3

1

Characterizing binary matroids with no P_9 -minor

Guoli $Ding^1$ and Haidong Wu^2

1. Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana, USA Email: ding@math.lsu.edu

2. Department of Mathematics, University of Mississippi, University, Mississippi, USA Email: hwu@olemiss.edu

Abstract

In this paper, we give a complete characterization of binary matroids 4 with no P_9 -minor. A 3-connected binary matroid M has no P_9 -minor 5 if and only if M is one of the internally 4-connected non-regular minors 6 of a special 16-element matroid Y_{16} , a 3-connected regular matroid, a 7 binary spike with rank at least four, or a matroid obtained by 3-summing 8 copies of the Fano matroid to a 3-connected cographic matroid $M^*(K_{3,n})$, 9 $M^*(K'_{3,n}), M^*(K''_{3,n})$, or $M^*(K''_{3,n})$ $(n \ge 2)$. Here the simple graphs $K'_{3,n}, K''_{3,n}$, and $K''_{3,n}$ are obtained from $K_{3,n}$ by adding one, two, or 10 11 three edges in the color class of size three, respectively. 12

13 **1** Introduction

It is well known that the class of binary matroids consists of all matroids 14 without any $U_{2,4}$ -minor, and the class of regular matroids consists of matroids 15 without any $U_{2,4}$, F_7 or F_7^* -minor. Kuratowski's Theorem states that a graph 16 is planar if and only if it has no minor that is isomorphic to $K_{3,3}$ or K_5 . These 17 examples show that characterizing a class of graphs and matroids without 18 certain minors is often of fundamental importance. We say that a matroid is 19 *N*-free if it does not contain a minor that is isomorphic to N. A 3-connected 20 matroid M is said to be internally 4-connected if for any 3-separation of M, 21 one side of the separation is either a triangle or a triad. 22

There is much interest in characterizing binary matroids without small 3-connected minors. Since non-3-connected matroids can be constructed by 3-connected matroids using 1-, 2-sum operations, one needs only determine the 3-connected members of a minor closed class. There is exactly one 3connected binary matroid with 6-elements, namely, W_3 where W_n denotes both the wheel graph with *n*-spokes and the cycle matroid of W_n . There are exactly two 7-element binary 3-connected matroids, F_7 and F_7^* . There are

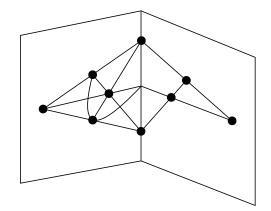


Figure 1: A geometric representation of P_9

three 8-element binary 3-connected matroids, W_4 , S_8 and AG(3,2), and there

are eight 9-element 3-connected binary matroids: $M(K_{3,3})$, $M^*(K_{3,3})$, Prism,

³² $M(K_5 \setminus e), P_9, P_9^*$, binary spike Z_4 and its dual Z_4^* .

33

E(M)	Binary 3-connected matroids
6	W_3
7	F_7, F_7^*
8	$W_4, S_8, AG(3,2)$
9	$M(K_{3,3}), M^*(K_{3,3}), M(K_5 \setminus e), Prism, P_9, P_9^*, Z_4, Z_4^*$

For each matroid N in the above list with less than nine elements, with 34 the exception of AG(3,2), the problem of characterizing 3-connected binary 35 matroids with no N-minor has been solved. Since every 3-connected binary 36 matroid having at least four elements has a W_3 -minor, the class of 3-connected 37 binary matroids excluding W_3 contains only the trivial 3-connected matroids 38 with at most three elements. Seymour in [11] determined all 3-connected 39 binary matroids with no F_7 -minor (F_7^* -minor). Any such matroid is either 40 regular or is isomorphic to F_7^* (F_7). In [8], Oxley characterized all 3-connected 41 binary W_4 -free matroids. These are exactly $M(K_4)$, F_7 , F_7^* , binary spikes Z_r , 42 $Z_r^*, Z_r \setminus t$, or $Z_r \setminus y_r$ $(r \ge 4)$ plus the trivial 3-connected matroids with at 43 most three elements. It is well known that F_7, F_7^* , and AG(3,2) are the only 44 3-connected binary non-regular matroids without any S_8 -minor. 45

In the book [3], Mayhew, Royle and Whittle characterized all internally 47 4-connected binary $M(K_{3,3})$ -free matroids. Mayhew and Royle [5], and in-48 dependently Kingan and Lemos [7], determined all internally 4-connected bi⁴⁹ nary Prism-free (therefore $M(K_5 \setminus e)$ -free) matroids. For each matroid N in

the above list with exactly nine elements, the problem of characterizing 3connected binary matroids with no *N*-minor is still unsolved yet. The problem

connected binary matroids with no N-minor is still unsolved yet. The problem of characterizing internally 4-connected binary AG(3,2)-free matroids is also

⁵³ open. Since Z_4 has an AG(3,2)-minor, characterizing internally 4-connected

⁵⁴ binary Z_4 -free matroids is an even harder problem. Oxley [8] determined all

⁵⁵ 3-connected binary matroids with no P_9 - or P_9^* -minor:

Theorem 1.1. Let M be a binary matroid. Then M is 3-connected having no minor isomorphic to P_9 or P_9^* if and only if

58 (i) M is regular and 3-connected;

(ii) M is a binary spike $Z_r, Z_r^*, Z_r \setminus y_r$ or $Z_r \setminus t$ for some $r \ge 4$; or

60 (iii) $M \cong F_7$ or F_7^* .

 P_9 is a very important matroid and it appears frequently in the structural 61 matroid theory (see, for example, [4, 8, 13]). In this paper, we give a complete 62 characterization of the 3-connected binary matroids with no P_9 -minor. Before 63 we state our main result, we describe a class of non-regular matroids. First 64 let \mathcal{K} be the class 3-connected cographic matroids $N = M^*(K_{3,n}), M^*(K'_{3,n}),$ 65 $M^*(K''_{3,n})$, or $M^*(K'''_{3,n})$ $(n \ge 2)$. Here the simple graphs $K'_{3,n}, K''_{3,n}$, and $K'''_{3,n}$ 66 are obtained from $K_{3,n}$ by adding one, two, or three edges in the color class of 67 size three, respectively. Note that when $n = 2, N \cong W_4$, or the cycle matroid 68 of the prism graph. From now on, we will use Prism to denote the prism 69 graph as well as its cycle matroid. Take any t disjoint triangles T_1, T_2, \ldots, T_t 70 $(1 \le t \le n)$ of N and t copies of F_7 . Perform 3-sum operations consecutively 71 starting from N and F_7 along the triangles T_i $(1 \le i \le t)$. Any resulting 72 matroid in this infinite class of matroids is called a (multi-legged) starfish. 73 Note that each starfish is not regular since at least one Fano was used (and 74 therefore the resulting matroid has an F_7 -minor) in the construction. The 75 class of starfishes and the class of spikes have empty intersection as spikes are 76 W_4 -free, while each starfish has a W_4 -minor. 77

⁷⁸ Our next result, the main result of this paper, generalizes Oxley's Theo-⁷⁹ rem 1.1 and completely determines the 3-connected P_9 -free binary matroids. ⁸⁰ The matroid Y_{16} , a single-element extension of $PG(3,2)^*$, in standard repre-⁸¹ sentation without the identity matrix is given in Figure 2.

Theorem 1.2. Let M be a binary matroid. Then M is 3-connected having no
minor isomorphic to P₉ if and only if one of the following is true:

 $_{84}$ (i) M is one of the 16 internally 4-connected non-regular minors of Y_{16} ; or

⁸⁵ (ii) M is regular and 3-connected; or

- ⁸⁶ (iii) M is a binary spike $Z_r, Z_r^*, Z_r \setminus y_r$ or $Z_r \setminus t$ for some $r \ge 4$; or
- (iv) M is a starfish.

1	1	1	0	0
1	1	0	1	0
1	0	1	1	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	1	1
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Figure 2: A binary standard representation for Y_{16}

The next result, which follows easily from the last theorem, characterizes all binary P_9 -free matroids.

⁹⁰ **Theorem 1.3.** Let M be a binary matroid. Then M has no minor isomor-⁹¹ phic to P_9 if and only if M can be constructed from internally 4-connected ⁹² non-regular minors of Y_{16} , 3-connected regular matroids, binary spikes, and ⁹³ starfishes using the operations of direct sum and 2-sum.

Proof. Since every matroid can be constructed from 3-connected proper minors 94 of itself by the operations of direct sum and 2-sum, by Theorem 1.2, the 95 forward direction is true. Conversely, suppose that $M = M_1 \oplus M_2$, or M =96 $M_1 \oplus_2 M_2$, where M_1 and M_2 are both P_9 -free. As P_9 is 3-connected, by [9, 97 Proposition 8.3.5], M is also P_9 -free. Thus if M is constructed from internally 98 4-connected non-regular minors of Y_{16} , 3-connected regular matroids, binary 99 spikes, and starfishes using the operations of direct sum and 2-sum, then M100 is also P_0 -free. 101

Our proof does not use Theorem 1.1 except we use the fact that all spikes 102 are P_9 -free which can be proved by an easy induction argument. In Section 103 2, we determine all internally 4-connected binary P_9 -free matroids. These 104 are exactly the 16 internally 4-connected non-regular minors of Y_{16} . These 105 matroids are determined using the Sage matroid package and the computation 106 is confirmed by the matroid software Macek. Most of the work is in Section 107 3, which is to determine how the internally 4-connected pieces can be put 108 together to avoid a P_9 -minor. 109

For terminology we follow [9]. Let M be a matroid. The connectivity function λ_M of M is defined as follows. For $X \subseteq E$ let

$$\lambda_M(X) = r_M(X) + r_M(E - X) - r(M).$$
(1)

Let $k \in \mathbb{Z}^+$. Then both X and E - X are said to be k-separating if $\lambda_M(X) =$ 112 $\lambda_M(E-X) < k$. If X and E-X are k-separating and $\min\{|X|, |E-X|\} \ge k$, 113 then (X, E - X) is said to be a k-separation of M. Let $\tau(M) = \min\{j:$ 114 M has a j-separation if M has a k-separation for some k; otherwise let 115 $\tau(M) = \infty$. M is k-connected if $\tau(M) \ge k$. Let (X, E-X) be a k-separation of 116 M. This separation is said to be a minimal k-separation if $\min\{|X|, |E-X|\} =$ 117 k. The matroid M is called internally 4-connected if and only if M is 3-118 connected and the only 3-separations of M are minimal (in other words, either 119 X or Y is a triangle or a triad). 120

¹²¹ 2 Characterizing internally 4-connected binary P_9 -¹²² free matroids

In this section, we determine all internally 4-connected binary P_9 -free matroids.

¹²⁵ **Theorem 2.1.** A binary matroid M is internally 4-connected and P_9 -free if ¹²⁶ and only if

(*i*) *M* is internally 4-connected graphic or cographic; or

(*ii*) M is one of the 16 internally 4-connected non-regular minors of Y_{16} ; or

130 (iii) M is isomorphic to R_{10} .

Sandra Kingan recently informed us that she also obtained the internally 4-connected binary P_9 -free matroids as a consequence of a decomposition result for 3-connected binary P_9 -free matroids.

The following two well-known theorems of Seymour [11] will be used in our proof.

Theorem 2.2. (Seymour's Splitter Theorem) Let N be a 3-connected proper minor of a 3-connected matroid M such that $|E(N)| \ge 4$ and if N is a wheel, it is the largest wheel minor of M; while if N is a whirl, it is the largest whirl minor of M. Then M has a 3-connected minor M' which is isomorphic to a single-element extension or coextension of N.

Theorem 2.3. If M is an internally 4-connected regular matroid, then M is graphic, cographic, or is isomorphic to R_{10} .

¹⁴³ The following result is due to Zhou [13, Corollary 1.2].

Theorem 2.4. A non-regular internally 4-connected binary matroid other than F_7 and F_7^* contains one of the following matroids as a minor: N_{10} , $\widetilde{K_5}$, $\widetilde{K_5}^*$, $T_{12} \setminus e$, and T_{12} / e .

The matrix representations of these matroids can be found in [13]. We use 147 X_{10} to denote the matroid $\widetilde{K_5}^*$. It is straightforward to verify that among the 148 five matroids in Theorem 2.4, only X_{10} has no P_9 -minor. We use \mathcal{L} to denote 149 the set of matroids consisting of the following matroids in reduced standard 150 representation, in addition to F_7 , F_7^* and Y_{16} . From the matrix representations 151 of these matroids, it is straightforward to check that each matroid in \mathcal{L} is a 152 minor of Y_{16} , and each has an X_{10} -minor. Indeed, It is clear that (i) each 153 X_i is a single-element co-extension of X_{i-1} for $11 \le i \le 15$; (ii) each Y_i is 154 a single-element extension of X_{i-1} for $11 \leq i \leq 16$; (iii) each Y_i is a single-155 element co-extension of Y_{i-1} for $11 \le i \le 16$, and it is easy to check that (iv) 156 in the list $X_{10}, X'_{11}, X'_{12}, X_{13}$, each matroid is a single-element coextension of 157 its immediate predecessor. Therefore, X_{10} is a minor of all matroids in \mathcal{L} , and 158 each is a minor of Y_{16} . From these matrices, it is also routine to check that 159 the only matroid of \mathcal{L} having a triangle is F_7 (this can also be easily verified 160 by using the Sage matroid package). 161

$$X_{10}: \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix} X_{11}: \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix} X'_{11}: \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix} Y_{11}: \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix} Y_{11}: \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 \end{pmatrix}$$

$$X_{12}: \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix} X'_{12}: \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix} Y_{12}: \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

$$X_{13}: \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ \end{pmatrix} Y_{13}: \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 \\ \end{pmatrix} X_{14}: \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ \end{pmatrix} Y_{14}: \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1$$

Proof of Theorem 2.1: If M is one of the matroids listed in (i) to (iii), then 162 M is internally 4-connected. All matroids in (i) or (iii) are regular, thus are 163 P_9 -free. Using the Sage matroid package, it is easy to verify that Y_{16} is P_9 -free, 164 hence all matroids in (ii) are also P_9 -free. Let M be an internally 4-connected 165 binary matroid with no P_9 -minor. If M is regular, then by Theorem 2.3, M is 166 either graphic, cographic, or isomorphic to R_{10} , which is regular. Therefore, 167 we need only show that an internally 4-connected matroid M is non-regular 168 and P_9 -free if and only if M is a non-regular minor of Y_{16} . Suppose that M is 169 an internally 4-connected non-regular and P_9 -free matroid. If M has exactly 170 seven elements, then $M \cong F_7$ or $M \cong F_7^*$. Suppose that M has at least eight 171 elements. By Theorem 2.4, M has an N_{10} , X_{10} , X_{10}^* , $T_{12} \setminus e$, or T_{12}/e -minor. 172 Since all but X_{10} has a P_9 -minor among these matroids, M must have an X_{10} -173 minor. We use the Sage matroid package (by writing simple Python scripts) 174 and the matroid software Macek independently to do our computation and 175 have obtained the same result. Excluding P_9 , we extend and coextend X_{10} 176 seven times and found only thirteen 3-connected binary matroids. These ma-177 troids are $X_{11}, X'_{11}, Y_{11}, X_{12}, X'_{12}, Y_{12}, X_{13}, Y_{13}, X_{14}, Y_{14}, X_{15} \cong PG(3,2)^*, Y_{15}, Y_{$ 178

and Y_{16} ; each having at most 16 elements; each being a minor of Y_{16} ; and each being internally 4-connected. As X_{10} is neither a wheel nor a whirl, by the Splitter Theorem (Theorem 2.2), M is one of the matroids in \mathcal{L} , each of which is a non-regular internally 4-connected minor of Y_{16} . Note that all non-regular internally 4-connected minors of Y_{16} are P_9 -free, hence \mathcal{L} consists of all internally 4-connected non-regular minors of Y_{16} .

¹⁸⁵ **3** Characterizing 3-connected binary P_9 -free matroids

In this section, we will prove our main result. We begin with several lemmas. 186 Let G be a graph with a specified triangle $T = \{e_1, e_2, e_3\}$. By a rooted K''_4 -187 minor using T we mean a loopless minor H of G such that $si(H) \cong K_4$; 188 $\{e_1, e_2, e_3\}$ remains a triangle of H; and $H \setminus \{e_i, e_j\}$ is isomorphic to K_4 , for 189 some distinct $i, j \in \{1, 2, 3\}$. By a rooted K'_4 -minor using T we mean a loopless 190 minor H of G such that $si(H) \cong K_4$; $\{e_1, e_2, e_3\}$ remains a triangle of H; and 191 $H \setminus e_i$ is isomorphic to K_4 , for some $i \in \{1, 2, 3\}$. Let T be a specified triangle 192 of a matroid M. We can define a rooted $M(K'_{4})$ -minor using T and a rooted 193 $M(K''_4)$ -minor using T similarly. Moreover, in the following proof, any K'_4 194 is obtained from K_4 by adding a parallel edge to an element in the common 195 triangle T used in the 3-sum specified in the context. 196

¹⁹⁷ Lemma 3.1. ([12]) Let T be a triangle of 3-connected binary matroid M with ¹⁹⁸ at least four elements. Then T is contained in a $M(K_4)$ -minor of M.

Lemma 3.2. ([1]) Let T be a triangle of a binary non-graphic matroid M.
Then the following are true:

(i) If M is non-regular, then T is contained in a F_7 -minor;

(*ii*) If M is regular but not graphic, then T is contained in a $M^*(K_{3,3})$ minor.

Let M_1 and M_2 be matroids with ground sets E_1 and E_2 such that $E_1 \cap E_2 = T$ and $M_1|T = M_2|T = N$. The following result of Brylawski [2] about the generalized parallel connection can be found in [9, Propsition 11.4.14].

Lemma 3.3. The generalized parallel connection $P_N(M_1, M_2)$ has the following properties:

209 (i) $P_N(M_1, M_2)|E_1 = M_1$ and $P_N(M_1, M_2)|E_2 = M_2$.

210 (ii) If
$$e \in E_1 - T$$
, then $P_N(M_1, M_2) \setminus e = P_N(M_1 \setminus e, M_2)$.

- 211 (iii) If $e \in E_1 cl_1(T)$, then $P_N(M_1, M_2)/e = P_N(M_1/e, M_2)$.
- 212 (iv) If $e \in E_2 T$, then $P_N(M_1, M_2) \setminus e = P_N(M_1, M_2 \setminus e)$.

213 (v) If
$$e \in E_2 - cl_2(T)$$
, then $P_N(M_1, M_2)/e = P_N(M_1, M_2/e)$.

214 (vi) If
$$e \in T$$
, then $P_N(M_1, M_2)/e = P_{N/e}(M_1/e, M_2/e)$.

215 (vii)
$$P_N(M_1, M_2)/T = (M_1/T) \oplus (M_2/T)$$

In the rest of this paper, we consider the case when the generalized parallel connection is defined across a triangle T, where T is the common triangle of the binary matroids M_1 and M_2 . Then $P_N(M_1, M_2) = P_N(M_2, M_1)$ (see [9, Propsition 11.4.14]). Moreover, $N = M_1 | T = M_2 | T \cong U_{2,3}$. We will use T to denote both the triangle and the submatroid $M_1 | T$. Thus we use $P_T(M_1, M_2)$ instead of $P_N(M_1, M_2)$ for the rest of the paper.

Lemma 3.4. Let $M = P_T(M_1, P_S(M_2, M_3))$ where M_i is a binary matroid ($1 \le i \le 3$); S is the common triangle of M_2 and M_3 ; T is the common triangle of M_1 and M_2 . Then the following are true:

225 (i) if
$$E(M_1) \cap (E(M_3) \setminus E(M_2)) = \emptyset$$
, then $M = P_S(P_T(M_1, M_2), M_3)$;

226 (*ii*) if
$$E(M_1) \cap E(M_3) = \emptyset$$
, then $M_1 \oplus_3 (M_2 \oplus_3 M_3) = (M_1 \oplus_3 M_2) \oplus_3 M_3$.

Proof. (i) As $E(M_1) \cap (E(M_3) \setminus E(M_2)) = \emptyset$, $T = E(M_1) \cap E(P_S(M_2, M_3))$, 227 and T is the common triangle of M_1 and $P_S(M_2, M_3)$. Moreover, $S = E(M_3) \cap$ 228 $E(P_T(M_1, M_2))$, and S is the common triangle of M_3 and $P_T(M_1, M_2)$. By [9, 229 Proposition 11.4.13], a set F of M is a flat if and only if $F \cap E(M_1)$ is a flat of 230 M_1 and $F \cap E(P_S(M_2, M_3))$ is a flat of $P_S(M_2, M_3)$. The latter is true if and 231 only if $[F \cap (E(M_2) \cup E(M_3))] \cap E(M_i) = F \cap E(M_i)$ is a flat of M_i for i = 2, 3. 232 Therefore, F is a flat of M if and only if $F \cap E(M_i)$ is a flat of M_i for $1 \le i \le 3$. 233 The same holds for $P_S(P_T(M_1, M_2), M_3)$. Thus $M = P_S(P_T(M_1, M_2), M_3)$. 234 (ii) As $E(M_1) \cap E(M_3) = \emptyset$, we deduce that $S \cap T = \emptyset$, and the conclusion of (i) holds. Therefore,

$$P_T(M_1, P_S(M_2, M_3)) \setminus (S \cup T) = P_S(P_T(M_1, M_2), M_3) \setminus (S \cup T).$$

By Lemma 3.3, we conclude that

$$P_T(M_1, P_S(M_2, M_3) \backslash S) \backslash T = P_S(P_T(M_1, M_2) \backslash T, M_3) \backslash S.$$

235 That is, $M_1 \oplus_3 (M_2 \oplus_3 M_3) = (M_1 \oplus_3 M_2) \oplus_3 M_3$.

Lemma 3.5. Let $M = P_T(M_1, M_2)$ where M_i is a binary matroid $(1 \le i \le 2)$ and T is the common triangle of M_1 and M_2 . Then C^* is a cocircuit of M if and only if one of the following is true:

(i) C^* is a cocircuit of M_1 or M_2 avoiding T;

(ii) $C^* = C_1^* \cup C_2^*$ where C_i^* is a cocircuit of M_i such that $C_1^* \cap T = C_2^* \cap T$,

²⁴¹ which has exactly two elements.

Proof. By [9, Proposition 11.4.13], a set F of M is a flat if and only if $F \cap E(M_i)$ is a flat of M_i for $1 \leq i \leq 2$. Moreover, for any flat F of M, $r(F) = r(F \cap E(M_1)) + r(F \cap E(M_2)) - r(F \cap T)$ (see, for example, [9, (11.23)]). Let C^* be a cocircuit of M and $H = E(M) - C^*$. As M is binary, $|C^* \cap T| = 0, 2$, and thus $|H \cap T| = 3, 1$. First assume that $|C^* \cap T| = 0$. As $r(H) = r(H \cap E(M_1)) + r(H \cap E(M_2)) - r(H \cap T)$, then $r(M) - 1 = r(M_1) + r(M_2) - 3 = r(H) = r(H \cap E(M_1)) + r(H \cap E(M_2)) - 2$. Thus,

$$r(M_1) + r(M_2) - 1 = r(H \cap E(M_1)) + r(H \cap E(M_2)).$$

Therefore, either $r(H \cap E(M_1)) = r(M_1) - 1$ and $r(H \cap E(M_2)) = r(M_2)$, or $r(H \cap E(M_2)) = r(M_2) - 1$ and $r(H \cap E(M_1)) = r(M_1)$. In the former case, as $H \cap E(M_1)$ and $H \cap E(M_2)$ are flats of M_1 and M_2 respectively, we deduce that $H \cap E(M_2) = E(M_2)$; $H \cap E(M_1)$ is a hyperplane of M_1 and thus $C^* \subseteq E(M_1)$ is a cocircuit of M_1 avoiding T. The latter case is similar.

If $|C^* \cap T| = 2$, then $|H \cap T| = 1$. As $r(H) = r(H \cap E(M_1)) + r(H \cap E(M_2)) - r(H \cap T)$, we deduce that $r(M) - 1 = r(M_1) + r(M_2) - 3 = r(H) = r(H \cap E(M_1)) + r(H \cap E(M_2)) - 1$. We conclude that

$$r(M_1) + r(M_2) - 2 = r(H \cap E(M_1)) + r(H \cap E(M_2)).$$

Now, for $1 \leq i \leq 2$, $H \cap E(M_i)$ is a proper flat of M_i , so that $r(H \cap E(M_i)) \leq r(M_i) - 1$. Therefore, $r(H \cap E(M_1)) = r(M_1) - 1$ and $r(H \cap E(M_2)) = r(M_2) - 1$. We conclude that $C_i^* = E(M_i) - H$ is a cocircuit of M_i and $C^* = C_1^* \cup C_2^*$ such that $C_1^* \cap T = C_2^* \cap T$, which has exactly two elements. Note that the converse of the above arguments is also true, thus the proof of the lemma is complete.

²⁵³ The following corollary might be of independent interest.

Corollary 3.6. Let M_1 and M_2 be a binary matroids and $M = M_1 \oplus_3 M_2$ such that M_1 and M_2 have the common triangle T. Then the following are true:

(i) any cocircuit C^* of M is either a cocircuit of M_1 or M_2 avoiding T, or $C^* = C_1^* \Delta C_2^*$ where C_i^* is a cocircuit of M_i (i = 1, 2) such that $C_1^* \cap T = C_2^* \cap T$, which has exactly two elements.

(ii) if C^* is either a cocircuit of M_1 or M_2 avoiding T, then C^* is also a cocircuit of M. Moreover, suppose that C_i^* is a cocircuit of M_i such that $C_1^* \cap T = C_2^* \cap T$, which has exactly two elements. Then either $C_1^* \Delta C_2^*$ is a cocircuit of M, or $C_1^* \Delta C_2^*$ is a disjoint union of two cocircuits R^* and Q^* of M, where R^* and Q^* meet both M_1 and M_2 . Proof. As $M = M_1 \oplus_3 M_2 = P_T(M_1, M_2) \backslash T$, the cocircuits of M are the minimal non-empty members of the set $\mathcal{F} = \{D - T: D \text{ is a cocircuit of} P_T(M_1, M_2)\}$. If C^* is a cocircuit of M, then $C^* = D - T$ for some cocircuit D of $P_T(M_1, M_2)$. By the last lemma, either (a) D is a cocircuit of M_1 or M_2 avoiding T, or (b) $D = C_1^* \cup C_2^*$ where C_i^* is a cocircuit of M_i (i = 1, 2) such that $C_1^* \cap T = C_2^* \cap T$, which has exactly two elements. In (a), $C^* = D$, and in (b), $C^* = C_1^* \Delta C_2^*$. Hence either (i) or (ii) holds in the lemma.

Conversely, if C^* is either a cocircuit of M_1 or M_2 avoiding T, then clearly 272 C^* is also a cocircuit of M, as $C^* = C^* - T$ is clearly a non-empty minimal 273 member of the set \mathcal{F} . Now suppose that C_i^* (i = 1, 2) is a cocircuit of M_i such 274 that $C_1^* \cap T = C_2^* \cap T$, which has exactly two elements. If $C_1^* \Delta C_2^*$ is not a 275 cocircuit of M, then it contains a cocircuit R^* of M which is a proper subset 276 of $C_1^* \Delta C_2^*$. Clearly, R^* must meet both C_1^* and C_2^* . By (i), $R^* = R_1^* \Delta R_2^*$, 277 where R_i^* is a cocircuit of M_i (i = 1, 2) such that $R_1^* \cap T = R_2^* \cap T$, which 278 has exactly two elements. Suppose that $C_1^* \cap T = C_2^* \cap T = \{x, y\}$, then 279 $R_1^* \cap T = R_2^* \cap T = \{x, z\}$ or $\{y, z\}$, say the former. Moreover, $R_i^* \setminus T$ is a 280 proper subset of $C_i^* \setminus T$ for i = 1, 2 as T does not contain any cocircuit of 281 either M_1 or M_2 . As both M_1 and M_2 are binary, $Q_i^* = C_i^* \Delta R_i^*$ (i = 1, 2)282 contains, and indeed, is a cocircuit of M_i such that $Q_1^* \cap T = Q_2^* \cap T = \{y, z\}$. 283 Now it is straightforward to see that $Q_1^* \Delta Q_2^*$ is a minimal non-empty member 284 of \mathcal{F} and thus is a cocircuit of M. As $C^* = R^* \cup Q^*$, (ii) holds. 285

The 3-sum of two cographic matroids may not be cographic. However, the following is true.

Lemma 3.7. Suppose that $M_1 = M^*(G_1)$ and $M_2 = M^*(G_2)$ are both cographic matroids with u and v being vertices of degree three in G_1 and G_2 , respectively. Label both uu_i and vv_i as e_i $(1 \le i \le 3)$ so that $T = E(M_1) \cap$ $E(M_2) = \{e_1, e_2, e_3\}$ is the common triangle of M_1 and M_2 . Then $P_T(M_1, M_2) =$ $M^*(G)$, where G is obtained by adding a matching $\{u_1v_1, u_2v_2, u_3v_3\}$ between $G_1 - u$ and $G_2 - v$. In particular, $M^*(G_1) \oplus_3 M^*(G_2) = M^*(G/e, f, g)$ is also cographic.

Proof. We need only show that $P_T(M_1, M_2)$ and $M^*(G)$ have the same set of cocircuits. By Lemma 3.5, C^* is a cocircuit of $M = P_T(M_1, M_2)$ if and only if one of the following is true:

(i) C^* is a cocircuit of M_1 or M_2 avoiding T. In other words, C^* is either a circuit of G_1 or a circuit of G_2 which does not meet T (i.e., C^* is a circuit of either $G_1 - u$ or a circuit of $G_2 - v$);

(ii) $C^* = C_1^* \cup C_2^*$ where C_i^* is a cocircuit of M_i such that $C_1^* \cap T = C_2^* \cap T$, which has exactly two elements. In other words, $C^* = C_1^* \cup C_2^*$ where C_i^* (i = 1, 2) is a circuit of G_i containing u and v respectively, such that

³⁰⁴ $C_1^* \cap T = C_2^* \cap T$, which contains exactly two edges. Now it is easily seen ³⁰⁵ that the set of cocircuits of M is exactly equal to the set of circuits of M(G)³⁰⁶ (or the set of cocircuits of $M^*(G)$). In particular, $M^*(G_1) \oplus_3 M^*(G_2) =$ ³⁰⁷ $P_T(M^*(G_1), M^*(G_2)) \setminus T = M^*(G) \setminus T = M^*(G/e, f, g)$ is cographic. This ³⁰⁸ completes the proof of the lemma. \Box

The following consequence of the last lemma will be used frequently in the paper.

Corollary 3.8. Suppose that $M^*(K_{3,m}), M^*(K'_{3,m}), M^*(K_{3,n}) \in \mathcal{K} \ (m, n \ge 2)$. Then the following are true:

313 (i) $M^*(K_{3,m}) \oplus_3 M^*(K_{3,n})) \cong M^*(K_{3,m+n-2});$

314 (*ii*) $M^*(K'_{3,m}) \oplus_3 M^*(K_{3,n}) \cong M^*(K'_{3,m+n-2});$

(*iii*) $P(M^*(K_{3,m}), M(K_4))$ is cographic and is isomorphic to $M^*(G)$ where G is obtained by putting a 3-edge matching between the 3-partite set of $K_{3,m-1}$ and the three vertices of K_3 .

318 (iv) $M^*(K_{3,m}) \oplus_3 M(K'_4) \cong M^*(K'_{3,m})$ where K'_4 is obtained from K_4 319 by adding a parallel edge to an element in the common triangle T used in the 320 3-sum.

(v) if $M_1 \cong M^*(K'_{3,m})$, and $M_2 \cong M(K'_4)$, then depending on which element in T is in a parallel pair in $M(K'_4)$ and which extra edge was added to $K'_{3,m}$ from $K_{3,m}$, the matroid $M_1 \oplus_3 M_2$ is either isomorphic to $M^*(K''_{3,m})$ or $M^*(G)$, where G is obtained from $K'_{3,m}$ by adding an edge parallel to the extra edge.

(vi) if $M_1 \in \mathcal{K}$ and $M_2 \cong M(K'_4)$, then either $M_1 \oplus_3 M_2 \in \mathcal{K}$ or $M_1 \oplus_3 M_2 \cong M^*(G)$, where G has a parallel pair which does not meet any triad of G.

(vii) if $M_1 \in \mathcal{K}$ and $M_2 \in \mathcal{K}$, then either $M_1 \oplus_3 M_2 \in \mathcal{K}$ or $M_1 \oplus_3 M_2 \cong$ $M^*(G)$, where G has at least one parallel pair which does not meet any triad of G.

Proof. (i)-(v) are direct consequences of Lemma 3.7. Suppose that $M_1 \in \mathcal{K}$ 332 and is isomorphic to $M^*(K_{3,m})$, $M^*(K'_{3,m})$, $M^*(K''_{3,m})$, or $M^*(K''_{3,m})$. Then either $M_1 \oplus_3 M_2 \cong M^*(K'_{3,m})$, $M^*(K''_{3,m})$ or $M^*(K''_{3,m})$ and thus is in \mathcal{K} (in 333 334 this case, M_1 is not isomorphic to $M^*(K_{3,m}^{'''})$), or isomorphic to $M^*(G)$, where 335 G is obtained from $K'_{3,m}, K''_{3,m}$, or $K''_{3,m}$ by adding an edge in parallel to an 336 existing edge added between two vertices of the 3-partite set of $K_{3,m}$. Clearly, 337 this parallel pair does not meet any triad of G. We omit the straightforward 338 and similar proof of (vii). 339

Corollary 3.9. Let M be a binary matroid and $M = M_1 \oplus_3 M_2$ where M_1 is a starfish. Suppose that M_2 is a starfish, or $M_2 \cong M(K'_4)$, or $M_2 \cong M^*(G) \in \mathcal{K}$: $G \cong K_{3,n}, K'_{3,n}, K''_{3,n}$, or $K'''_{3,n}$ $(n \ge 2)$. Then either M is also a starfish, or M has a 2-element cocircuit which does not meet any triangle of M.

Proof. Suppose that the starfish M_1 uses s Fano matroids and M_2 uses t 344 Fano matroids where $s \geq 1$ and $t \geq 0$. Clearly, in the starfish M_1 , any 345 triangle is a triad in the corresponding 3-connected graph $G_1 \cong K_{3,m}, K'_{3,m}$ 346 $K_{3,m}^{\prime\prime}$, or $K_{3,m}^{\prime\prime\prime}$ $(m \geq 2)$ used to construct M_1 . We assume that first s = 1347 and t = 0. Then by the definition of the starfish, $M_1 \cong F_7 \oplus_3 N_1$, where 348 $N_1 \cong M^*(G_1)$, and either $M_2 \cong M(K'_4)$, or $M_2 \cong M^*(G)$; G is 3-connected 349 where $G \cong K_{3,n}, K'_{3,n}, K''_{3,n}$, or $K'''_{3,n}$ $(n \ge 2)$. By Lemma 3.4, we have that 350 $M = (F_7 \oplus_3 N_1) \oplus_3 M_2 \cong F_7 \oplus_3 (N_1 \oplus_3 M_2)$ (the condition of the lemma is 351 clearly satisfied). By Corollary 3.8, we deduce that either $N_1 \oplus_3 M_2 \in \mathcal{K}$, or 352 it has a 2-element cocircuit avoiding any triangle of $N_1 \oplus_3 M_2$. In the former 353 case, we conclude that M is a starfish. In the latter case, by Corollary 3.6, M354 has a 2-element cocircuit avoiding any triangle of M. The general case follows 355 from an easy induction argument using Lemmas 3.4 and Corollaries 3.6 and 356 3.8. 357

Lemma 3.10. Suppose that $M \cong M^*(G)$ for a 3-connected graph $G \cong K_{3,n}$, $K'_{3,n}, K''_{3,n}$, or $K'''_{3,n}$ $(n \ge 2)$, or M is a starfish. Then for any triangle T of M, there are at least two elements e_1, e_2 of T, such that for each e_i (i = 1, 2), there is a rooted K'_4 -minor using both T and e_i such that e_i is in a parallel pair.

Proof. Suppose that $M \cong M^*(G)$ for a 3-connected graph $G \cong K_{3,n}$, $K'_{3,n}$, $K''_{3,n}$, or $K'''_{3,n}$ ($n \ge 2$). When $n \ge 3$, the proof is straightforward. When n = 2, then $G \cong W_4$ or $K_5 \setminus e$, and the result is also true.

Now suppose that M is a starfish constructed by starting from $N \cong M^*(G)$ for a 3-connected graph $G \cong K_{3,n}$, $K'_{3,n}$, $K''_{3,n}$, or $K'''_{3,n}$ $(n \ge 2)$ with $t \ (1 \le t \le n)$ copies of F_7 by performing 3-sum operations. Choose an element f_i of E(M) in each copy of $F_7 \ (1 \le t \le t)$. By the definition of a starfish, and by using Lemma 3.3(iii),(v), $M/f_1, f_2, \ldots f_t$ is isomorphic to N containing T. Now the result follows from the above paragraph.

Lemma 3.11. Let e be an edge of a simple 3-connected graph G on more than four vertices. Then either $G \setminus e$ is obtained from a simple 3-connected graph by subdividing edges or G/e is obtained from a simple 3-connected graph by adding parallel edges. Let G = (V, E) be a graph and let x, y be distinct elements of $V \cup E$. By adding an edge between x, y we obtain a graph G' defined as follows. If xand y are both in V, we assume $xy \notin E$ and we define $G' = (V, E \cup \{xy\})$; if x is in V and $y = y_1y_2$ is in E, we assume $x \notin \{y_1, y_2\}$ and we define $G' = (V \cup \{z\}, (E \setminus \{y\}) \cup \{xz, y_1z, y_2z\})$; if $x = x_1x_2$ and $y = y_1y_2$ are both in E, we define $G' = (V \cup \{u, v\}, (E \setminus \{x, y\}) \cup \{ux_1, ux_2, uv, vy_1, vy_2\})$

Lemma 3.12. Let G be a simple 3-connected graph with a specified triangle 384 T. Then G has a rooted K_4'' -minor unless G is K_4 , W_4 , or Prism.

Proof. Suppose the Lemma is false. We choose a counterexample G = (V, E) with |E| as small as possible. Let x, y, z be the vertices of T. We first prove that $G - \{x, y, z\}$ has at least one edge.

Suppose $G - \{x, y, z\}$ is edgeless. Since G is 3-connected, every vertex in $V - \{x, y, z\}$ must be adjacent to all three of x, y, z, which means that $G = K_{3,n}^{''}$ for a positive integer n. Since G is a counterexample, G cannot be K_4 and thus G contains $K_{3,2}^{''}$, which contains a rooted $K_4^{''}$ -minor. This contradicts the choice of G and thus $G - \{x, y, z\}$ has at least one edge.

Let e = uv be an edge of $G - \{x, y, z\}$. By Lemma 3.12, there exists a simple 3-connected graph H such that at least one of the following holds:

- ³⁹⁵ Case 1. $G \setminus e$ is obtained from H by subdividing edges;
- ³⁹⁶ Case 2. G/e is obtained from H by adding parallel edges.

Since H is a proper minor of G and H still contains T, by the minimality of G, H has to be K_4 , W_4 , or Prism, because otherwise H (and G as well) would have a rooted K''_4 -minor. Now we need to deduce a contradiction in Case 1 and Case 2 for each $H \in \{K_4, W_4, Prism\}$.

Let P^+ be obtained from Prism by adding an edge between two nonadjacent vertices. Before we start checking the cases we make a simple observation: with respect to any of its triangles, P^+ has a rooted K_4'' -minor. As a result, Gcannot contain a rooted P^+ -minor: a P^+ -minor in which T remains a triangle.

We first consider Case 1. Note that G is obtained from H by adding an edge between some $\alpha, \beta \in V \cup E$. By the choice of e, we must have $\alpha, \beta \notin V(T) \cup E(T)$. If $H = K_4$ then G = Prism, which contradicts the choice of G. If $G = W_4$ or Prism, then it is straightforward to verify that Gcontains a rooted P^+ -minor (by contracting at most two edges), which is a contradiction by the above observation.

⁴¹¹ Next, we consider Case 2. Let w be the new vertex created by contracting ⁴¹² e. Then G/e is obtained from H by adding parallel edges incident with w. ⁴¹³ Observe that w has degree three in H, for each choice of H. Consequently, ⁴¹⁴ as G is simple, G has four, three, or two more edges than H. Suppose G has

four or three more edges than H. Then H is G - u or G - v. Without loss of 415 generality, let H = G - u. Choose three paths P_x, P_y, P_z in H from v to x, y, z, 416 respectively, such that they are disjoint except for v. Now it is not difficult 417 to see that a rooted K''_4 -minor of G can be produced from the union of the 418 triangle T, the three paths P_x, P_y, P_z , and the star formed by edges incident 419 with u. This contradiction implies that G has exactly two more edges than 420 H. Equivalently, G is obtained from H by adding an edge between a neighbor 421 s of w and an edge wt with $t \neq s$. 422

If $H = K_4$ then $G = W_4$, which contradicts the choice of G. If $H = W_4$ then $G = W_5$ or P^+ . In both cases, G contain a rooted K''_4 -minor, no matter where the special triangle is. Finally, if H = Prism then G contains a rooted P^+ -minor, which is impossible by our early observation. In conclusion, Case 2 does not occur, which completes our proof.

Lemma 3.13. Let $M = M^*(G)$ be a 3-connected cographic matroid with a specified triangle T. Then M has a rooted K_4'' -minor using T unless $G \cong K_{3,n}$, $K_{3,n}', K_{3,n}''$, or $K_{3,n}'''$ for some $n \ge 1$. In particular, if $M^*(G)$ is not graphic, then $n \ge 3$.

Proof. Suppose that M does not contain rooted K_4'' -minor using T. Note that 432 $M^*(G)$ does not have a rooted K''_4 -minor using T if and only if G does not have 433 a minor obtained from K_4 (where T is cocircuit) by subdividing two edges of 434 T. Now we show that T is a vertex triad (which corresponds to a star of degree T). 435 three). Otherwise, let $G - E(T) = X \cup Y$, where T is a 3-element edge-cut but 436 not a vertex triad. If $G \cong Prism$, then clearly $M^*(G)$ has a rooted K''_4 -minor; 437 a contradiction. If G is not isomorphic to a Prism, we can choose a cycle in 438 one side and a vertex in another side which is not incident with any edge of T. 439 Then we can get a rooted K''_4 -minor; a contradiction again. Hence the edges of 440 T are all incident to a common vertex v of degree three with neighbors v_1, v_2 , 441 and v_3 . A rooted K''_4 -minor using T exists if and only if G has a cycle missing 442 v and at least two of v_1, v_2 , and v_3 . Hence every cycle of G - v contains at 443 least two of v_1, v_2 , and v_3 , and thus $G - v - v_i - v_j$ is a tree for $1 \le i \ne j \le 3$. 444 Moreover, $G - v - v_1 - v_2 - v_3$ has to be an independent set. Otherwise, it is a 445 forest. Take two pedants in a tree, each of which has at least two neighbors in 446 v_1, v_2 , or v_3 . Thus G - v contains a cycle missing at least two vertices of v_1, v_2 , 447 and v_3 . This contradiction shows that $G - v - v_1 - v_2 - v_3$ is an independent 448 set and thus G is $K_{3,n}, K'_{3,n}, K''_{3,n}$, or $K'''_{3,n}$ for some $n \ge 1$. In particular, if 449 $M^*(G)$ is not graphic, then $n \ge 3$. 450

Lemma 3.14. Let M be a 3-connected binary P_9 -free matroid and $M = M_1 \oplus_3$ M₂ where M_1 is non-regular, and M_1 and M_2 have the common triangle T. Then (i) if M_2 is graphic, then either $M_2 \cong M(G)$ where G is W_4 or the Prism, or $M_2 \cong M(K'_4)$ where $M(K'_4)$ is obtained from $M(K_4)$ (which contains T) by adding an element parallel to an element of T;

(*ii*) if M_2 is cographic but not graphic, then $M_2 \cong M^*(G)$, where $G \cong K_{3,n}$, $K'_{3,n}$, $K''_{3,n}$, or $K'''_{3,n}$ for some $n \ge 3$.

Proof. Suppose that $M = P(M_1, M_2) \setminus T$, where T is the common triangle of M_1 and M_2 . As M is 3-connected, by [11, 4.3], both $si(M_1)$ and $si(M_2)$ are 3-connected, and only elements of T can have parallel elements in M_1 or M_2 . Then by Lemma 3.2, T is contained in a F_7 -minor in $si(M_1)$. Now M_2 does not contain a rooted K''_4 -minor using T, where K''_4 is obtained from this K_4 by adding a parallel element to any two of the three elements of T (otherwise, the 3-sum of M_1 and M_2 contains a P_9 -minor).

If M_2 is graphic, then by Lemma 3.12, $si(M_2) \cong M(G)$ where G is either W_3, W_4 or the Prism. When G is either W_4 or the Prism, then it is easily seen that M_2 has to be simple, and thus $M_2 \cong W_4$ or Prism. If $G \cong W_3$, then as M_4 is P_9 -free and M_2 has at least seven elements (from the definition of 3-sum), it is easily seen that $M_2 \cong M(K'_4)$.

If M_2 is cographic but not graphic, then by Lemma 3.13, $si(M_2) \cong M^*(G)$, where G is $K_{3,n}$, $K'_{3,n}$, $K''_{3,n}$, or $K'''_{3,n}$ for some $n \ge 3$. If M_2 is not simple, then it is straightforward to find a rooted $M(K''_4)$ -minor using T in M_2 , thus a P_9 -minor in M; a contradiction. This completes the proof of the lemma. \Box

Lemma 3.15. Let M be a 3-connected regular matroid with at least six elements and T be a triangle of M. Then M has no rooted $M(K''_4)$ -minor using Tif and only if M is isomorphic to a 3-connected matroid $M^*(K_{3,n})$, $M^*(K''_{3,n})$, $M^*(K''_{3,n})$, $M^*(K'''_{3,n})$ for some $n \ge 1$.

⁴⁷⁹ Proof. If M is isomorphic to a 3-connected matroid $M^*(K_{3,n})$, $M^*(K'_{3,n})$, ⁴⁸⁰ $M^*(K''_{3,n})$, $M^*(K'''_{3,n})$ $(n \ge 1)$, then it is straightforward to check for any ⁴⁸¹ triangle T, M has no rooted $M(K''_4)$ -minor using T.

Conversely, suppose that M is a 3-connected regular matroid with at least six elements and T is a triangle of M, such that M has no rooted $M(K''_4)$ minor using T. If M is internally 4-connected, then by Theorem 2.3, M is either graphic, cographic, or is isomorphic to R_{10} . The result follows from Lemmas 3.12 and 3.13, and the fact that R_{10} is triangle-free. So we may assume that M is not internally 4-connected and has a 3-separation (X, Y)where $|X|, |Y| \ge 4$. We may assume that $|X \cap T| \ge 2$.

Suppose that $Y \cap T$ has exactly one element e. Then as T is a triangle, ($X \cup e, Y \setminus e$) is also a 3-separation. If |Y| = 4, then Y - e is a triangle or a triad. Moreover, $r(Y) + r^*(Y) - |Y| = 2$. As M is 3-connected and binary,

 $r(Y), r^*(Y) \geq 3$, and thus $r(Y) = r^*(Y) = 3$. If Y - e is a triangle, then 492 it is not a triad, and thus Y contains a cocircuit which contains e. This is 493 a contradiction as this cocircuit meets T with exactly one element. Hence 494 Y - e is a triad, and from r(Y) = 3, there is an element $f \in T, f \neq e$ 495 such that Y - f is a triangle. In other words, Y forms a 4-element fan. We 496 conclude that $M \cong M_1 \oplus_3 M(K'_4)$ by [11, 2.9] where S is the common triangle 497 of M_1 and $M(K'_4)$, and $M(K'_4)$ is obtained from $M(K_4)$ (containing T) by 498 adding an element e_1 in parallel to an element e of S. By switching the 499 label of e_1 to e in M_1 , we obtain a matroid $M'_1 (\cong M_1)$ which is isomorphic 500 to a minor of M having triangle T. By [11, 4.3], $si(M_1)$ is 3-connected. 501 Hence by induction, $si(M_1)$ is isomorphic to a 3-connected matroid $M^*(K_{3,m})$, 502 $M^*(K'_{3,m}), M^*(K''_{3,m}), M^*(K''_{3,m})$ for some $m \ge 1$. As M has no rooted 503 $M(K''_4)$ -minor using T, we have that $r_{M_1}(S \cup T) > 2$. Moreover, the element 504 e_1 is in two triangles of $si(M_1)$, so $m \leq 3$. Now using Lemma 3.7, it is 505 straightforward to verify that $M \cong W_4 \cong M^*(K''_{3,2})$ and thus the Lemma 506 holds. Hence we may assume that $|Y| \ge 5$ and thus $|Y \setminus e| \ge 4$. 507

Therefore we may assume that M has a separation (X, Y) such that $T \subseteq$ 508 X, and both X and Y have at least four elements. Hence by [11, (2.9)], 509 $M = M_1 \oplus_3 M_2$ where M_1 and M_2 are isomorphic to minors of M having the 510 common triangle S, and T is a triangle of M_1 . Moreover, $|E(M_i)| < |E(M)|$ 511 for i = 1, 2, and both $si(M_1)$ and $si(M_2)$ are 3-connected [11, (4.3)]. First 512 assume that each element of S is parallel to an element of T in M_1 . Then by 513 Lemma 3.1, $si(M_1)$ contains a rooted $M(K_4)$ -minor using T. As each element 514 of T in M_1 is in a parallel pair, we conclude that M has a rooted $M(K''_4)$ -minor 515 using T; a contradiction. 516

So we may assume that at least one element of T is not parallel to an 517 element of S (as M is binary, there are at least two such elements). As 518 $si(M_1)$ is a 3-connected minor of M, it has no rooted $M(K''_4)$ -minor using T. 519 By induction, $si(M_1) \cong M^*(K_{3,s}), M^*(K'_{3,s}), M^*(K''_{3,s}), M^*(K''_{3,s})$ for some 520 $s \geq 2$, or $si(M_1) \cong M(K_4)$. Remove all elements of M_1 not in the set $S \cup T$ 521 in $P_S(M_1, M_2)$. Then every element of $T \setminus S$ is parallel to an element of $S \setminus T$. 522 Contracting all elements of $S \setminus T$, we obtained a minor of M isomorphic to M_2 523 and T is a triangle of this minor. By induction again, $si(M_2) \cong M^*(K_{3,t})$, 524 $M^*(K'_{3,t}), M^*(K''_{3,t}), M^*(K'''_{3,t})$ for some $t \ge 2$, or $si(M_2) \cong M(K_4)$. Suppose 525 that $si(M_i) \cong M(K_4)$ for some i = 1, 2. Then as M_i have at least seven 526 elements and M has no rooted $M(K''_4)$ -minor using T, we deduce that $M_i \cong$ 527 $M(K'_4)$. As M has no $M(K''_4)$ -minor containing T, and M is 3-connected, 528 using Corollary 3.8, it is routine to verify that $M \cong M^*(K_{3,n}), M^*(K'_{3,n}),$ 529 $M^*(K''_{3,n})$, or $M^*(K'''_{3,n})$ for some $n \ge 2$. 530

Corollary 3.16. Let M be a 3-connected binary non-regular P_9 -free matroid. Suppose that $M = M_1 \oplus_3 M_2$ such that M_1 and M_2 have the common triangle T. If M_2 is regular, then M_2 is isomorphic to a 3-connected matroid $M^*(K_{3,n})$, $M^*(K'_{3,n})$, $M^*(K''_{3,n})$, or $M^*(K'''_{3,n})$ $(n \ge 2)$, or $M_2 \cong M(K'_4)$ where $M(K'_4)$ is obtained from $M(K_4)$ (containing T) by adding an element in parallel to an element of T.

Proof. As M is 3-connected, by [11, 4.3], both $si(M_1)$ and $si(M_2)$ are 3-537 connected, and only elements of T can have parallel elements in M_1 or M_2 . 538 As M is non-regular and M_2 is regular, $si(M_1)$ is non-regular and thus (by 539 Lemma 3.2) has a F_7 -minor containing the common triangle T of M_1 and 540 M_2 . As M is P_9 -free, M_2 has no rooted $M(K''_4)$ -minor using T. By Lemma 541 3.15, $si(M_2)$ is isomorphic to a 3-connected matroid $M^*(K_{3,n}), M^*(K'_{3,n}),$ 542 $M^*(K''_{3,n}), M^*(K'''_{3,n}) \ (n \ge 2), \text{ or } M(K_4).$ Now using Lemma 3.10, it is 543 straightforward to check that either $M_2 \cong M(K'_4)$, or M_2 is simple, and 544 $M_2 \cong M^*(K_{3,n}), M^*(K'_{3,n}), M^*(K''_{3,n}), \text{ or } M^*(K''_{3,n}) \ (n \ge 2).$ 545

Now we are ready to prove our main theorem.

Proof of Theorem 1.2. Suppose that a starfish M is constructed from a 3-547 connected cographic matroid N by consecutively applying the 3-sum opera-548 tions with t copies of F_7 , where $N \cong M^*(G)$; $G \cong K_{3,n}, K'_{3,n}, K''_{3,n}$, or $K'''_{3,n}$ 549 for some $n \geq 2$. First we show that M is 3-connected. We use induction on t. 550 When t = 0, N is 3-connected. Suppose that M is 3-connected for $t < k \leq n$. 551 Now suppose that t = k. Then $M = M_1 \oplus_3 F$, where $F \cong F_7$ and M_1 and F552 share the common triangle T. Take an element f of $E(F) \cap E(M)$. Then by 553 Lemma 3.3, $M/f = P(M_1, F/e) \setminus T \cong M_1$, which is a starfish with t = k - 1, 554 and thus is 3-connected by induction. If M is not 3-connected, then f is either 555 in a loop of M, or is in a cocircut of size one or two. Clearly, M does not have 556 any loop, thus f is in a cocircuit C^* of M with size one or two. As $P(M_1, F)$ 557 is 3-connected, it does not contain any cocircuit of size less than three. Hence 558 $C^* \cup T$ contains a cocircuit D^* of $P(M_1, F)$. As $P(M_1, F)$ is binary, $D^* \cap T$ has 559 exactly two elements, and thus D^* has at most four elements. As T contains 560 no cocircuit of either M_1 or F, by Lemma 3.5, $F \cong F_7$ has a cocircuit of size 561 at most three meeting two elements of T. This contradiction shows that M is 562 3-connected. 563

Next we show that if M is one of the matroid listed in (i)-(iv), then M 564 is P_9 -free. By Theorem 2.1 and the fact that all spikes and regular matroids 565 are P_9 -free, we need only show that any starfish is P_9 -free. We use induction 566 on the number of elements of the starfish M. By the definition, the unique 567 smallest starfish has nine elements, and is isomorphic to P_9^* . Clearly, P_9^* is 568 P_9 -free. Suppose that any starfish with less than $n \geq 10$ elements is P_9 -free. 569 Now suppose that we have a starfish M with n elements. Suppose, on the 570 contrary, that M has a P_9 -minor. Then by the Splitter Theorem (Theorem 571 2.2), there is an element e in M such that either $M \setminus e$ or M/e is 3-connected 572

having a P_9 -minor. Note that the elements of a starfish consists of two types: 573 those are subsets of E(N) (denote this set by K), or those are in part of copies 574 of F_7 (denote this set by F). Then $E(M) = K \cup F$. First we assume that 575 $e \in F$. Then $M = M_1 \oplus_3 M_2$, where M_1 is either one of $M^*(K_{3,n}), M^*(K'_{3,n}), M^*(K'_{3,n})$ 576 $M^*(K_{3,n}'')$, or $M^*(K_{3,n}'')$, or a starfish with fewer elements; $M_2 \cong F_7$, and 577 $e \in E(M_2)$. By the construction of the starfish and Lemma 3.3, $M/e \cong M_1$ 578 and is either cographic or a smaller starfish and therefore does not contain 570 a P_9 -minor; a contradiction. Therefore $M \setminus e$ is 3-connected and contains a 580 P_9 -minor. But then by Lemma 3.4, $M \setminus e \cong P(M_1, M(K_4)) \setminus T$. By Corollary 581 3.8, as $M \setminus e$ is 3-connected, we conclude that $M \setminus e$ is a smaller starfish and 582 therefore is P_9 -free. This contradiction shows that $e \in K$. 583

If e is in a triangle of M, then M/e is not 3-connected, and thus $M \setminus e$ 584 is 3-connected and contains a P_9 -minor. Each triangle of M is correspond-585 ing to a triad in G. By Lemmas 3.3 and 3.4 again, we can do the deletion 586 $N \setminus e$ first, then perform the 3-sum operations with copies of F_7 . Note that 587 $N \setminus e \cong M^*(G/e)$ where $G \cong K_{3,n}, K'_{3,n}, K''_{3,n}$, or $K'''_{3,n}$ $(n \ge 2)$. As $M \setminus e$ 588 is 3-connected and thus simple, we deduce that $n \geq 3$, $N \cong M^*(K_{3,n})$ or 589 $M^*(K'_{3,n})$, and $N \setminus e \cong M^*(K''_{3,n-1})$, or $M^*(K''_{3,n-1})$. Therefore, $M \setminus e$ is an-590 other starfish and does not contain any P_9 -minor by induction; a contradiction. 591 Finally assume that $e \in K$ is not in any triangle of M. Then e is not in any 592 triad of G. Hence if n = 2, then $G \cong K_{3,2}^{\prime\prime\prime}$. As G/e has parallel elements, 593 the matroid $N \setminus e$ has serial-pairs, and thus $M \setminus e$ is not 3-connected, we con-594 clude that M/e is 3-connected having a P_9 -minor. Note that $N \cong M^*(K'_{3,n})$, 595 $M^*(K''_{3,n})$, or $M^*(K''_{3,n})$ $(n \ge 2)$, and thus $N/e \cong M^*(K_{3,n}), M^*(K'_{3,n})$, or 596 $M^*(K''_{3n})$, which is still 3-connected. We conclude again, by Lemma 3.3, that 597 M/e is a smaller starfish than M, thus cannot contain any P₉-minor. This 598 contradiction completes the proof of the first part. 599

Now suppose that M is a 3-connected binary matroid with no P_9 -minor. 600 We may assume that M is not regular. If M is internally 4-connected, then 601 the theorem follows from Theorem 2.1. Now suppose that M is neither regular 602 nor internally 4-connected. We show that M is either a spike or a starfish. 603 Suppose that $|E(M)| \leq 9$. As M is not internally 4-connected, M is not F_7 604 or F_7^* . Hence $|E(M)| \ge 8$. Then M is $AG(3,2), S_8, Z_4, Z_4^*$ (all spikes), or P_9^* , 605 which is the 3-sum of F_7 and $W_4 = M^*(K''_{3,2})$, thus is a starfish. We conclude 606 that the result holds for $|E(M)| \leq 9$. Now suppose that $|E(M)| \geq 10$. As 607 M is not internally 4-connected, $M = M_1 \oplus_3 M_2 = P(M_1, M_2) \setminus T$, where M_1 608 and M_2 are isomorphic to minors of M ([11, 4.1]) and $T = \{x, y, z\}$ is the 609 common triangle of M_1 and M_2 . Moreover, $|E(M_i)| < |E(M)|$ for i = 1, 2, 610 and both $si(M_1)$ and $si(M_2)$ are 3-connected [11, (4.3)]. The only possible 611 parallel element(s) of either M_1 or M_2 are those in the common triangle. As M 612 has no P_9 -minor, and M_1 and M_2 are isomorphic to minors of M, we deduce 613

that neither $si(M_1)$ nor $si(M_2)$ has a P_9 -minor. By induction, the theorem holds for both $si(M_1)$ and $si(M_2)$. As M is not regular, at least one of $si(M_1)$ and $si(M_2)$, say $si(M_1)$, is not regular.

617 **Claim**: M_1 (and M_2) is simple unless both $si(M_1)$ and $si(M_2)$ are spikes.

Suppose not and we may assume that x in T has a parallel element x_1 in 618 M_1 . By Lemma 3.2, T is in a F_7 -minor of M_1 plus a parallel element x_1 . By 619 induction, $si(M_2)$ is either regular and 3-connected, or one of the 16 internally 620 4-connected non-regular minors of Y_{16} (thus is F_7 since it has a triangle); or 621 is a spike or a starfish. Moreover, $si(M_1)$ is either one of the 16 internally 622 4-connected non-regular minors of Y_{16} (thus is F_7); or is a spike or a starfish. 623 Suppose that $si(M_2)$ is not a spike. Then either $si(M_2)$ is regular or is a 624 starfish. By Lemmas 3.10 and 3.16, either $M_2 \cong M(K'_4)$ where $M(K'_4)$ is 625 obtained from $M(K_4)$ (which contains T) by adding an element parallel to 626 an element of T, or T is in a rooted $M(K'_4)$ -minor of M_2 using T (obtained 627 from $M(K_4)$ containing T by adding an element parallel to either y or z). 628 In either case, as M is simple, we conclude that M contains a P_9 -minor, a 629 contradiction. Hence $si(M_2)$ is a spike thus contains an F_7 -minor containing 630 T. Now if $si(M_1)$ is not a spike, then $si(M_1)$ is a starfish. Again using Lemma 631 3.10, it is easily checked that M has a P_9 -minor; a contradiction. Therefore 632 M_1 is simple unless both $si(M_1)$ and $si(M_2)$ are spikes. A similar argument 633 shows that M_2 is also simple unless both $si(M_1)$ and $si(M_2)$ are spikes. 634

Case 1: $si(M_2)$ is regular. By Lemma 3.16, M_2 is either graphic or cographic. Moreover,

(i) if M_2 is graphic, then either $M_2 \cong M(G)$ where G is W_4 or the Prism, or $M_2 \cong M(K'_4)$ where $M(K'_4)$ is obtained from $M(K_4)$ (which contains T) by adding an element parallel to an element of T; and

(ii) if M_2 is cographic but not graphic, then $M \cong M^*(G)$, where $G \cong K_{3,n}$, $K'_{3,n}, K''_{3,n}$, or $K''_{3,n}$ for some $n \ge 3$.

By the above claim, both M_1 and M_2 are simple. Moreover, M_1 is 3-642 connected, non-regular, and P_9 -free. By induction, M_1 is either one of the 643 16 internally 4-connected non-regular minors of Y_{16} (therefore is F_7 as M_1 644 has a triangle); or M_1 is a spike or a starfish. That is, either M_1 is a spike 645 or a starfish. If M_1 is a starfish, by Lemma 3.9, $M = M_1 \oplus_3 M_2$ is also a 646 starfish. Thus we may assume that M_1 is a spike which contains a triangle. 647 Then M_1 is either F_7, S_8, Z_s $(s \ge 4)$ or $Z_s \setminus y_s$ for some $s \ge 5$. Suppose that 648 M_1 is F_7 . Then $M = F_7 \oplus_3 M_2$ is either S_8 (not possible as M has at least 649 10 elements) or a starfish by the definition of a starfish. Suppose that M_1 is 650 Z_s $(s \ge 4)$ or $Z_s \setminus y_s$ for some $s \ge 5$ and suppose that M_2 is not isomorphic to 651 $M(K'_4)$. Then M_1 has a Z₄-restriction containing T. Clearly, such restriction 652 contains a F'_7 -minor which is obtained from F_7 (which contains T) by adding 653

an element parallel to the tip of the spike, say x in T. By Lemma 3.10, 654 T is in a $M(K'_4)$ - minor of M_2 which is obtained from K_4 containing T by 655 adding an element parallel to an element $z \neq x$ of T. Thus we can find a 656 P_9 -minor in M, a contradiction. Suppose that M_1 is Z_s $(s \ge 4)$ or $Z_s \setminus y_s$ 657 for some $s \geq 5$ and suppose that $M_2 \cong M(K'_4)$. If the extra element e of 658 $M(K'_4)$ added to $M(K_4)$ is not parallel to x in M_2 , then using the previously 659 mentioned F'_7 -minor of M_1 containing T and the $M(K'_4)$ -minor containing e, 660 we obtain a P_9 -minor of M; a contradiction. Now it is straightforward to see 661 that $M \cong Z_{s+2} \setminus y_{s+2}$ $(s \ge 4)$ which is a spike, or $Z_{s+2} \setminus y_s, y_{s+2}$ $(s \ge 5)$. The 662 latter case does not happen as $\{y_s, y_{s+2}\}$ would be a 2-element cocircuit, but 663 M is 3-connected. Finally we assume that $M_1 \cong S_8 = F_7 \oplus_3 M(K'_4)$ with tip 664 x. Then $M = (F_7 \oplus_3 M(K'_4)) \oplus_3 M_2$. By Lemma 3.4, $M = F_7 \oplus_3 (M(K'_4) \oplus_3 M_2)$ 665 M_2). By Corollary 3.16, M_2 is isomorphic to a 3-connected cographic matroid 666 $M^*(K_{3,n}), M^*(K'_{3,n}), M^*(K''_{3,n}), \text{ or } M^*(K''_{3,n}) \ (n \ge 2), \text{ or } M_2 \cong M(K'_4).$ If 667 $M_2 \cong M(K'_4)$, then |E(M)| = 9; a contradiction. Thus M_2 is not isomorphic 668 to $M(K'_4)$. By Corollary 3.8, $M(K'_4) \oplus_3 M_2 \cong M^*(G)$, where $G \cong K'_{3,n}, K''_{3,n}$, 669 or $K_{3,n}^{\prime\prime\prime}$ for some $n \geq 2$, or $M(K_4) \oplus_3 M_2$ contains a 2-element cocircuit which 670 does not meet any triangle of $M(K'_4) \oplus_3 M_2$. In this case, by Corollary 3.6, 671 this 2-element cocircut would also be a cocircuit of M. As M is 3-connected, 672 we conclude that the latter does not happen, and that M is still a starfish. 673

Case 2: Neither M_1 nor M_2 is regular. By induction and the fact that both M_1 and M_2 have a triangle, that $si(M_1)$ is either a spike containing a triangle or a starfish, and so is $si(M_2)$.

⁶⁷⁷ Case 2.1: Both $si(M_1)$ and $si(M_2)$ are starfishes. By the above claim, ⁶⁷⁸ both M_1 and M_2 must be simple matroids. Now by Lemma 3.9, M is also a ⁶⁷⁹ starfish.

Case 2.2: One of $si(M_1)$ and $si(M_2)$, say the former, is a spike. Suppose 680 that $si(M_2)$ is a starfish. By the claim, both M_1 and M_2 are simple. As M_1 681 contains the triangle T, it is either Z_s $(s \ge 3)$ or $Z_s \setminus y_s$ for some $s \ge 4$. If $M_1 \cong$ 682 $Z_3 \cong F_7$, by the definition of a starfish, M is also a starfish. If $M_1 \cong Z_s$ $(s \ge 4)$ 683 or $Z_s \setminus y_s$ for some $s \ge 5$, then M_1 contains a Z_4 as a restriction which contains 684 T. But Z_4 contains a F'_7 -minor containing T where F'_7 is obtained from F_7 by 685 adding an element in parallel to the tip x of M_1 . By Lemma 3.10, T is in a 686 $M(K'_4)$ -minor of M_2 which is obtained from $M(K_4)$ containing T by adding 687 an element parallel to y or z. We conclude that M contains a P_9 -minor, a 688 contradiction. Now suppose that $M_1 \cong Z_4 \setminus y_4 \cong S_8 = F_7 \oplus_3 M(K'_4)$ with tip x. 689 Then $M = (F_7 \oplus_3 M(K'_4)) \oplus_3 M_2$. By Lemma 3.4, $M = F_7 \oplus_3 (M(K'_4) \oplus_3 M_2)$. 690 By Corollary 3.9, $M(K'_4) \oplus_3 M_2$ is either a starfish, or $M(K'_4) \oplus_3 M_2$ and thus 691 M contains a 2-element cocircuit. As M is 3-connected, we conclude that the 692 latter does not happen, and that M is still a starfish by the definition of a 693 starfish. 694

Hence we may assume that $si(M_2)$ is also a spike. As $si(M_2)$ contains a 695 triangle also, it is either Z_t $(t \ge 3)$ or $Z_t \setminus y'_t$ for some $t \ge 4$. Suppose that 696 $si(M_1)$ and $si(M_2)$ do not share a common tip, say $si(M_1)$ has tip x and 697 $si(M_2)$ has tip z. Then neither matroid is isomorphic to F_7 as any element of 698 T can be considered as a tip then. We first assume either $si(M_1)$ or $si(M_2)$, say 699 $si(M_1)$, has at least nine elements. Then M_1 has a Z_4 -restriction containing 700 T, thus has a F'_7 -minor (with a parallel pair containing x) containing T. The 701 matroid $si(M_2)$ has a S_8 -restriction, thus has a $M(K'_4)$ -minor (with a parallel 702 pair containing z) containing T. By Lemma 3.3, we conclude that M has 703 a P_9 -minor; a contradiction. Hence both $si(M_1)$ and $si(M_2)$ have exactly 704 eight elements and both are isomorphic to S_8 . Now if either M_1 or M_2 is 705 not simple, then similar to the argument above, one can get a P_9 -minor; a 706 contradiction. Hence both matroid are simple. Now it is straightforward to 707 see that $M \cong F_7 \oplus_3 W_4 \oplus_3 F_7$, which is a starfish. 708

Therefore we may assume that $si(M_1)$ and $si(M_2)$ share a common tip, 709 say x. First assume that a non-tip element in T, say y, is in a parallel pair of 710 either M_1 or M_2 , say M_1 . As M is both simple and P_9 -free, it is easily seen 711 that M_2 has to be simple. Since any element of T can be considered as a tip 712 in F_7 , we deduce that both $si(M_1)$ and M_2 have at least 8 elements. If one of 713 these two matroids has at least 9 elements, then it contains a Z_4 -restriction 714 containing T. Such a restriction contains a F'_7 -minor containing T with x 715 being in a parallel pair. At the same time, $si(M_i)$ contains a $M(K_4)$ -minor 716 containing T for i = 1, 2. Noting that y is in a parallel pair of M_1 , we deduce 717 that M contains a P_9 -minor; a contradiction. Hence we may assume that 718 both $si(M_1)$ and M_2 contain exactly 8 elements. Now it is easily seen that M_1 719 contains a F'_7 -minor containing T with y being in a parallel pair. At the same 720 time, $si(M_2)$ contains a $M(K'_4)$ -minor containing T with x being in a parallel 721 pair. This is a contradiction as M now contains a P_9 -minor. 722

So from now on we may assume that if M_1 or M_2 is not simple, then only 723 x could be in a parallel pair. Indeed, as M is simple, at most one of M_1 and 724 M_2 is not simple. Suppose that one of M_1 and M_2 , say M_1 , is not simple, 725 then either $M \cong Z_{s+t}, M \cong Z_{s+t} \setminus y_s, M \cong Z_{s+t} \setminus y'_t$, or $M \cong Z_{s+t} \setminus y_s, y'_t$, all of 726 which are spikes except the last matroid. The last matroid, $M \cong Z_{s+t} \setminus y_s, y'_t$, 727 however, contains a cocircuit $\{y_s, y'_t\}$, contradicting to the fact that M is 3-728 connected. Finally assume that both M_1 and M_2 are simple. Then $M \cong$ 729 $Z_{s+t} \setminus x, M \cong Z_{s+t} \setminus x, y_s, M \cong Z_{s+t} \setminus x, y'_t, \text{ or } M \cong Z_{s+t} \setminus x, y_s, y'_t, \text{ all of which}$ 730 are spikes except the last matroid. The last matroid, $M \cong Z_{s+t} \setminus x, y_s, y'_t$ 731 again, contains a cocircuit $\{y_s, y'_t\}$; a contradiction. This completes the proof 732 of Case 2.2, thus the proof of the theorem. 733 \square

734 Acknowledgements

⁷³⁵ G. Ding's research is partially supported by NSA grant H98230-14-1-0108.

736 **References**

- T. Asano, T. Nishizeki, P. D. Seymour A note on non-graphic matroids,
 J. Combin. Theory Ser. B, 37 (1984), pp. 290293.
- T. H. Brylawski, Modular constructions for combinatorial geometries,
 Trans. Amer. Math. Soc. 203 (1975), 1–44.
- [3] D. Mayhew, G. Royle, and G. Whittle, The internally 4-connected binary matroids with no $M(K_{3,3})$ -minor, *Memoirs of the AMS*, **208** (2010), no. 981.
- [4] D. Mayhew, B. Oporowski, J. G. Oxley, and G. Whittle, The excluded minors for the matroids that are binary or ternary, *Europ. J. Combin.* 32 (2011), 891-930.
- [5] D. Mayhew and G. Royle, The internally 4-connected binary matroids with no $M(K_5 \setminus e)$ -minor, SIAM J. Disc. Math. **26** (2012) 755-767.
- [6] P. Hliněný, *The macek program*, http://www.mcs.vuw.ac.nz/research/macek/,
 2002.
- [7] S. Kingan and M. Lemos, A decomposition theorem for binary matroids
 with no prism minor, *Graphs and Combinatorics*, to appear.
- [8] J. G. Oxley, The binary matroids with no 4-wheel minor, *Trans. Amer. Math. Soc.* **301** (1987), 63-75.
- [9] J. G. Oxley, *Matroid theory*, second ed., Oxford Graduate Texts in Math ematics, vol. 21, Oxford University Press, Oxford, 2011.
- ⁷⁵⁷ [10] Sage Math: http://www.sagemath.org/.
- [11] P. D. Seymour, Decomposition of regular matroids, J. Combin. Theory
 Ser. B 28 (1980), no. 3, 305–359.
- [12] P. D. Seymour, Minors of 3-connected matroids, European J. Combinatorics, 6 (1985), 375–382.
- [13] X. Zhou, On internally 4-connected non-regular binary matroids, *Journal of Combin Theory B* 91 (2004), 327–343.