mathcal{P} \cup \mathcal{T} \cup \mathcal{F}$. In the following we consider all possibilities for π and we deduce a contradiction in every case by showing that $\left\langle G^{*}, \mathcal{A}^{*}\right\rangle$ is weakly linkable.

Case 1a. π is reduction II- 1 . Let $\langle G, \mathcal{A}\rangle=\left\langle G^{*}, \mathcal{A}^{*}\right\rangle / u^{*} v_{2}$, where u^{*} has degree two in G^{*}. Let v_{1} be the other neighbor of u^{*} in G^{*} and let u be the new vertex in G. Since $\left\{u^{*}, v_{1}\right\}=A_{i}^{*}$ for some i, we may assume $i=1$. It follows that $A_{1}=\left\{u, v_{1}\right\}$ in \mathcal{A}.

We first consider the subcase when $A_{1} \subseteq V\left(H_{Q}\right)-V\left(C^{\prime}\right):=U$, for some $Q \in \mathcal{Q}$. This can only happen when $Q \in \mathcal{P}$. It follows that U is uniform in $\langle G, \mathcal{A}\rangle, U \cap V(\mathcal{A})=A_{1}$ and $\left|(V(G)-U) \cap A_{i}\right|$ is even $(i=1,2,3)$. Let x_{1}, x_{2} be the ends of Q and let H_{Q}^{*} be the subgraph of G^{*} obtained by uncontracting u back to $u^{*} v_{2}$. By the 2-connectivity of G^{*} we may assume that H_{Q}^{*} has disjoint paths from x_{i} to $v_{i}(i=1,2)$, respectively. Since $A_{1}=\left\{v_{1}, u\right\} \subseteq U, Q=x_{1} v_{1} u x_{2}$. Let $G^{\prime \prime}$ and $C^{\prime \prime}$ be obtained from G^{\prime} and C^{\prime}, respectively, by substituting Q with a new path $x_{1} v_{1} u^{*} v_{2} x_{2}$. Let $A_{i}^{\prime \prime}(i=1,2,3)$ be obtained from A_{i}^{\prime} by deleting internal vertices of Q and adding v_{1}, v_{2}, or u^{*} according to if they belong to A_{i}^{*}. Notice that $\left\langle G^{\prime}, \mathcal{A}^{\prime}\right\rangle=\left\langle G^{\prime \prime}, \mathcal{A}^{\prime \prime}\right\rangle / u^{*} v_{2}$. By Lemmas 5.5 and 7.1, $\left\langle G^{\prime \prime}, \mathcal{A}^{\prime \prime}\right\rangle$ is linkable by $C^{\prime \prime}$. Let $G^{\prime \prime \prime}=G^{\prime \prime}+\left\{x_{1} x_{2}, v_{1} v_{2}\right\}$. Then $R=x_{1} v_{1} v_{2} x_{2} x_{1}$ is a $C^{\prime \prime}$-rectangle, as $\left|(V(G)-U) \cap A_{i}\right|$ is even $(i=1,2,3)$. Moreover, by Lemma $7.1,\left\langle G^{\prime \prime \prime}, \mathcal{A}^{\prime \prime}\right\rangle$ is linkable. Now we see that $\left\langle G^{*}, \mathcal{A}^{*}\right\rangle$ is weakly linkable since it has a certificate $\left(\left\langle G^{\prime \prime \prime}, \mathcal{A}^{\prime \prime}\right\rangle, C^{\prime \prime},\left\{H_{S}: S \in \mathcal{Q}^{\prime}\right\}\right)$, where $\mathcal{Q}^{\prime}=(\mathcal{Q}-\{Q\}) \cup\{R\}$ and $H_{R}=H_{Q}^{*}-u^{*}$.

The next subcase is when some $H_{Q}-V\left(C^{\prime}\right)$ contains exactly one vertex from A_{1}. Using the same argument as we used in the previous subcase we can see that $\left\langle G^{*}, \mathcal{A}^{*}\right\rangle$ is weakly linkable. The only difference is that, instead of replacing $Q \in \mathcal{P}$ with a rectangle R we need to replace Q with a $\operatorname{triad} T$, or, in a degenerate case, with an edge (which would be added to \mathcal{F}).

The above two subcases imply that $A_{1} \subseteq V\left(G^{\prime}\right)$, and thus $A_{1} \subseteq V\left(C^{\prime}\right)$. We claim that we may assume $e=u v_{1} \in E\left(G^{\prime}\right)$. Suppose otherwise, that e belongs to some H_{Q}. Then $G^{\prime}+e$ is planar (e can be drawn along an $u v_{1}$-path of Q) and $\left\langle G^{\prime}+e, \mathcal{A}^{\prime}\right\rangle$ remains linkable by C^{\prime} (by Lemma 7.1). In addition, if $Q \in \mathcal{R}$ then $H_{Q} \backslash e$ satisfies the requirement in construction (ii), because the required disjoint paths in H_{Q} do not contain e, which follows from the definition of a rectangle and the fact that A_{1} consists of the two ends of e. The same reasons also imply that Q remains a C^{\prime}-rectangle in $\left\langle G^{\prime}+e, \mathcal{A}^{\prime}\right\rangle$. Therefore, $\left(\left\langle G^{\prime}+e, \mathcal{A}^{\prime}\right\rangle, C^{\prime},\left\{H_{S} \backslash e: S \in \mathcal{Q}\right\}\right)$ is also a certificate for $\langle G, \mathcal{A}\rangle$, and thus the claim is proved.

We further claim that we may assume $e \in E\left(C^{\prime}\right)$. Suppose otherwise. Let $C_{1}^{\prime}, C_{2}^{\prime}$ be the two $u v_{1}$-paths of C^{\prime}. Since \mathcal{A} is linked by C^{\prime} and $\left|A_{1}\right|=2$, one of C_{i}^{\prime}, say C_{1}^{\prime}, satisfies $V\left(C_{i}^{\prime}\right) \supseteq V(\mathcal{A})$. In addition, since C^{\prime} is a facial cycle and e is a chord, $\left\{u, v_{1}\right\}$ defines a 2 -separation $\left(G_{1}^{\prime}, G_{2}^{\prime}\right)$ of G^{\prime} with G_{i}^{\prime} contains $C_{i}^{\prime}(i=1,2)$. By flipping G_{2}^{\prime} it is clear that G^{\prime} can be redrawn so that $C^{\prime \prime}=C_{1}^{\prime}+e$ is a facial cycle. By Lemma 7.1, $\left\langle G^{\prime}, \mathcal{A}^{\prime}\right\rangle$ is also linkable by $C^{\prime \prime}$. Now it is routine to verify that $\left(\left\langle G^{\prime}, \mathcal{A}^{\prime}\right\rangle, C^{\prime \prime},\left\{H_{Q}: Q \in \mathcal{Q}\right\}\right)$ is also a certificate for $\langle G, \mathcal{A}\rangle$, and so the claim is proved.

Let $G^{\prime \prime}$ and $C^{\prime \prime}$ be obtained by uncontracting $u^{*} v_{2}$ in G^{\prime} and C^{\prime}, respectively. For $i=1,2,3$, let $A_{i}^{\prime \prime}$ be obtained from $A_{i}^{\prime}-\{u\}$ by adding u^{*} and/or v_{2}, according to if they belong to A_{i}^{*}. Then $\left\langle G^{\prime}, \mathcal{A}^{\prime}\right\rangle=\left\langle G^{\prime \prime}, \mathcal{A}^{\prime \prime}\right\rangle / u^{*} v_{2}$. By Lemmas 5.5 and $7.1,\left\langle G^{\prime \prime}, \mathcal{A}^{\prime \prime}\right\rangle$ is linkable by $C^{\prime \prime}$. Moreover, it is straightforward to verify that $\left(\left\langle G^{\prime \prime}, \mathcal{A}^{\prime \prime}\right\rangle, C^{\prime \prime},\left\{H_{Q}: Q \in \mathcal{Q}\right\}\right)$ is a certificate for $\left\langle G^{*}, \mathcal{A}^{*}\right\rangle$, which completes the proof for Case 1a.

In the rest of the proof we assume that

$$
\begin{equation*}
\text { the result of any reduction II-1 in }\left\langle G^{*}, \mathcal{A}^{*}\right\rangle \text { is either trivial or cyclic. } \tag{8.1}
\end{equation*}
$$

We also assume that the certificate of $\langle G, \mathcal{A}\rangle$ is chosen according to Lemma 8.1.
Case 1b. π is reduction II-2. Suppose the reduction is applied to 2 -separation $\left(G_{1}, G_{2}\right)$ of G^{*} such that G_{2} is substituted by a path P (so $G=G_{1} \cup P$). If some edge of P belongs to some H_{Q}, Lemma 8.1 implies that the entire P is a subgraph of H_{Q}. Let H_{Q}^{*} be obtained from H_{Q} by substituting P with G_{2}. It follows that replacing H_{Q} with H_{Q}^{*} results in a certificate for $\left\langle G^{*}, \mathcal{A}^{*}\right\rangle$, a contradiction. Therefore, P is a subgraph of G^{\prime} and is edge disjoint from all Q in \mathcal{Q}. Now it is clear that adding P to \mathcal{P} and letting $H_{P}=G_{2}$ again results in a certificate for $\left\langle G^{*}, \mathcal{A}^{*}\right\rangle$, a contradiction.

Since reduction II-2 does not make a quadruple trivial or cycle, we assume in the following that

$$
\begin{equation*}
\left\langle G^{*}, \mathcal{A}^{*}\right\rangle \text { admits no reduction II-2. } \tag{8.2}
\end{equation*}
$$

Case 2. π is reduction III. Suppose the reduction is applied to 3 -separation $\left(G_{1}, G_{2}\right)$ of G^{*} such that G_{2} is substituted by a triad T (so $G=G_{1} \cup T$). If edges of T do not belong to any H_{Q}, then adding T to \mathcal{T} and letting $H_{T}=G_{2}$ would result in a certificate for $\left\langle G^{*}, \mathcal{A}^{*}\right\rangle$, a contradiction. So we assume that some H_{Q} (which is 2-connected) contains an edge of T. By the choice of our certificate, H_{Q} contains at least two edges from T. We claim that we can get a certificate (which may not satisfy the conclusion of Lemma 8.1 any more) such that the entire T is a subgraph of H_{Q}.

Let $v x, v y$ be two edges of T that are in H_{Q} and let $e=v z$ be the other edge of T. If e is also in H_{Q}, then we do not need to do anything. So we assume that e is not in H_{Q}. Since elements in $\left\{H_{Q}: Q \in \mathcal{Q}\right\}$ are edge-disjoint, by Lemma 8.1, e is not in H_{S} for any $S \in \mathcal{Q}$, and v is incident only with e and some edges of Q. Let $G^{\prime \prime}$ be obtained from $G^{\prime}-v$ by joining z with all neighbors of v, except for z (so $G^{\prime \prime}$ is isomorphic to G^{\prime} / e). Let $C^{\prime \prime}$ be the facial cycle of $G^{\prime \prime}$ that corresponds to C^{\prime}. Let Q^{\prime} be obtained from Q by the same operation. Since $v \notin V\left(\mathcal{A}^{\prime}\right)$, if Q is a triad, an \mathcal{A}^{\prime}-path, or a C^{\prime}-rectangle, then Q^{\prime} is a triad, an \mathcal{A}^{\prime}-path, or a $C^{\prime \prime}$-rectangle, respectively. In addition, $\left\langle G^{\prime \prime}, \mathcal{A}^{\prime}\right\rangle$ is linkable by $C^{\prime \prime}$. Therefore, we have a desired certificate if we replace G^{\prime} with $G^{\prime \prime}$ and Q with Q^{\prime}, and if we take $H_{Q^{\prime}}=H_{Q}+e$.

Let the entire T be a subgraph of H_{Q}. Let H_{Q}^{*} be obtained from H_{Q} by substitute T with G_{2}. Then it is easy to see that replacing H_{Q} with H_{Q}^{*} results in a certificate for $\left\langle G^{*}, \mathcal{A}^{*}\right\rangle$, a contradiction.

Case 3a. π is reduction IV-1. Let $v_{1}, v_{2}, v_{3}, v_{4}$ and G_{1}, G_{2} be as in the definition of IV-1 and let $A_{1}=\left\{v_{1}, v_{3}\right\}$. Let $\langle G, \mathcal{A}\rangle=\left\langle G^{*}, \mathcal{A}^{*}\right\rangle / v_{2} v_{4}$ and let v^{\prime} be the new vertex. We also consider G_{1}, G_{2} as subgraphs of G, where we rename v_{2}, v_{4} with v^{\prime}.

If $v_{1} v_{3}$ does not belong to any H_{Q}, then, by Lemma 8.1, every H_{Q} is a subgraph of G_{1} or G_{2}. Therefore, the uncontraction $\left\langle G^{\prime \prime}, \mathcal{A}^{\prime \prime}\right\rangle$ of $v_{2} v_{4}$ in $\left\langle G^{\prime}, \mathcal{A}^{\prime}\right\rangle$ is well defined. Let $C^{\prime \prime} \subseteq G^{\prime \prime}$ be the facial cycle corresponds to C^{\prime}. Then it is easy to see that $\left(\left\langle G^{\prime \prime}, \mathcal{A}^{\prime \prime}\right\rangle, C^{\prime \prime},\left\{H_{Q}: Q \in \mathcal{Q}\right\}\right)$ is a certificate for $\left\langle G^{*}, \mathcal{A}^{*}\right\rangle$, a contradiction.

Next we assume that $v_{1} v_{3}$ belongs to some H_{Q}. By Lemma 8.1, H_{Q} also contains v^{\prime}. Let $B=V\left(H_{Q}\right) \cap V\left(G^{\prime}\right)$. We claim that $|B|=2$. If $|B|=3$, then Q is a triad. Note that $A_{1} \subseteq B$ since, by construction (i), $V\left(H_{Q}\right)-B$ is disjoint from $V(\mathcal{A})$. Hence $V\left(C^{\prime}\right) \supseteq A_{1}$. It follows that $C^{\prime}-q$, where q is the center of triad Q, contains a $v_{1} v_{3}$-path, and thus $G \backslash E\left(H_{Q}\right)$ contains a $v_{1} v_{3}$-path. This path avoids edge $v_{1} v_{3}$ and so it contains v^{\prime}. Consequently, $B=\left\{v_{1}, v_{3}, v^{\prime}\right\}$, which is impossible since no component in $H_{Q} \backslash B$ (or even in $G \backslash B$) is adjacent to all vertices in B. If $|B|=4$, then Q is a C^{\prime}-rectangle $u_{1} u_{2} u_{4} u_{3} u_{1}$, where $u_{1} u_{3}$ is in C^{\prime}. Again $A_{1} \subseteq B$ and thus $V\left(C^{\prime}\right) \supseteq A_{1}$. The parity condition on rectangles implies that $A_{1}=\left\{u_{1}, u_{2}\right\}$ or $\left\{u_{3}, u_{4}\right\}$. Therefore, construction (ii) implies that $G \backslash v_{1} v_{3}$ has a cycle (obtained by extending C^{\prime}) that contains A_{1}, which is impossible. Thus the claim is proved.

From $|B|=2$ we can deduce that G_{1} or G_{2} (say G_{2}) is a subgraph of H_{Q}. Otherwise, since $\left|V\left(G_{1}\right) \cap V\left(G_{2}\right)\right|=1$ and, by the 2-connectivity of $G, V\left(G_{i}\right)-V\left(H_{Q}\right)(i=1,2)$ has at least two neighbors in $V\left(G_{i}\right) \cap V\left(H_{Q}\right)$, it would follow that $G \backslash V\left(H_{Q}\right)$ has at least three neighbors in $V\left(H_{Q}\right)$, contradicting the fact $|B|=2$. Notice from $|B|=2$ that $H_{Q} \backslash B$ is uniform in $\langle G, \mathcal{A}\rangle$. Thus $v_{3} \in A_{1} \cap V\left(H_{Q} \backslash B\right)$ implies $V\left(H_{Q} \backslash B\right) \cap V(\mathcal{A}) \subseteq A_{1}$. It follows that in $G^{*}, G_{2} \backslash\left\{v_{3}, v_{4}\right\}$ does not contain any vertex in $V(\mathcal{A})$, which, by (8.2), implies $V\left(G_{2}\right)=\left\{v_{3}, v_{4}\right\}$. We may assume $B \neq\left\{v_{1}, v^{\prime}\right\}$ because otherwise H_{Q} would be the triangle $v_{1} v_{3} v^{\prime} v_{1}$ and Q would be the path $v_{1} v_{3} v^{\prime}$, which would mean that deleting Q from \mathcal{Q} and adding $v_{1} v^{\prime}$ to G^{\prime} result in a certificate for $\langle G, \mathcal{A}\rangle$ that satisfies the requirement in the first subcase of Case 3 a (where $v_{1} v_{3}$ does not belong to H_{Q} for any $Q \in \mathcal{Q}$), and thus we would be done.

By the parity condition in IV-1, $\left|A_{1}^{*} \cap\left\{v_{3}, v_{4}\right\}\right|=\left|\left\{v_{3}\right\}\right|=1$ but $\left|A_{i}^{*} \cap\left\{v_{3}, v_{4}\right\}\right|$ is even $(i=2,3)$. It follows that $\left\langle G^{*}, \mathcal{A}^{*}\right\rangle / v_{3} v_{4}$ is acyclic, as the new vertex belongs to exactly one member of $\mathcal{A}^{*} / v_{3} v_{4}$. By (8.1), $\left\langle G^{*}, \mathcal{A}^{*}\right\rangle / v_{3} v_{4}$ must be trivial, and so there exists $h \in\{2,3\}$ such that $A_{h}^{*}=\left\{v_{3}, v_{4}\right\}$. Since $B \neq\left\{v_{1}, v^{\prime}\right\}$, either v_{1} or v^{\prime} is in $H_{Q} \backslash B$. However, since $H_{Q} \backslash B$ is uniform in $\langle G, \mathcal{A}\rangle$, both possibilities contradict $A_{h}^{*}=\left\{v_{3}, v_{4}\right\}$ because in the first case $v_{1} \in A_{h}^{*}$ and in the second case $v^{\prime} \notin V(\mathcal{A})$, which leads to $v_{2} \in A_{h}^{*}$. This contradiction settles Case 3a.

Case 3b. π is reduction IV-2. Let $v_{1}, v_{2}, v_{3}, v_{4}, v^{\prime}$ and G_{1}, G_{2}, G_{3} be as in the definition of IV-2. Similar to Cases 3a, G_{1}, G_{2} are also considered as subgraphs of G, where we rename v_{2}, v_{4} with v^{\prime}. We first claim that $G_{i} \backslash V\left(G_{3}\right)$ meets $V\left(\mathcal{A}^{*}\right)$, for $i=1,2$. Suppose the claim is false for, say, $i=2$. By (8.2), $V\left(G_{2}\right)=\left\{v_{3}, v_{4}\right\}$. Then, by the parity condition in IV-2, $\left(G_{2} \cup G_{3}\right) \backslash\left\{v_{1}, v_{2}\right\}$ is uniform in \mathcal{A}^{*}, which implies, by (8.2) again, that $v_{1} v_{3}, v_{2} v_{4}$ are the only edges of G_{3} and $v_{3}, v_{4} \in V\left(\mathcal{A}^{*}\right)$. If $v^{\prime} v_{3}$ does not belong to any H_{Q} then it belongs to C^{\prime}, as $v_{3} \in V\left(\mathcal{A}^{*}\right)$. It is easy to see that uncontracting $v_{2} v_{4}$ in $\left\langle G^{\prime}, \mathcal{A}^{\prime}\right\rangle$ leads to a certificate for $\left\langle G^{*}, \mathcal{A}^{*}\right\rangle$, a contradiction. So $v^{\prime} v_{3}$ belongs to some H_{Q}. By Lemma 8.1, this H_{Q} also contains $v_{1} v_{3}$. It follows that v_{3} belongs to $H_{Q} \backslash V\left(G^{\prime}\right)$, which implies $Q \in \mathcal{P}$, as $v_{3} \in V(\mathcal{A})$. Let H_{Q}^{*} be obtained by the uncontraction of $v_{2} v_{4}$ in H_{Q}. Since $\left\{v_{3}, v_{4}\right\}$ is uniform in \mathcal{A}^{*} and $H_{Q} \backslash V\left(G^{\prime}\right)$ is uniform in $\mathcal{A}, H_{Q}^{*} \backslash V\left(G^{\prime}\right)$ must be uniform in \mathcal{A}^{*}. Thus replacing H_{Q} with H_{Q}^{*} results in a certificate for $\left\langle G^{*}, \mathcal{A}^{*}\right\rangle$. This contradiction proves the claim.

If $v_{1} v_{3}$ is not in any H_{Q}, then, by Lemma 8.1, every H_{Q} is a subgraph of G_{1} or G_{2}. It follows that v^{\prime} and $v_{1} v_{3}$ belong to C^{\prime}. Moreover, uncontracting $v_{2} v_{4}$ in $\left\langle G^{\prime}, \mathcal{A}^{\prime}\right\rangle$ and adding edges $v_{1} v_{2}, v_{3} v_{4}$ would create a rectangle $R=v_{1} v_{2} v_{4} v_{3} v_{1}$, and thus a certificate for $\left\langle G^{*}, \mathcal{A}^{*}\right\rangle$, where we take $H_{R}=G_{3}$. This contradiction implies that $v_{1} v_{3}$ belongs to some H_{Q}. By Lemma 8.1, this H_{Q} also contains v^{\prime}. Let H_{Q}^{*} be obtained from H_{Q} by putting G_{3} back. That is, $H_{Q}^{*}=G^{*}\left[E\left(G^{*}\right)-E\left(G \backslash E\left(H_{Q}\right)\right)\right]$.

If some G_{i}, say $i=2$, is a subgraph of H_{Q}, then, since $G_{2} \backslash V\left(G_{3}\right)$ meets $V\left(\mathcal{A}^{*}\right)$, as claimed above, Q must be a path in \mathcal{P} and $H_{Q} \backslash V\left(G^{\prime}\right)$ is uniform in \mathcal{A}. Since $V\left(G_{2} \backslash v^{\prime}\right) \subseteq V\left(H_{Q} \backslash V\left(G^{\prime}\right)\right)$, $V\left(G_{2} \backslash v_{4}\right)$ is uniform in \mathcal{A}^{*}. By the parity condition in IV-2, $\left|A_{i}^{*} \cap V\left(G_{2}\right)\right|$ must be even for all
$i=1,2,3$. Hence $V\left(G_{2}\right)$ is uniform in \mathcal{A}^{*}, which in turn implies that $H_{Q}^{*} \backslash V\left(G^{\prime}\right)$ is uniform in \mathcal{A}^{*}, contradicting (8.2).

For $i=1,2$, let $H_{i}=G_{i}\left[E\left(G_{i}\right)-E\left(H_{Q}\right)\right]$ be subgraphs of G. Since $v_{1} v_{2} \in E\left(H_{Q}\right)$ and $v^{\prime} \in V\left(H_{Q}\right)$, the 2-connectivity of G implies $\left|V\left(H_{i}\right) \cap V\left(H_{Q}\right)\right| \geq 2$ for $i=1,2$. It follows from $V\left(H_{1}\right) \cap V\left(H_{2}\right) \subseteq\left\{v^{\prime}\right\}$ that $\left|V\left(H_{Q}\right) \cap V\left(G^{\prime}\right)\right| \geq 3$. Thus $H_{Q} \backslash V\left(G^{\prime}\right)$ is disjoint from $V(\mathcal{A})$, and so $H_{Q}^{*}-V\left(H_{1} \cup H_{2}\right)-\left\{v_{2}, v_{4}\right\}$ is disjoint from $V\left(\mathcal{A}^{*}\right)$. If $\left|V\left(H_{Q}\right) \cap V\left(G^{\prime}\right)\right|=3$, then $v^{\prime} \in V\left(H_{Q}\right) \cap V\left(G^{\prime}\right)$ and $H_{Q}^{*}-V\left(H_{1} \cup H_{2}\right)=H_{Q}^{*}-V\left(H_{1} \cup H_{2}\right)-\left\{v_{2}, v_{4}\right\}$ is disjoint from $V\left(\mathcal{A}^{*}\right)$. In this case triad $Q=\left\{u x, u y, u v^{\prime}\right\}$ can be converted into a rectangle $R=x y v_{4} v_{2} x$, which leads to a certificate for $\left\langle G^{*}, \mathcal{A}^{*}\right\rangle$ if we take $H_{R}=H_{Q}^{*}$. If $\left|V\left(H_{Q}\right) \cap V\left(G^{\prime}\right)\right|=4$, the parity conditions in IV-2 and C^{\prime}-rectangle imply that $\left\{v_{2}, v_{4}\right\}$ is disjoint from $V\left(\mathcal{A}^{*}\right)$ and thus $H_{Q}^{*} \backslash V\left(H_{1} \cup H_{2}\right)$ is disjoint from $V\left(\mathcal{A}^{*}\right)$. In this case by replacing H_{Q} with H_{Q}^{*} we get a certificate for $\left\langle G^{*}, \mathcal{A}^{*}\right\rangle$. This completes Case 3b and also the proof of Theorem 1.2.

References

[1] H.A. Jung, Eine Verallgemeinerung des n-fachen Zusammenhangs für Graphen, Math. Ann. 187 (1970), 95-103.
[2] J. Oxley, Matroid Theory, Oxford University Press, Oxford, 1992.
[3] Y. Perl and Y. Shiloach, Finding two disjoint paths between two pairs of vertices in a graph, J. Assoc. Comput. Mach. 25 (1978), 1-9.
[4] N. Robertson and K. Chakravarti, Covering three edges with a bond in a nonseparable graph (Abstract), Ann. Discrete Math. 8 (1980), 247.
[5] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Springer, Berlin, 2003.
[6] P.D. Seymour, Triples in matroid circuits, European J. Combin. 7 (1986) 177-185.
[7] P.D. Seymour, Disjoint paths in graphs, Discrete Math. 19 (1980), 293-309.
[8] Y. Shiloach, A polynomial solution to the undirected two paths problem, J. Assoc. Comput. Mach. 27 (1980), 445-456.
[9] B. Toft, "Problem 10", in: Recent Advances in Graph Theory, Proc. of the Symposium held in Prague, June 1974 (M. Fiedler, ed.), Academia Praha, 1975, pp. 543-544.
[10] C. Thomassen, Totally odd K_{4}-subdivisions in 4-chromatic graphs, Combinatorica 21 (2001), 417-443.
[11] C. Thomassen, 2-linked graphs, European J. Combin. 1 (1980), 371-378.
[12] W. Zang, Proof of Toft's conjecture: Every graph containing no fully odd K_{4} is 3 -colorable, J. Comb. Optim. 2 (1998), 117-188.

[^0]: *Supported in part by NSF of China under Grant No. 10771209, and Chinese Academy of Sciences under Grant No. kjcx-yw-s7.
 ${ }^{\dagger}$ Supported in part by NSF grant DMS-1001230 and NSA grant H98230-10-1-0186.
 ${ }^{\ddagger}$ Supported in part by NSA.
 ${ }^{\text {§ }}$ Supported in part by the Research Grants Council of Hong Kong, and the Overseas and Hong Kong, Macau Young Scholars Collaborative Research Fund of the National Science Foundation of China.

