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Summary

In part I, a new method for solving functional-difference equations of the second order was
proposed. The shift of the equation was assumed to coincide with the period of the coefficients.
The method is based on the theory of the Riemann–Hilbert problem on a hyperelliptic surface
and the Jacobi inversion problem. The procedure is applicable to any finite number of zeros of
the discriminant of the equation in the strip. It yields the general single-valued meromorphic
solution.

In the present paper, electromagnetic scattering by a right-angled magnetically conductive
wedge is analysed. The physical problem reduces to a second-order difference equation with
2π -periodic coefficients and with the shiftπ . A rigorous procedure for constructing the general
solution is proposed. It consists of two steps. First, an auxiliary equation with the shift 2π

and the periodπ is derived and solved by the method proposed in part I (the corresponding
Riemann surface is a torus). Next, necessary and sufficient conditions for the solution of the
auxiliary equation to satisfy the governing equation are derived. These conditions separate the
general solution of the main equation from those solutions of the auxiliary equation which fail
to satisfy the governing difference equation. In addition, the particular case of no branch points
is analysed by the machinery of the Riemann–Hilbert problem for a segment on the complex
plane. A high-frequency asymptotic expression for the electric field is presented. Numerical
results for the backscattering coefficient are reported.

1. Introduction

In recent years considerable attention has been focused on electromagnetic scattering by wedges
whose sheets have a finite and non-zero electric resistivity. Such sheets support only an electric
current with the strength proportional to the value of the tangential electric field at the surface. The
electromagnetic dual of an electrically resistive sheet is (Senior and Volakis (1)) a magnetically
conductive one which simulates a thin layer of lossy material. On the boundary, in the case of
an electrically resistive sheet, the electric field is continuous, the normal derivative of the field
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is discontinuous and its jump is proportional to the electric field. If the sheet is magnetically
conductive and its conductivity is finite and non-zero, then the electric field is discontinuous. Its
normal derivative is continuous and it is proportional to the jump of the field.

By using the Maliuzhinets method (2) based on the use of the Sommerfeld integral representation
of the electric field, the corresponding boundary conditions for the above problems may be brought
into second-order functional-difference equations with periodic coefficients. In general, the shift in
the equation and the period of the coefficients are not the same. Even in the simplest case of the
wedge, namely for a right-angled wedge, the period is twice as much as the shift. For this geometry,
when one of the sheets is electrically resistive and the second one is perfectly electrically conductive,
Demetrescuet al. (3) have derived the governing difference equation of the second order with 2π -
periodic coefficients and the shiftπ whose solution has to be an odd function. A similar equation
has been derived (4) for the problem of diffraction by a two-sided impedance plane with a resistive
sheet attached to it. The authors of these papers have reduced the governing equations to solution of
auxiliary equations of the second order withπ -periodic coefficients and the shift 2π . Each solution
of the initial equation satisfies the auxiliary equation but the inverse statement, in general, is not
correct. Therefore, to solve the physical problem, one needs

(i) a single-valued meromorphic solution of the auxiliary equation, and
(ii) a mechanism for separating odd single-valued meromorphic solutions of the governing

equation from mock solutions which satisfy the auxiliary equation only.

In (3, 4), the authors found a non-physical multi-valued solution (for comments see (5, 6)). Also
they have proposed to represent the general odd solutionf (s) of the main equation in the form
f (s) = f∗(s) − f∗(−s), where f∗(s) is defined through a partial solution of the auxiliary equation
and a periodic meromorphic function with prescribed properties. However, as it is shown in the
Appendix below, this method does not produce the general solution of the main equation.

Senior and Legault (5, 7) have proposed another method that can be applied for constructing a
partial singled-valued meromorphic solution of the equation whose shift is a multiple of the period
of the coefficients. At the first stage, this method reduces the second-order difference equation to a
pair of first-order difference equations. Then by logarithmic differentiation of these equations and
elimination of the polar and cyclic periods of the solution of the first-order equations, the authors
construct a solution that is single-valued on a Riemann surface. These derivations ultimately lead to
abranch-free partial solution of the second-order equation, the auxiliary equation for the governing
one. We notice that the method (5, 7) is worked out either for genusρ = 1, or for genus three,
when the surface has a special symmetry, and the problem is solvable in terms of elliptic functions
(reducible to the caseρ = 1). The general solution of the auxiliary equation with prescribed poles,
was not constructed in (5,7). Second-order difference equations with a period that is a multiple of
the shift, have not been analysed in those papers either.

In the present paper we aim to

• derive a governing equation of the electromagnetic problem of diffraction by a right-angled
wedge when one of the sheets is magnetically conductive and the second one is perfectly
electrically conductive;

• construct the general single-valued meromorphic solution of the corresponding auxiliary
equation with shift equal to 2π andπ -periodic coefficients. For these purposes, we use a new
method based on the machinery of the Riemann–Hilbert problem on a hyperelliptic surface
proposed in the first part of this investigation (6);
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• work out a rigorous method for the general solution of the governing second-order equation with
2π -periodic coefficients when the shift is equal toπ ;

• find a closed-form solution of the problem onE-polarization of a right-angled magnetically
conductive wedge.

The article is organized as follows. In section 2, the physical problem is formulated. Section
3 brings in two functional-difference equations of the second order. The first one, the governing
equation, has shiftπ and 2π -periodic coefficients. The second one is an auxiliary equation with shift
2π andπ -periodic coefficients. The general single-valued meromorphic solution of the auxiliary
equation is found in section 4. The derivations are based on the results of the first part of this
study (6). Then, section 5 offers a technique for the general solution of the governing equation that
is required to be odd. The main idea of the method is to use the general solution of the auxiliary
equation on the axis of symmetry of the strip and substitute it into the main equation. Then deduce
the necessary and sufficient conditions for arbitrary 2π -meromorphic functions involved in the
general solution of the auxiliary equation in order that the main equation is satisfied. Analytical
continuation of these conditions from the contour into the whole complex plane completes the
procedure. In section 6, we show that the spectral functions found belong to the prescribed class of
solutions and we find arbitrary constants from additional physical conditions. A detailed analysis
of the particular case when there are no branch points is presented in section 7. To find the general
solution of the auxiliary second-order equation, we solve two scalar Riemann–Hilbert problems on
the segment[−1, 1]. So, the solution of the Riemann–Hilbert problem on a Riemann surface is
bypassed. This method, proposed in section 7.1, can be regarded as an alternative to the classical
expansion in terms of the Maliuzhinets functions for difference equations when the discriminant of
the equation does not have zeros of odd order. In section 8 we derive high-frequency asymptotics of
the electric field. We construct the reflected, transmitted, surface and diffracted waves. Numerical
results are presented for the backscattering coefficient. In Appendix A, for the simplest case of no
branch points, we show that the use of the method (3) produces less constants than are required
by the physical problem. Appendix B presents formulae used for numerical calculations of the
backscattering coefficient.

2. Formulation

The problem to be considered is the two-dimensional one presented in Fig.1. The half-plane{0 <

r < ∞, ϕ = 3π/4 ± 0} is a magnetically conductive sheet with the conductivityRm . The second
sheet{0 < r < ∞, ϕ = ±π + π/4 ∓ 0} is electrically perfectly conducting (opaque) with the
resistivity Re = 0. The system is illuminated by theE-polarized plane wave

Ei
z = eik0r cos(ϕ−ϕ0), (2.1)

where(r, ϕ) is a point of observation,k0 is the wave number,ϕ0 is the incident angle. On the second
sheet, the electric fieldEz is continuous and it vanishes:

Ez |ϕ=5π/4−0 = Ez |ϕ=−3π/4+0 = 0, 0 < r < ∞. (2.2)

As for the first sheet, the electric fieldEz is discontinuous on it, and its jump is proportional to the
magnetic fieldHρ (Senior and Volakis (1))

Hρ |ϕ=3π/4±0 = −Rm[Ez |ϕ=3π/4−0 − Ez |ϕ=3π/4+0]. (2.3)
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Fig. 1 E-polarization of a conductive wedge

By expressing the componentHρ through the normal derivative of the electric field

Z0Hρ = − 1

ik0r

∂ Ez

∂ϕ
(2.4)

we derive the boundary conditions

2

r

∂

∂ϕ
Ez |ϕ=3π/4−0 − ik0γ

(
Ez |ϕ=3π/4−0 − Ez |ϕ=3π/4+0

) = 0, 0 < r < ∞,

∂ Ez

∂ϕ

∣∣∣∣
ϕ=3π/4−0

= ∂ Ez

∂ϕ

∣∣∣∣
ϕ=3π/4+0

, 0 < r < ∞, (2.5)

whereγ = 2Rm Z0 �= 0, Z0 is the intrinsic impedance of the medium. Generally, the parameter
γ = sinθ is complex and 0< Reθ < π/2.
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Everywhere in the medium apart from the two sheets, the electric fieldEz satisfies the Helmholtz
equation

(∇2 + k2
0)Ez = 0. (2.6)

To satisfy the differential equation (2.6) we represent the total field in the form of the Sommerfeld
integrals (Maliuzhinets (2))

Ez(r, ϕ) = 1

2π i

∫
�

eik0r cossS1(s + ϕ)ds, |ϕ| <
3π

4
,

Ez(r, ϕ) = 1

2π i

∫
�

eik0r cossS2(s + ϕ − π)ds,
3π

4
< ϕ <

5π

4
, (2.7)

where � is the Sommerfeld double loop contour symmetric with respect to the origin. The
asymptotes for its branches ares = 3π/2 and s = −π/2 for the upper loop ands = π/2 and
s = −3π/2 for the lower one. The functionS1(s) is analytic everywhere in the strip| Res| < 3π/4
and continuous in the strip up to the boundary| Res| = 3π/4 apart from the points = ϕ0, where it
has a simple pole with the residue defined by the incident field (2.1)

res
s=ϕ0

S1(s) = 1. (2.8)

The second spectral functionS2(s) is analytic in the strip| Res| < π/4 and continuous everywhere
in the strip| Res| � π/4. At infinity, as Ims → ±∞ and Res is finite, both functions are at most
bounded:|S j (s)| � const, j = 1, 2.

3. Derivation of a functional-difference equation

The symmetry of the contour� and the boundary conditions (2.2), (2.5) imply (Maliuzhinets (2))

(sins − γ )

[
S1

(
s + 3π

4

)
+ S2

(
−s − π

4

)]
=−(sins + γ )

[
S1

(
−s + 3π

4

)
+ S2

(
s − π

4

)]
,

S1

(
s + 3π

4

)
− S2

(
−s − π

4

)
=−S1

(
−s + 3π

4

)
+ S2

(
s − π

4

)
,

S1

(
s − 3π

4

)
=S1

(
−s − 3π

4

)
,

S2

(
s + π

4

)
=S2

(
−s + π

4

)
. (3.1)

This system expresses the functionS2 through the functionS1:

S2(s) =
(

1 − sin(s + π/4)

sinθ

)
S1(s + π) − sin(s + π/4)

sinθ
S1(s − 2π). (3.2)

The spectral functionS1 is a solution to the functional-difference equation

(sins + sinθ)

[
S1

(
s + 7π

4

)
− S1

(
s − 9π

4

)]
= sins

[
S1

(
s + 3π

4

)
− S1

(
s − 5π

4

)]
.

(3.3)
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The usual trick, found in Maliuzhinets (2), of eliminating the pole ats = ϕ0 is to split the function
S1(s) into two factors

S1(s) = �(s)ψ

(
s + 3π

4

)
, (3.4)

where

�(s) = 2cos 2ϕ0

sin 2s − sin 2ϕ0
. (3.5)

It may be noted that the functionψ(s) is analytic everywhere in the strip| Res| < 3π/2 and also it
is even. To simplify equation (3.3) introduce the new function

f (s) = ψ(s + π) − ψ(s − π), (3.6)

which is a solution to the following problem.

Find an odd function f (s) meromorphic in the s-plane, free of poles in the strip | Res| � π/2 and
satisfying the functional-difference equation

(coss − sinθ)[ f (s + π) + f (s − π)] = coss f (s). (3.7)

At infinity, the function f (s) may grow:

| f (s)| � Ce2| Im s|, Im s → ∞, Res is finite, C = const. (3.8)

Analysis of equation (3.7) shows that the functionf (s) can have simple poles at the zeros of the
function coss + sinθ , that is, at the points±(π/2 + θ) + 2πn (n ∈ Z). As for the zeros of the
function coss, the pointss = π/2+ πn (n ∈ Z), they cannot be poles of the functionf (s). Indeed,
the function f (s) is analytic in the strip−π/2 � Res � π/2. Therefore

res
s=±π/2

f (s) = 0. (3.9)

This requirement and equation (3.7) at the points±π/2 yield f (±3π/2) = − f (∓π/2), that is, the
pointss = ±3π/2 are removable points. By the same argument the functionf (s) is bounded at the
other points±5π/2, ±7π/2, . . . .

For the method to be used, it is vital to have the shift in a functional-difference equation to be not
less than the period of the coefficients. In the case under consideration the shift and the period are
equal toπ and 2π , respectively. To transform equation (3.7) into the desired form, we replaces in
(3.7) first bys + π and then bys − π . Afterwards, we eliminate the termsf (s ± π) from the two
new equations. Finally, we obtain the following functional-difference equation

a(s)[ f (s + 2π) + f (s − 2π)] + b(s) f (s) = 0, (3.10)

where

a(s) = cos2 s − sin2 θ, b(s) = cos2 s − 2sin2 θ . (3.11)
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Now the coefficients areπ -periodic functions, and the shift equals 2π . Clearly, if the functionf (s)
is a solution of equation (3.7), then it satisfies the auxiliary equation (3.10). However, generally, the
inverse statement is not correct. In sections 4 and 5 we construct the general solution of the auxiliary
equation and show what to do with it in order to find the general solution of the main equation (3.7).

Solving the functional-difference equation (3.7) is crucial for derivation of the spectral functions
S1(s) andS2(s). Assume the functionf (s) has been found. Then the general even solution to
equation (3.6) growing at infinity ase|2 Ims| becomes

ψ(s) = C0 + C1 coss + C2 cos 2s + coss

4π i

∫



�(τ, s) f (τ − π)dτ, −π < Res < π, (3.12)

ψ(σ ± π) = C0 − C1 cosσ + C2 cos 2σ ± f (σ )

2
− cosσ

4π i

∫



�(τ, σ + π) f (τ − π)dτ, Reσ = 0,

(3.13)

where

�(τ, s) =
(

cot
τ − s

2
− cot

τ − s0

2

)
1

cosτ
, (3.14)


 = {s ∈ C : Res = π}, ands0 is an arbitrary fixed internal point in the strip� = {s ∈ C : −π <

Res < π} such that Res0 �= 0. Relations (3.13) are the Sokhotski–Plemelj formulae for the integral
(3.12) with the periodic analogue (3.14) of the Cauchy kernel. The choice of the kernel ensures the
convergence of the integrals (3.12), (3.13) with the density satisfying the inequality (3.8). The
integral in (3.13) is understood in the sense of the principal value. The constantsC0 andC1 are
arbitrary. We next show that the constantC2 is zero. Indeed, ifC2 �= 0, thenψ(s) ∼ C2 cos 2s,
Im s → ∞, and therefore by (3.2), (3.4) and (3.5),

S2(s) ∼ −4 cos2ϕ0

sinθ
C2 sin

(
s + π

4

)
, Im s → ∞. (3.15)

This means thatS2(s) has an exponential growth at infinity that is not acceptable. SoC2 = 0.
Outside the strip−π � Res � π , the functionψ(s) is defined by analytical continuation. For

example

ψ(s) = f (s − π) + ψ(s − 2π), π � Res � 2π,

ψ(s) = − f (s + π) + ψ(s + 2π), −2π � Res � −π . (3.16)

Now express the spectral functionsS1(s), S2(s) in terms of the functionψ(s) and the solution to
the functional-difference equation (3.7), the functionf (s). From (3.4) and (3.16) we derive

S1(s) = �(s)ψ

(
s + 3π

4

)
, −7π

4
� Res � π

4
,

S1(s) = �(s)

[
ψ

(
s − 5π

4

)
+ f

(
s − π

4

)]
,

π

4
� Res � 5π

4
. (3.17)

The relations (3.2) and (3.16) give

S2(s)=�(s)

{(
1 − sin(s + π/4)

sinθ

) [
ψ

(
s − π

4

)
+ f

(
s + 3π

4

)]

− sin(s + π/4)

sinθ

[
ψ

(
s + 3π

4

)
− f

(
s − π

4

)]}
, −3π

4
� Res � π

4
. (3.18)
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Analysis of the last formula indicates that if the functionf (s) has a pole at the points = π/2 + θ ,
then the spectral functionS2(s) has an inadmissible pole at the points = −π/4 + θ in the strip
−π/4 < Res < π/4. Therefore, because the functionf (s) is odd,s = ±(π/2 + θ) have to be
removable points:

res
s=±(π/2+θ)

f (s) = 0. (3.19)

4. General solution of the auxiliary functional-difference equation (3.10)

4.1 Derivation of a scalar Riemann–Hilbert problem on an elliptic surface

In this section we reduce the functional-difference equation (3.10) first to a vector Riemann–Hilbert
boundary-value problem on a complex plane and then to a scalar problem on an elliptic surface.
Introduce two functions

�1(s) = f (s), �2(s) = f (s + 2π), s ∈ �̄ = {s ∈ C : −π � Res � π}. (4.1)

Then on the contour
, �1(σ ) = �2(σ − 2π), and equation (3.10) can be written as a vector
functional-difference equation of the first order

Φ(σ ) = G(σ )Φ(σ − 2π), σ ∈ 
, (4.2)

where

Φ(s) =
(

�1(s)
�2(s)

)
, G(s) =

(
0 1

−1 −b(s)/a(s)

)
. (4.3)

4.1.1 Eigenvalues of the matrix G(s). Analyse the eigenvalues of the matrixG(s)

λ j (s) = −b(s) + (−1) j−1�1/2(s)

2a(s)
, j = 1, 2, (4.4)

where the function�(s) has the form

�(s) = b2(s) − 4a2(s) = cos2 s(4sin2 θ − 3 cos2 s). (4.5)

Let

η = arccos

(
2√
3

sinθ

)
. (4.6)

Because of the assumption 0< Reθ < π/2, Re sinθ > 0, and thus 0� Reη < π/2. Clearly, if
η = 0 (this means sinθ = γ = 1

2

√
3 > 0) then the function�1/2(s) does not have branch points in

the strip�. This particular case is reported in section 7. Here we assume thatη �= 0. Let

β(s) =
√

cos2 s − cos2 η. (4.7)
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Im s

θθ +
1

–

––

η

Fig. 2 The branch points and the cuts

Then�1/2(s) = i
√

3β(s) coss, and the eigenvalues (4.4) of the matrixG(s) can be written as
follows:

λ j (s) = coss − (−1) j i
√

3β(s)

coss + (−1) j i
√

3β(s)
, j = 1, 2. (4.8)

The functionβ(s) has four branch points in the strip�. These points ares0 = −π + η, s1 = −η,
s2 = η ands3 = π − η. To fix a branch of the functionβ(s), cut the strip� along smooth curves
�0, �1 joining the branch points−π + η with −η andη with π − η (Fig.2). The curve�1 is chosen
such that it passes through the pointsπ/2 − θ , π/2 andπ/2 + θ and it is located symmetrically
with respect to the points = π/2. The curve�0 is obtained by reflecting the curve�1 through the
origin. This special choice of the cuts�0, �1 is required for the solutionf (s) to be odd and will be
used later in this section. The branch curves do not intersect the contour
. This fact is essential for
the solution of equation (3.10) to be single-valued. We fix the branchβ(s) such thatβ(0) = sinη.
This branch is an even function and possesses the following properties:

β(s) ∼ coss, Im s → ±∞, (4.9)

β(s ± π) = −β(s), s ∈ �, (4.10)
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β+(σ ) = −β−(σ ), σ ∈ � j , j = 0, 1. (4.11)

Thenλ j (s) are even single-valued analytic functions in the strip� cut along the curves�0, �1. On
the sides of the cuts,

λ+
j (σ )λ−

j (σ ) = 1, σ ∈ � j , j = 0, 1. (4.12)

Let s = η and s = −η be the initial points ands = π − η and s = −π + η be the terminal
points of the curves�1 and�0, respectively. Denote by�+

j the left and by�−
j the right banks of

the cuts� j ( j = 0, 1) with respect to the positive direction. Because of the choice of the cuts the
functions 1/λ1(s) andλ1(s) have zeros of the first order at the pointsθ+

1 = π/2 − θ ∈ �+
1 and

θ+
2 = π/2 + θ ∈ �+

1 , respectively. On the right side of the cut�1 at the corresponding opposite
pointsθ−

1 = π/2 − θ ∈ �−
1 andθ−

2 = π/2 + θ ∈ �−
1 , the functionsλ1(s) and 1/λ1(s) have

first-order zeros. The zeros of the functions 1/λ1(s) andλ1(s) on the sides of the cut�0 are defined
by the symmetry. In Fig. 2 the zeros of the functionsλ1(s) and 1/λ1(s) are circled and starred
respectively. These properties of the eigenvaluesλ1(s) andλ2(s) will be used later for solution of
the Jacobi inversion problem and specification of the general solution of equation (3.7) from the
solution of equation (3.10).

4.1.2 Vector Riemann–Hilbert problem on a system of curves. Next, we diagonalize the matrix
G(s):

[T(s)]−1G(s)T(s − h) = Λ(s), (4.13)

where

T(s) =
(

1 1
λ1(s) λ2(s)

)
, Λ(s) =

(
λ1(s) 0

0 λ2(s)

)
, (4.14)

and introduce the new vector functionφ(s) = [T(s)]−1Φ(s), s ∈ �, with the components

φ1(s) = 1

2

(
b(s)

�1/2(s)
+ 1

)
�1(s) + a(s)

�1/2
�2(s),

φ2(s) = 1

2

(
− b(s)

�1/2(s)
+ 1

)
�1(s) − a(s)

�1/2(s)
�2(s). (4.15)

Then these functions satisfy the two separate equations

φ j (σ ) = λ j (σ )φ j (σ − 2π), σ ∈ 
, j = 1, 2. (4.16)

In order that the vector function�(s) is single-valued in the strip� it is necessary and sufficient
that (see (6))

φ+
1 (σ ) = φ−

2 (σ ), φ−
1 (σ ) = φ+

2 (σ ), σ ∈ � j , j = 0, 1, (4.17)

whereφ±
j (σ ) are the limiting values of the functionsφ j (s) on the left (+) and the right (−) sides

of the contours�0, �1. Transform now the problem (4.16), (4.17) into a vector Riemann–Hilbert
problem on a system of segments. Take the mapping functionz = u(s) as follows:

u(s) = tan
η

2
cot

s

2
. (4.18)
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z

Fig. 3 The canonical cross-sectionsa,b and the contourL

Then its inverse functions = v(z) becomes

v(z) = −i log
z + i tan1

2η

z − i tan1
2η

. (4.19)

The single branch of the logarithmic functionv(z) is chosen such thatv(∞) = 0. The contour

is mapped onto the left side of the straight segmentL with the starting pointt1 = i tan1

2η and the
ending pointt2 = −i tan1

2η (Fig.3). The left boundary{s ∈ C : Res = −π} of the strip� is
mapped onto the right side of the contourL. As for the branch pointss0, s1, s2 ands3, they fall into
the points−1/k, −1, 1 and 1/k, wherek = cot2 1

2η. The cuts�0, �1 become smooth curvesγ0, γ1
joining the points−1/k, −1 and 1, 1/k. The curvesγ0, γ1 do not cross the contourL.

Wewrite down the vector Riemann–Hilbert problem that is equivalent to equations (4.16), (4.17):

F+
j (t) = l j (t)F−

j (t), t ∈ L , j = 1, 2, (4.20)

F+
1 (t) = F−

2 (t), F−
1 (t) = F+

2 (t), t ∈ γm, m = 0, 1, (4.21)

where

F±
j (t) = φ±

j (σ ), l j (t) = λ j (σ ),

σ = −i log
t + i tan1

2η

t − i tan1
2η

, j = 1, 2. (4.22)
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4.1.3 Scalar Riemann–Hilbert problem on an elliptic surface. To solve the vector problem
(4.20), (4.21), convert it into a scalar Riemann–Hilbert problem on a Riemann surface. LetR
be the elliptic surface of the algebraic function

w2 = q(z), q(z) = (1 − z2)(1 − k2z2), (4.23)

formed by gluing two copiesC1 andC2 of the extended complex planeC ∪ ∞ cut along the curves
γ0 andγ1. The positive (left) sides of the cutsγm (m = 0, 1) onC1 are glued to the negative (right)
sides of the curvesγm onC2 and vice versa.

Let q1/2(z) be the branch chosen such thatq1/2(0) = 1. Then the functionw defined by (4.23)
is single-valued on the surfaceR: w = q1/2(z), z ∈ C1. Introduce now the following functions on
the surfaceR:

F(z, w) =
{

F1(z), (z, w) ∈ C1,

F2(z), (z, w) ∈ C2,
l(t, ξ) =

{
l1(t), (t, ξ) ∈ L1,

l2(t), (t, ξ) ∈ L2.
(4.24)

From (4.21) it becomes evident that the functionF(z, w) is meromorphic everywhere on the surface
R apart from the contourL = L1 ∪ L2, with L1 = L ⊂ C1 andL2 = L ⊂ C2. On the contour
L ⊂ R, this function satisfies the boundary condition

F+(t, ξ) = l(t, ξ)F−(t, ξ), (t, ξ) ∈ L, (4.25)

whereξ = w(t). At the end points the functionF(z, w) has the following asymptotic behaviour:

|F(z, w)| � A j |z − t j |−2, (z, w) ∈ R, z → t j , j = 1, 2, A j = const. (4.26)

4.2 Factorization of the function l(t, ξ)

To solve the Riemann–Hilbert problem (4.25) one needs to factorize the coefficientl(t, ξ).
This means constructing a canonical solution to the problem (4.25), that is, a functionX (z, w)

meromorphic onR \L with at most a finite number of poles and zeros onR such that its boundary
valuesX±(t, ξ) are non-zero, and that(t, ξ) ∈ L ⊂ R and satisfy the boundary condition

X+(t, ξ) = l(t, ξ)X−(t, ξ), (t, ξ) ∈ L ⊂ R. (4.27)

At the end pointsz = t1 andz = t2 this solution is bounded:

|X (z, w)| � A, (z, w) ∈ R, z → t j , j = 1, 2, A = const. (4.28)

First, definea- andb-canonical cross-sections of the surfaceR. The cross-sectiona consists of the
banks of the cutγ1 (Fig. 3) which simultaneously belong toC1 andC2. The positive direction on
a is chosen such that the first sheetC1 is always on the left. The cross-sectionb is a smooth closed
curve that consists of two parts. The first part is a curve ofC1 joining the points 1/k and−1/k
and passing through infinity. The second part lies on the sheetC2 and joins the points−1/k and
1/k through infinity. The starting point is 1/k and the first sheet is traced first. Both parts of the
cross-sectionb are symmetric with respect to the origin.

It is directly verified thatλ j (σ ) = λ j (σ ), σ ∈ 
. Therefore,l j (t) = l j (−t), t ∈ L, j = 1, 2, and
the coefficient of the problem (4.27) is even:l(−t, ξ) = l(t, ξ), (t, ξ) ∈ L. To explore this property



SECOND-ORDER FUNCTIONAL-DIFFERENCE EQUATIONS. II 279

of the functionl(t, ξ), we first find a meromorphic solution of the following auxiliary problem for
ahalf of the contourL

X+
0 (t, ξ) = l(t, ξ)X−

0 (t, ξ), (t, ξ) ∈ L′, (4.29)

whereL′ consists of the two segmentsL ′ = [t1, 0] lying on the two sheetsC1 andC2 of the surface.
We seek a solution bounded at the end pointz = t1 and do not prescribe the asymptotics of the
solution at the pointz = 0.

A canonical solution to the problem (4.29) is given by Antipov and Silvestrov (6,8):

X0(z, w) = exp{χ(z, w)},

χ(z, w)= 1

2π i

∫
L′

log l(t, ξ)dW +
2∑

µ=1

sgnκµ

|κµ|∑
j=1

∫ pµj

pµ0

dW

+
∫ (σ0,u0)

(δ0,v0)

dW + m0

∮
a

dW + n0

∮
b

dW, (4.30)

where

dW = w + ξ

2ξ

dt

t − z
, w = w(z), ξ = w(t), (4.31)

is the Weierstrass kernel, an analogue of the Cauchy kernel on the surfaceR. It is directly verified
that

l j (t1) = λ j (π − i∞) = −1

2
+ (−1) j−1 i

√
3

2
, j = 1, 2. (4.32)

Wefix the single branches of the logarithmic functions as follows:

argl1(t1) = −4π

3
, argl2(t1) = −2π

3
. (4.33)

Analysis of the Weierstrass integrals in (4.30) implies that

X0(z, w) = O{(z − t1)
β j }, (z, w) ∈ C j , z → t1, j = 1, 2, (4.34)

whereβ1 = 2
3, β2 = 1

3. Thus, the functionX0(z, w) is bounded at the end pointz = t1. The
integersκµ (µ = 1, 2) are used (8) to achieve the prescribed behaviour of the solution at the second
end point,z = 0. Since we have not fixed the asymptotics of the solution at this point, it is possible
to choose the integersκ1 andκ2 in an arbitrary way. The simplest choice isκ1 = κ2 = 0. Then the
second term in (4.30) vanishes. The final formula for the functionF(z, w) is independent ofκ1 and
κ2. The point(δ0, v0) ∈ C1, v0 = q1/2(δ0) is arbitrarily fixed. The point(σ0, u0) (u0 = w(σ0)) and
the integersm0, n0 are not arbitrary and will be fixed later.

The second integral in (4.30) is taken over a smooth curve which joins the end points(δ0, v0)

and(σ0, u0) and which does not intersect the cross-sectionsa, b and the contourL′. This integral
is independent of the shape of the integration path. The first integral in (4.30) is discontinuous
through the contourL′ with the jump logl(t, ξ). The other integrals are also discontinuous through
the contours of integration. The corresponding jumps are equal to 2π im (m is an integer). Hence
the functionX0(z, w) satisfies the homogeneous boundary condition (4.29).
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4.3 Elimination of an essential singularity at infinity

4.3.1 Jacobi’s inversion problem. In general, for an arbitrary point (σ0, u0) and arbitrary integers
m0, n0, the functionX0(z, w) in (4.30) has an essential singularity at infinity. This is because
w(z) ∼ (−1) j kz2, z → ∞, z ∈ C j , and the Weierstrass kernel (4.31) has a pole at infinity. To
eliminate the essential singularity we evaluate the principal terms of the expansions of the function
χ(z, w) at infinity on both sheets of the surface:

kz

2
(−1) j−1

{
1

2π i

∫
L ′

[log l1(t) − log l2(t)] dt

q1/2(t)
+

∫ (σ0,u0)

(δ0,v0)

dt

ξ(t)
+ m0

∮
a

dt

ξ(t)
+ n0

∮
b

dt

ξ(t)

}
.

(4.35)

Thus in order that the functionX0(z, w) is bounded at infinity it is necessary and sufficient that

∫ (σ0,u0)

(δ0,v0)

dt

ξ(t)
+ m0

∮
a

dt

ξ(t)
+ n0

∮
b

dt

ξ(t)
= d◦, (4.36)

where

d◦ = 1

2π i

∫
L ′

[log l2(t) − log l1(t)] dt

q1/2(t)
. (4.37)

This nonlinear equation is the Jacobi inversion problem for the surfaceR of genusρ = 1. We next
solve this problem in closed form.

4.3.2 Evaluation of the constant d◦. To find the solution of the problem (4.36) explicitly we
simplify the expression (4.37) for the constantd◦. The procedure consists of two steps. At the first
stage we transform the integral (4.37) into an integral over an infinite line. The second step is to
evaluate this integral by non-trivial application of the Cauchy theorem.

It follows from (4.8) thatl1(t)l2(t) = 1. Since in additionl j (t) = l j (−t), for the chosen branches
of the functions logl j (t) we establish

log l j (−t) = log l j (t), log l1(t) + log l2(t) = −2π i,

log l1(t) − log l2(t) = 2log l1(t) + 2π i . (4.38)

Therefore

d◦ = − 1

π i

∫
L ′

log l1(t) + π i

q1/2(t)
dt = − 1

2π i

∫
L

log l1(t) + π i

q1/2(t)
dt . (4.39)

On making substitutiont = −1/(kτ), weestablish the following identities:

log l1(t) = log l1(τ ), q1/2(t) = −q1/2(τ )

kτ2
, t = − 1

kτ
. (4.40)

The second formula in (4.40) is verified directly. Show the validity of the first identity. Assume that
the image (4.18) of a pointσ is t ∈ L. Then the pointτ corresponds to the pointσ − π . Because of



SECOND-ORDER FUNCTIONAL-DIFFERENCE EQUATIONS. II 281

tR

Fig. 4 The domainD and the contour of integration:η �= 0

the relations logl1(t) = logλ1(σ ) and logl1(τ ) = logλ1(σ − π) and also since the image (4.18) of
the pointt = t1 coincides with this point,τ = t1, the first formula in (4.40) follows.

The substitutiont = −1/(kτ) transforms (4.39) into the integral over two semi-infinite segments
L∗ which expand the segment[t1, t2] in both directions

d◦ = − 1

2π i

∫
L∗

log l1(τ ) + π i

q1/2(τ )
dτ . (4.41)

The positive direction on the contourL∗ is from t2 to the point at infinity and then to the pointt1.
By adding the two relations (4.39) and (4.41) we obtain

2d◦ = − 1

2π i

∫
L∪L∗

log l1(t) + π i

q1/2(t)
dt . (4.42)

By the Cauchy theorem applied to the function

g(z) = log l1(z) + π i

q1/2(z)
(4.43)

which is holomorphic in the domainD with ρ = 0 (Fig.4), this integral can be written as follows:

d◦ = 1

4π i

∮
a

log l1(z) + π i

q1/2(z)
dz = 1

4π i

∫ 1/k

1

log l+1 (t) + log l−1 (t) + 2π i

q1/2(t+)
dt . (4.44)
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We notice that the half-plane located to the left from the contourL ∪ L∗ is the imagez = u(s) of
the strip 0< Res < π . Heret+ is a point on the left bank of the cutγ1; l+1 (t) andl−1 (t) are the
limiting values of the functionl1(z) on the leftγ +

1 and rightγ −
1 banks of the cutγ1. Let z±

1 ∈ γ ±
1

andz±
2 ∈ γ ±

1 be the images (4.18) of the pointsθ±
1 andθ±

2 and

z1 = tan
η

2
cot

(
π

4
− θ

2

)
, z2 = tan

η

2
cot

(
π

4
+ θ

2

)
. (4.45)

At the pointsz+
1 andz−

2 the functionl1(z) equals zero. At the other two pointsz−
1 andz+

2 it equals
infinity. Therefore, the functiong(z) has logarithmic singularities at the pointsz±

1 , z±
2 . Apart from

these points, the functiong(z) is continuous everywhere on the boundaryD. We also notice that
|g(z)| � const|z|−2, z → ∞. This justifies the application of the Cauchy theorem (4.44) to the
functiong(z).

Wenext prove the following property of the functionsl±1 (t)

log l+1 (t) + log l−1 (t) =
{

−2π i, t ∈ (z1, z2) ⊂ γ1,

−4π i, t ∈ [1, z1) ∪ (z2, 1/k] ⊂ γ1.
(4.46)

First, we note that formula (4.12) impliesl+1 (t)l−1 (t) = 1, t ∈ γ1. Therefore, on a portion of the
contourγ1 say,(z1, z2), where the function logl1(z) is continuous,

log l+1 (t) + log l−1 (t) = 2π in, (z1, z2) ⊂ γ1. (4.47)

wheren is an integer to be defined. Clearly, when the pointz traverses the contoursγ +
1 , γ −

1 in
the positive direction and passes the pointsz+

1 , z−
2 (the points where the function logl1(z) becomes

infinite), the function logl1(z) receives the incrementπ i . Its increment becomes−π i when it passes
the other two pointsz−

1 andz+
2 . Thus,

log l+1 (t) + log l−1 (t) = 2π i(n − 1), t ∈ [1, z1) ∪ (z2, 1/k] ⊂ γ1. (4.48)

To fix n we first evaluate the values logl1(z) at the two opposite points(1/
√

k)± ∈ (z1, z2)
± ⊂ γ ±

1 .
The pointt = 1/

√
k ∈ γ1 is the image of the points = π/2 ∈ �1. This implies logl±1 (1/

√
k) =

logλ±
1 (π/2). One may observe that

log l−1
(

1√
k

)
= logλ1

(π

2
− i∞

)
+ logλ1

(π

2
+ iy

)∣∣∣∣
y=−0

y=−∞
. (4.49)

To find the increment of the function logλ1(π/2 + iy) in (4.49), we evaluate the integral

logλ1

(π

2
+ iy

)∣∣∣y=0−

y=−∞
=

∫ 0

−∞
d logλ1

(π

2
+ iy

)

=2
√

3i
∫ 0

−∞
cos2 η coshydy

(4sinh2 y + 3cos2 η)

√
sinh2 y + cos2 η

= π i

3
. (4.50)

Here we have made two substitutions. First, we putξ = sinhy, ξ0 = cosη, and then we setτ =
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ξ(ξ2 + ξ2
0 )−1/2. Finally, on using (4.32) and (4.49), we obtain the desired value: logl−1 (1/

√
k) =

−π i . Similarly, logl+1 (1/
√

k) = −π i . Hence

log l+1 (t) + log l−1 (t) = −2π i, t = 1/
√

k ∈ (z1, z2) ⊂ γ1. (4.51)

On comparing the last formula with (4.47),n = −1. The relation (4.46) is proved.
By making the substitutiont = 1/(kτ) and using the relation (4.46) and

z1z2 = 1

k
,

dt

q1/2(t+)
= − dτ

q1/2(τ+)
, (4.52)

we can further simplify the integral (4.44)

d◦ = −
∫ z1

1

dt

q1/2(t+)
=

∫ z1

1

dt

q1/2(t−)
. (4.53)

4.3.3 Solution to the Jacobi problem. On exploring the new expression for the constantd◦, we
find it is a straightforward matter to write down a solution of the Jacobi problem (4.36) in explicit
form. Replaced◦ by (4.53) in equation (4.36)

∫ (σ0,u0)

(δ0,v0)

dt

ξ(t)
+ m0

∮
a

dt

ξ(t)
+ n0

∮
b

dt

ξ(t)
=

∫ z1

1

dt

q1/2(t−)
. (4.54)

We observe that the above condition is identically satisfied if the points(δ0, v0), (σ0, u0) and the
integersm0, n0 are chosen as follows:

(δ0, v0) = (1, 0), (σ0, u0) = (z−
1 , q1/2(z−

1 )) ∈ γ −
1 , m0 = n0 = 0. (4.55)

Under such a choice of the points and the integers, the functionX0(z, w) in (4.30) is bounded at
infinity and has the form

X0(z, w) = exp

{
1

2π i

∫
L′

log l(t, ξ)dW +
∫ (σ0,u0)

(0,1)

dW

}
. (4.56)

4.4 General solution to the Riemann–Hilbert problem

To study the behaviour at the end points of the canonical solution of the auxiliary problem (4.29)
we rewrite formula (4.56) as follows:

X0(z, w) = exp{χ10(z) + w(z)χ20(z)}, (4.57)

where

χ10(z) = 1

2
log

(z − t1)(z − z1)

z(z − 1)
,

χ20(z) = − 1

2π i

∫ t1

0

[log l1(t) + π i]dt

q1/2(t)(t − z)
− 1

2

∫ z1

1

dt

q1/2(t+)(t − z)
. (4.58)
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At the pointz = t1 this solution is bounded. In the vicinity of the pointz = 0 it behaves as follows:

X0(z, w) = z−1/2+(−1) j ν0 X∗(z, w), z → 0, (z, w) ∈ C j , j = 1, 2, (4.59)

whereν0 = [log l1(0) + π i]/(2π i) andX∗(z, w) is a bounded function asz → 0.
On using the condition (4.29) and also the identityl(−t, −w) = 1/ l(t, w), (t, w) ∈ L, that

can be derived froml1(t)l2(t) = 1 andl j (t) = l j (−t), j = 1, 2, one may show that the function
X1(z, w) = X0(−z, −w) provides a canonical solution of another auxiliary problem on the second
half of the contourL :

X+
1 (t, ξ) = l(t, ξ)X−

1 (t, ξ), (t, ξ) ∈ L \ L′. (4.60)

At the pointz = −t1 = t2 it is bounded and in the vicinity of the pointz = 0 it has the representation

X0(z, w) = z−1/2−(−1) j ν0 X∗(−z, −w), z → 0, (z, w) ∈ C j , j = 1, 2. (4.61)

From the boundary conditions (4.29), (4.60) and also from relations (4.59) and (4.61) we deduce
that the functionX (z, w) = zX0(z, w)X1(z, w) is the canonical solution for the problem (4.27).
This solution is bounded not only at the ends of the contourL but also at the pointz = 0. Finally,
after straightforward transformations we obtain

X (z, w) = χ3(z) exp{w(z)χ2(z)}, (4.62)

where

χ2(z) = − z

π i

∫ t1

0

[log l1(t) + π i]dt

q1/2(t)(t2 − z2)
− z

∫ z1

1

dt

q1/2(t+)(t2 − z2)
,

χ3(z) =
√

(z2 − t2
1)(z2 − z2

1)

z2 − 1
, t1 = i tan

η

2
, z1 = tan

η

2
cot

(
π

4
− θ

2

)
. (4.63)

A single-valued branch of the functionχ3(z) is chosen such thatχ3(z) ∼ z, z → ∞. The first
integral is taken over the segment[0, t1]. The contour of integration for the second integral is the
portion of the positive bank of the cutγ1 with the starting pointz = 1 and the terminal pointz = z1.
Both functionsχ2(z) andχ3(z) are odd holomorphic functions in thez-plane with the cuts along
the lineL and the curves(−z1, −1) ⊂ γ0, (1, z1) ⊂ γ1.

Now we can use the above formula for the canonical functionX (z, w) to write down the general
solution of the auxiliary Riemann–Hilbert problem (4.27), (4.28):

F(z, w) = X (z, w)[R1(z) + w(z)R2(z)], (4.64)

whereR1(z), R2(z) are arbitrary rational functions with zeros and poles defined by the properties of
the functionsF(z, w) andX (z, w). These functions for the problem of interest (3.7) will be derived
in section 5.

4.5 The function f (s)

Finally, we find the general odd solution of the auxiliary equation (3.10). According to formulae
(4.1), (4.15), (4.22) and (4.24) the general solution of equation (3.10) in the strip�̄ : −π � Res �
π is given by

f (s) = �1(s) = φ1(s) + φ2(s) = F1(z) + F2(z) = F(z, w) + F(z, −w), (4.65)
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wherew = q1/2(z). By making use of formulae (4.64), (4.62) and (4.63) we transform the above
formula to the form

f (s) = χ3(z)[M1(s) coshχ4(z) + M2(s)q
1/2(z) sinhχ4(z)], π � Res � π, (4.66)

where

χ4(z) = q1/2(z)χ2(z), z = tan
η

2
cot

s

2
. (4.67)

The functionsM j (s) = 2R j (z), j = 1, 2, are arbitrary 2π -periodic meromorphic functions. Their
zeros and poles are defined by the properties of the unknown functionf (s) and the known functions
q1/2(z), χ3(z), χ4(z). The functionsχ3(z) and χ4(z) are odd and the functionq1/2(z) is even.
Therefore, for the general solution of equation (3.10)f (s) to be odd, it is necessary and sufficient
that the functionM1(s) is even and the functionM2(s) is odd.

In what follows, we show how to select the general odd solution of equation (3.7) from the family
of solutions given by (4.66). To do this it is sufficient to know the general solution of equation
(3.10) in the strip−π � Res � π only. However, we write down the solution in the next strip
π � Res � 3π in case its necessity might arise in other applications. So, ifπ � Res � 3π , then

f (s) = − b(s)

2a(s)
[F(z, w) + F(z, −w)] + �1/2(s)

2a(s)
[F(z, w) − F(z, −w)]. (4.68)

Analytical continuation of the solution for the wholes-pane can be derived by equation (3.10). The
function f (s) is meromorphic and single-valued in thes-plane.

5. Solution of the governing functional-difference equation (3.7)

This section presents a procedure for constructing the general odd solution of a second-order
difference equation when the shift is less than the period of the coefficients involved. We exemplify
the technique by solving equation (3.7). The method picks up those functions from the general
solution of equation (3.10) which satisfies the equation (3.7). To achieve this goal we first
assume thats is any point of the imaginary axis. Next, we substitute the general solution of the
auxiliary equation (3.10) into equation (3.7) and establish conditions for the arbitrary 2π -periodic
meromorphic functionsM1(s) and M2(s), in order that the solution of equation (3.10) satisfies
equation (3.7). Thirdly, by the uniqueness of analytical continuation we find the most general form
of the meromorphic solution of the equation of interest. Finally, by requiring for the solution to be
within the prescribed class we find the functionsM1(s) andM2(s).

5.1 General meromorphic solution

Let s be a point of the imaginary axis. To simplify the expressions forf (s ± π) we notice that the
image (4.18) of the points is the pointz = tan1

2η cot 1
2s on one of the semi-infinite segmentsL∗

(Fig.4). The pointss ± π fall into the pointsζ± = (−1/kz)± ∈ L±, whereL+ (L−) is the left
(right) bank of the contourL. Therefore

f (s ± π) = χ±
3 (ζ )[M1(s + π) coshχ±

4 (ζ ) + M2(s + π)q1/2(ζ ) sinhχ±
4 (ζ )], (5.1)

whereζ = −1/(kz), ζ ∈ L.
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5.1.1 Functions q1/2(ζ ) and β(s). We first establish a relation between the branches of the
functionsq1/2(ζ ) andβ(s). The single branch of the functionβ(s) has been chosen by the condition
β(0) = sinη. As for the branch of the functionq1/2(z), it meets the conditionq1/2(0) = 1. By
using relationsz = tan1

2η cot 1
2s we observe that

q1/2(z) = ε0
2β(s)

sinη(1 − coss)
, (5.2)

whereε0 is real and|ε0| = 1. To fix the sign ofε0 we put z = 0. Because the points = π

corresponds to the pointz = 0 on using formula (4.10), we find thatβ(π) = − sinη, and the right-
hand side in (5.2) equals−ε0. So,ε0 = −1. The desired relation between the functionsq1/2(ζ ) and
β(s) is obtained by exploring formula (4.40)

q1/2(ζ ) = 2β(s)

sinη(1 + coss)
. (5.3)

5.1.2 The functions χ+
3 (ζ ) and χ−

3 (ζ ). At the next stage we derive a relation between the
functionχ3(z), z ∈ L∗, and the limiting valuesχ±

3 (ζ ) on the banksL± of the contourL. Clearly,
χ+

3 (ζ ) = −χ−
3 (ζ ). By noticing thatk2t2

1 = 1/t2
1, from (4.63) one can deduce

χ+
3 (ζ ) = ε1Q(z)χ3(z), Q(z) = β(s)

√
cos2 s − sin2 θ

(coss − sinθ)(coss + cosη)
tan

s

2
, (5.4)

where ε1 could be either 1 or−1. We next fix the sign of the parameterε1. The function√
cos2 s − sin2 θ is single-valued in the strip� cut along the curves(−θ2, −θ1) ⊂ �0 and

(θ1, θ2) ⊂ �1. The branch of this function is fixed such that at the points = 0 it is equal to

cosθ . Equivalently,
√

cos2 s − sin2 θ ∼ coss as Ims → ±∞. Now, because the branch of the
function χ3(z) has been chosen by the conditionχ3(z) ∼ z = tan η

2 cot s
2, asz → ∞ (s → 0),

the sign of the parameterε1 cannot be arbitrary and has to be defined. On settingζ = 0 in the first
equation in (5.4), we obtain

χ+
3 (0) = −i t1z1 = tan2 η

2
cot

(
π

4
− θ

2

)
,

Q(z) ∼ tan
η

2
cot

(
π

4
− θ

2

)
tan

s

2
, χ3(z) ∼ tan

η

2
cot

s

2
, z → ∞ (s → 0). (5.5)

Comparing the limiting value of the functionQ(z)χ3(z) as z → ∞ (s → 0) with χ+
3 (0) yields

ε1 = 1. Therefore

χ±
3 (ζ ) = ±Q(z)χ3(z). (5.6)

5.1.3 The functions χ+
4 (ζ ) and χ−

4 (ζ ). By the Sokhotski–Plemelj formulae applied to the
functionχ2(z) in (4.63) we obtain

χ±
2 (ζ ) = ± log l1(ζ ) + π i

2q1/2(ζ )
+ χ2(ζ ), (5.7)
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whereχ2(ζ ) is the principal value of the integral in (4.63). On using (4.40) we have logl1(ζ ) =
log l1(z). Therefore, the limiting values of the functionχ4(z) = q1/2(z)χ2(z) on the banksL± can
be written as follows:

χ±
4 (ζ ) = ± log l1(z) + π i

2
+ χ5(ζ ) + χ6(ζ ). (5.8)

Here

χ5(ζ ) = −ζq1/2(ζ )

π i

∫ t1

0

[log l1(t) + π i]dt

q1/2(t)(t2 − ζ 2)
,

χ6(ζ ) = −ζq1/2(ζ )

∫ z1

1

dt

q1/2(t+)(t2 − ζ 2)
. (5.9)

Notice that the integrand in the first integral in (5.9) is even and therefore

χ5(ζ ) = q1/2(ζ )

2π i

∫
L

[log l1(t) + π i]dt

q1/2(t)(t − ζ )
· (5.10)

On making the substitutionsζ = −1/(kz) andt = −1/(kτ) and using formulae (4.40) and (5.3),
we transform the above integral

χ5(ζ ) = −q1/2(z)

2π i

∫
L∗

[log l1(τ ) + π i]dτ

q1/2(τ )(τ − z)
− q1/2(z)

2π i z

∫
L∗

[log l1(t) + π i]dt

q1/2(t)
. (5.11)

Also, from (4.41) and (5.10)

χ5(ζ ) = χ5(z) − q1/2(z)

2π i

∫
L∪L∗

h(t)dt + d0

z
q1/2(z), (5.12)

where

h(t) = log l1(t) + π i

q1/2(t)(t − z)
. (5.13)

The functionh(t) is holomorphic in the domainD (Fig.4) aside from a semi-circle of sufficiently
small radiusρ and centrez ∈ L∗. It is continuous up to the boundary apart from the pointsz±

1 , z±
2 ∈

γ ±
1 , where the functionh(t) has logarithmic singularities. By the Cauchy theorem(∫ t−ρ

−tR

+
∫ tR

tρ
+

∫
cρ

+
∫

CR

+
∮

a

)
h(t)dt = 0. (5.14)

Because of (4.46), the last integral in (5.14) over the cross-sectiona can be transformed as follows:

∮
a

h(t)dt =
∫ 1/k

1

log l+1 (t) + log l−1 (t) + 2π i

q1/2(t+)(t − z)
dt

=−2π i

(∫ z1

1
+

∫ 1/k

z2

)
dt

q1/2(t+)(t − z)
. (5.15)
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On the circular arccρ ,

h(t) = log l1(z) + π i

q1/2(z)

1

t − z
+ h1(t), |h1(t)| � A1, A1 = const. (5.16)

On the contourCR , the functionh(t) admits the representationh(t) = h2(t)t−3, where|h2(t)| �
A2, A2 = const. Finally, takingρ → 0 andR → ∞, from (5.14) and (5.12) we find

χ5(ζ ) = χ5(z) − log l1(z) + π i

2
− q1/2(z)

(∫ z1

1
+

∫ 1/k

z2

)
dt

q1/2(t+)(t − z)
+ d0

z
q1/2(z). (5.17)

Now we transform the integralχ6(ζ ). On using formula (4.41), we find it is a straightforward matter
to show that

χ6(ζ ) = −d0

ζ
q1/2(ζ ) − q1/2(ζ )

ζ

∫ z1

1

t2dt

q1/2(t+)(t2 − ζ 2)
. (5.18)

By making the substitutionsζ = −1/(kz) andt = −1/(kτ) the integral becomes

χ6(ζ ) = −d0

z
q1/2(z) + zq1/2(z)

∫ 1/k

z2

dt

q1/2(t+)(t2 − z2)
. (5.19)

Here we used that forτ1 = −τ , q1/2(τ+) = q1/2(τ−
1 ) = −q1/2(τ+

1 ).
Having transformed the integralsχ5(ζ ) andχ6(z) we obtain from (5.8), (5.17) and (5.19) the

following relation for the limiting valuesχ±
4 (ζ ):

χ±
4 (ζ ) = χ4(z) ± log l1(z) + π i

2
+ χ7(z), (5.20)

where

χ7(z)=− log l1(z) + π i

2
− q1/2(z)

2

(∫ z1

1
+

∫ 1/k

z2

) (
1

t − z
+ 1

t + z

)
dt

q1/2(t+)

=− log l1(z) + π i

2
− q1/2(z)

2

(∫ −z2

−1/k
+

∫ −1

−z1

+
∫ z1

1
+

∫ 1/k

z2

)
dt

q1/2(t+)(t − z)
. (5.21)

The functionχ7(z) is an even holomorphic function in thez-plane cut along the curvesγ0, γ1. The
first relation in (5.21) reveals that the functionχ7(z) is bounded at infinity. We next prove thatχ7(z)
is identically equal to zero. Indeed, from the relation (4.46) and the Sokhotski–Plemelj formulae it
follows thatχ+

7 (t) + χ−
7 (t) = 0 for t ∈ γ1. Since the functionχ7(z) is even the same relation is

valid on the curveγ0: χ+
7 (t) + χ−

7 (t) = 0. Thus, the functionχ7(z) is bounded at infinity and at
the ends of the contoursγ0, γ1, it is holomorphic inC \ {γ0 ∪ γ1}, continuous up to the boundary
γ0 ∪ γ1 and it satisfies the boundary condition

χ+
7 (t) = −χ−

7 (t), t ∈ γ0 ∪ γ1. (5.22)

This Riemann–Hilbert problem has the trivial solution only. So,χ7(z) ≡ 0, z ∈ C.
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Since formula (5.1) requires the values of the functions coshχ±
4 (ζ ) and sinhχ±

4 (ζ ) we find first

eχ+
4 (ζ ) = i p(s)eχ4(z), eχ−

4 (ζ ) = − i

p(s)
eχ4(z), (5.23)

wherep(s) = exp{1
2 logλ1(s)}. Next,

coshχ±
4 (ζ ) = p1(s) coshχ4(z) ± p2(s) sinhχ4(z),

sinhχ±
4 (ζ ) = ±p2(s) coshχ4(z) + p1(s) sinhχ4(z), z ∈ L∗, (5.24)

where

p1(s) = i

2

(
p(s) − 1

p(s)

)
=

√
3β(s)

2
√

cos2 s − sin2 θ
,

p2(s) = i

2

(
p(s) + 1

p(s)

)
= − i coss

2
√

cos2 s − sin2 θ
. (5.25)

Here the branch of the function
√

cos2 s − sin2 θ is chosen in the same manner as in (5.4).

5.1.4 Relation for the functions M1(s) and M2(s). On substituting the expressions forf (s) and
f (s ± π) into equation (3.7) and using (4.66), (5.1), (5.3), (5.6) and (5.24) we obtain

−i tan
s

2

[
2(coss − cosη)

sinη(coss + 1)
M2(s + π) coshχ4(z) + β(s)

coss + cosη
M1(s + π) sinhχ4(z)

]

= M1(s) coshχ4(z) + 2β(s)

sinη(coss − 1)
M2(s) sinhχ4(z). (5.26)

The functions coshχ4(z) and sinhχ4(z) are linearly independent over the field of meromorphic
functions. Therefore, the conditions for the functionf (s) to satisfy equation (3.7) become

M1(s) = −2i
coss − cosη

sinη(coss + 1)
tan

s

2
M2(s + π),

−i tan
s

2

M1(s + π)

coss + cosη
= 2M2(s)

sinη(coss − 1)
, Res = 0. (5.27)

By the uniqueness theorem these conditions are valid not only on the imaginary axis but also in
the wholes-plane. We next notice that the first equation in (5.27) coincides with the second one if
we replaces by s + π . This means that in order that the general solution of equation (3.10) is the
general solution of the equation (3.7) it is necessary and sufficient that

M2(s) = − i sinη sins(coss − 1)

2(coss + 1)(coss + cosη)
M1(s + π). (5.28)

Thus, the general solution of (3.7) depends upon the functionM1(s) only and has the form

f (s) = χ3(z)

[
M1(s) coshχ4(z) − i sinsβ(s)M1(s + π) sinhχ4(z)

(coss + 1)(coss + cosη)

]
, −π � Res � π .

(5.29)

Werecall thatM1(s) is an arbitrary 2π -periodic meromorphic function to be defined. We emphasize
that the solution (5.29) is odd if and only if the functionM1(s) is even.
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5.2 Properties of the functions χ3(z), coshχ4(z), sinhχ4(z)

To identify the functionM1(s) we need to study the properties of the functions

f1(s) = χ3(z) coshχ4(z), f2(s) = i sinsβ(s)χ3(z) sinhχ4(z)

(coss + 1)(coss + cosη)
. (5.30)

In the strip−π � Res � π , the functionsf1(s) and f2(s) are odd, and it is sufficient to study their
properties in the strip 0� Res � π . Analysis of the functions (4.63) and (5.30) indicates that in the
strip 0� Res � π the functionsf1(s) and f2(s) may have singularities and zeros at the following
points: s = x ± i∞ (0 � x � π ), s = 0, s = η, s = θ±

1 ∈ �±
1 (the corresponding points in the

z-plane arez = ∓t1, z = ∞, z = 1, z = z±
1 ∈ γ ±

1 ) and also, because of the denominator of the
function f2(s), at the pointss = π ands = π − η. Apart from the above points, the functionsf1(s)
and f2(s) are bounded and do not equal zero.

Now we look into the behaviour of the functionsf1(s) and f2(s) as Ims → −∞, s ∈ �̄. In the
vicinity of the end pointt = t1 of the contourL,

χ3(z) = A0(z − t1)
1/2 + O{(z − t1)

3/2}
χ4(z) = 1

6 log(z − t1) + O(1), z → t1, A0 = const�= 0. (5.31)

Therefore,

χ3(z) coshχ4(z) = A1(z − t1)
1/3 + A2(z − t1)

2/3 + O{(z − t1)
4/3},

χ3(z) sinhχ4(z) = −A1(z − t1)
1/3 + A2(z − t1)

2/3 + O{(z − t1)
4/3}, z → t1, (5.32)

whereA1, A2 are non-zero constants. Next, since

z − t1 ∼ 2t1e−is,
i sinsβ(s)

(coss + 1)(coss + cosη)
∼ 1, Im s → −∞, s ∈ �̄, (5.33)

it follows that

f1(s) = A′
1e−is/3 + A′

2e−2is/3 + O(e−4is/3),

f2(s) = −A′
1e−is/3 + A′

2e−2is/3 + O(e−4is/3), Im s → −∞, s ∈ �̄, (5.34)

whereA′
1, A′

2 are some non-zero constants. So, the functionsf1(s) and f2(s) decay exponentially
at the lower end of the strip. Since they are odd functions, they decay exponentially at the upper end
as well:

f1(s) = −A′
1eis/3 − A′

2e2is/3 + O(e4is/3),

f2(s) = A′
1eis/3 − A′

2e2is/3 + O(e4is/3), Im s → +∞, s ∈ �̄. (5.35)

Next, we analyse these functions at the pointss = 0 ands = π . As z → ∞, χ3(z) ∼ z, and
the functionχ4(z) is bounded and continuous at the pointz = ∞. Since this function is odd then,
clearly,χ4(∞) = 0. This meansχ4(z) ∼ A3z−1, z → ∞, A3 = const�= 0. Then

coshχ4(z) = 1 + O(z−2), sinhχ4(z) = A3z−1 + O(z−3), z → ∞. (5.36)

From the above formulae it follows that the points = 0 is asimple pole of the functionf1(s) and a
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simple zero of the functionf2(s). To recover the properties of these functions at the points = π ,
we notice that

coshχ+
4 (0) = p1(0) �= 0, sinhχ+

4 (0) = p2(0) �= 0. (5.37)

The function f1(s) is clearly bounded and non-zero at the points = π . As for the second function,
f2(s), because of the factor sins/(coss + 1), it has a simple pole at the points = π .

Now we prove that both functions are bounded and non-zero at the points = η. The image of this
point in thez-plane is the pointz = 1. Analysis of the Cauchy integral in (4.63) shows (Gakhov (9))

χ2(z) = − π i

2q∗(1)
(z − 1)−1/2 + χ∗(z), (5.38)

whereq∗(z) = (z − 1)−1/2q1/2(z) andχ∗(z) is a function bounded atz = 1 andχ∗(1) �= 0. Then
by the definition (4.67)

χ4(z) = −π i

2
+ q∗(1)χ∗(z)(z − 1)1/2, z → 1. (5.39)

Hence coshχ4(z) ∼ −i A4(z − 1)1/2, sinhχ4(z) ∼ −i , z → 1, whereA4 = q∗(1)χ∗(1) �= 0. Use
of this result and also of the asymptotics

χ3(z) ∼ A5(z − 1)−1/2, z → 1, A5 = const�= 0,

β(s) ∼ A6(s − η)1/2, s → η, A6 = const�= 0, (5.40)

yields the boundness of the functionsf1(s), f2(s) at the points = η and f j (η) �= 0, j = 1, 2.
The next potential singular point iss = π − η. Its image is the pointz = 1/k. From (4.63) we

find χ4(z) ∼ A7(z − 1/k)1/2, z → 1/k, A7 = const �= 0. Therefore, coshχ4(1/k) = 1 and the
function sinhχ4(z) has a zero of order12. Because the functionβ(s) has also a zero of order12 at
the points = π −η, both functionsf1(s) and f2(s) are bounded and do not equal zero at this point.

Finally, we analyse the behaviour of the functionsf1(s), f2(s) at the pointss = θ±
1 ∈ �±

1 . Since

χ3(z) ∼ A8(z − z1)
1/2, z → z1, A8 = const�= 0,

χ4(z) ∼ ∓1
2 log(z − z1), z → z±

1 , z /∈ γ1, (5.41)

it follows that in the vicinity of the pointss = θ±
1 ∈ �±

1 ,

coshχ4(z) ∼ A9(s − θ1)
−1/2, sinhχ4(z) ∼ ±A9(s − θ1)

−1/2,

χ3(z) ∼ A′
8(s − θ1)

1/2, s → θ±
1 , s /∈ �1, (5.42)

whereA′
8, A9 are non-zero constants. On using thatβ+(θ1) = −β−(θ1) �= 0, we obtain that the

functions f1(s) and f2(s) are bounded at the points = θ1 and, in addition,f +
j (θ1) = f −

j (θ1) �= 0,
j = 1, 2.

In summary, the odd functionsf1(s) and f2(s) are bounded and non-zero everywhere in a finite
part of the strip−π � Res � π apart from the pointss = 0 ands = ±π . At the points = 0, the
function f1(s) has a simple pole, and the functionf2(s) has a simple zero. At the pointss = ±π ,
the function f1(s) is bounded and non-zero, and the functionf2(s) has simple poles. At the ends of
the strip these functions decay exponentially as described in (5.34), (5.35).
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5.3 Definition of the function M1(s)

First we prove that the even 2π -periodic functionM1(s) is entire. Equation (3.7) and formulae
(4.15) indicate that the functionM1(s) may have simple poles at the points±(π/2 + θ) + 2πn,
n ∈ Z, and at the zeros of the function�(s) = i

√
3β(s) coss, that is, at the pointsπ/2 + πn,

±η + πn, n ∈ Z. Analyse the function

f (s) = f1(s)M1(s) − f2(s)M1(s + π) (5.43)

at the points = π/2+θ . Sinces = 3π/2+θ is not a pole of the functionM1(s) and f1(π/2+θ) �= 0
then from the analyticity of the functionf (s) at the points = π/2 + θ , it follows the analyticity of
the functionM1(s) at this point and therefore, by the periodicity, at the pointss = ±(π/2+θ)+2πn,
n ∈ Z.

It has been shown that the functionsf1(s) and f2(s) are non-zero at the pointss = ±η. Clearly,
the function f (s) is analytic at these points if the functionM1(s) is analytic at the points±η + πn,
n ∈ Z.

Now we study the functionM1(s) at the points = π/2. Represent it as follows:M1(s) =
M0(s) secs, where the functionM0(s) is an even 2π -periodic function. From (5.43) and (5.30) the
residue of the functionf (s) at the points = π/2 becomes

res
s=π/2

f (s) = − f1
(π

2

)
M0

(π

2

)
− f2

(π

2

)
M0

(
3π

2

)
= −M0

(π

2

)
χ+

3 (z0)e
χ+

4 (z0), (5.44)

wherez0 = tan1
2η = 1/

√
k. Here we used the analyticity of the functionsf j (s), j = 1, 2, in

the strip�, their definition (5.30) and also the relationsM0(3π/2) = M0(−π/2) = M0(π/2) (the
function M0(s) is even and 2π -periodic). We can further reason, on using the analyticity of the
function f (s) at the points = π/2 andalsoχ+

3 (z0) �= 0, thatM0(π/2) = 0. This means that the
function M1(s) is analytic at the pointsπ/2 + πn, n ∈ Z.

At the points = 0, the functionf1(s) has a simple pole. For the functionf (s) to be analytic at
this point, it is necessary thatM1(0) = 0. But the functionM1(s) is even and therefore its zero at
the points = 0 is of order not less than two. Note that although the functionf2(s) has simple poles
at the pointss = ±π , the function f (s) is bounded at these points.

On using (3.8), (5.34), (5.35) and (5.43), we find that the functionM1(s) may grow exponentially
as Ims → ±∞, s ∈ �̄ as follows:

|M1(s)| � A∗e
7
3 | Im s|, A∗ = const. (5.45)

Thus, the most general form of the even 2π -periodic entire functionM1(s) that meets all the above
conditions is

M1(s) = (1 − coss)(B0 + B1 coss), (5.46)

whereB0, B1 are arbitrary constants. Then the desired odd solution of equation (3.7) in the class
(3.8) in the strip�̄ has the form

f (s)=χ3(z)

{
(1 − coss)(B0 + B1 coss) cosh[q1/2(z)χ2(z)]

− i sinsβ(s)

coss + cosη
(B0 − B1 coss) sinh[q1/2(z)χ2(z)]

}
, −π � Res � π . (5.47)

Outside the strip̄�, the solution can be found by analytical continuation by means of equation (3.7).



SECOND-ORDER FUNCTIONAL-DIFFERENCE EQUATIONS. II 293

6. Analysis of the spectral functions S1(s), S2(s)

6.1 Asymptotics at infinity

First we write down the asymptotics at infinity of the functionsf (s) andψ(s). From (5.34), (5.35),
(5.43) and (5.46) for the odd functionf (s) we obtain

f (s) = ∓Ae∓ 5
3 is + O(e∓ 2

3 is), Im s → ±∞, A = −1
2 A′

2B1. (6.1)

To analyse the asymptotics of the functionψ(s) as Ims → −∞, we make the substitutionsx =
e−is , x0 = e−is0, ξ = e−iτ in (3.12) (C2 = 0). Then the kernel (3.14) becomes

�(τ, s) = − 4iξ2(x − x0)

(ξ − x)(ξ − x0)(ξ2 + 1)
. (6.2)

Wenext introduce the function

ψ∗(s) = coss

4π i

∫ i∞

−i∞
�(τ, s) f (τ )dτ = (x − x0)(x2 + 1)

2π i x

∫ ∞

0

ξ f0(ξ)dξ

(ξ − x)(ξ − x0)(ξ2 + 1)
, (6.3)

where f0(ξ) = f (i logξ). From (6.1) we may conclude that the functionξ f0(ξ) has a power
singularity at the pointξ = 0:

ξ f0(ξ) = Aξ−2/3 + O(ξ1/3), ξ → 0. (6.4)

Analysis of the Cauchy integral (6.3) at the pointx = 0 gives

ψ∗(s) = A√
3

eπ i/6+ 5
3 is + ψ0(s)e

is, Im s → −∞, (6.5)

whereψ0(s) is a bounded function with a definite finite limit as Ims → −∞. Then

ψ(s) = i A√
3

e
5
3 is + ψ1(s)e

is, Im s → −∞, (6.6)

whereψ1(s) = 1
2C1 − ψ0(s − π). Wenotice that the functionψ(s) is even and therefore

ψ(s) = i A√
3

e− 5
3 is + ψ1(−s)e−is, Im s → +∞. (6.7)

Having found the asymptotics at infinity of the functionsψ(s) and f (s) we now define the
asymptotics of the spectral functions. Formulae (3.17), (3.18), (6.1), (6.6) and (6.7) imply

S1(s) = A±e±is/3 + S±(s)e±is, Im s → ±∞, (6.8)

where

A+ = 4√
6
(i − 1)A cos 2ϕ0, A− = −i A+, (6.9)

and the bounded functionsS±(s) have the definite finite limitsS+(i∞) = −S−(−i∞). Thus, the
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spectral functionS1(s) decays exponentially as Ims → ±∞: S1(s) = O(e− 1
3 Im s|). To specify the

asymptotics at infinity of the second spectral function, we notice that

S1(s + π) + S1(s − 2π)= A±(e±iπ/3 + e∓2π/3)e±is/3

+[S±(s + π) + S±(s − 2π)]e±is, Im s → ±∞. (6.10)

Since the first term in the right-hand side in (6.10) vanishes, on using formula (3.2), we obtain that
the spectral functionS2(s) is bounded as Ims → ±∞ and it has the definite finite limitsS2(±i∞)

such thatS2(i∞) = −S2(−i∞).

6.2 Definition of the arbitrary constants

In general, the spectral functions may have some inadmissible poles which should be eliminated by
fixing the arbitrary constants. The functionS1(s) must be analytic everywhere in the strip−3π/4 �
Res � 3π/4 apart from the points = ϕ0, where it has to have a simple pole to reproduce the
incident field (2.8)

res
s=ϕ0

S1(s) = 1. (6.11)

The functionS2(s) must be free of poles everywhere in the strip−π/4 � Res � π/4. Among the
poles of the function�(s), s = ϕ0+πn, s = −ϕ0+π/2+πn (n = 0, ±1, ±2, . . . ) determine now
those which violate the analyticity of the spectral functionsS1(s) andS2(s) in the strips{−3π/4 �
Res � 3π/4} \ {s = ϕ0} and{−π/4 � Res � π/4}, respectively.

Let firstπ/4 � ϕ0 � 3π/4. Then there are only two inadmissible poles at the pointss = ϕ0 − π

ands = −ϕ0 +π/2 for the functionS1(s). As for the functionS2(s), it has only one forbidden pole
at the points = π/2 − ϕ0. In the next zone,−π/4 � ϕ0 � π/4, the poles, we need to remove, are
s = −ϕ0−π/2 ands = −ϕ0+π/2 for the functionS1(s) ands = ϕ0 for the second functionS2(s).
In the last possible case,−3π/4 � ϕ0 � −π/4, the functionS1(s) has two poless = −ϕ0 − π/2
ands = ϕ0 + π , and the functionS2(s) has again only one poles = −ϕ0 − π/2 which should be
removed. Thus, we have found three new additional conditions

res
s=α1

S1(s) = 0, res
s=α2

S1(s) = 0, res
s=α3

S2(s) = 0, (6.12)

where

α1 =
{

ϕ0 − π, π/4 � ϕ0 � 3π/4,

−ϕ0 − π/2, −3π/4 � ϕ0 � π/4,
α2 =

{
−ϕ0 + π/2, −π/4 � ϕ0 � 3π/4,

ϕ0 + π, −3π/4 � ϕ0 � −π/4,

α3 =




−ϕ0 + π/2, π/4 � ϕ0 � 3π/4,

ϕ0, −π/4 � ϕ0 � π/4,

−ϕ0 − π/2, −3π/4 � ϕ0 � −π/4.

(6.13)

To fix the four constantsB0, B1, C0 andC1, we have the four conditions (6.11) and (6.12). On
evaluating the residues in (6.11) and (6.12), we can express these conditions in terms of the functions
f (s) andψ(s). Let

δ± = sinθ ± sin(ϕ0 + π/4). (6.14)
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Suppose first that−3π/4 � ϕ0 � −π/4. Then by using (6.13) and substituting the expressions
(3.17) and (3.18) into the conditions (6.11), (6.12) we replace them by

δ+[ f (ϕ0 − π/4) − 1] = 0, f (ϕ0 + 3π/4) = 0,

ψ (ϕ0 − π/4) = 0, ψ (ϕ0 + 3π/4) = 1. (6.15)

It will be shown in section 8.1 that the assumptionδ+ = 0 implies the existence of non-physical
reflected wave in the shadow domain. The parameterδ+ vanishes if and only ifϕ0 = −π/4− θ and
θ is real. Therefore we exclude this case and from the first condition in equations (6.15) we have
f (ϕ0 − π/4) = 1.

Correspondingly, in the case−π/4 � ϕ0 � π/4, the conditions (6.11), (6.12) become

f (ϕ0 − π/4) = 1, δ− f (ϕ0 + 3π/4) = 0,

ψ (ϕ0 − π/4) = 0, ψ (ϕ0 + 3π/4) = 1. (6.16)

Analysis of the reflected waves and the surface waves (section 8.1) indicates that the caseϕ0 =
θ −π/4, θ is real (δ− = 0), is singular and gives rise to the infinite reflected and surface coefficients.
Thereforeδ− �= 0 and f (ϕ0 + 3π/4) = 0. Finally, if π/4 � ϕ0 � 3π/4, then the additional
conditions can be written in the form

f (ϕ0 − π/4) = 1, δ− f (−ϕ0 + 5π/4) = sin(ϕ0 + π/4),

ψ (ϕ0 − π/4) = 0, ψ (−ϕ0 + 5π/4) = 0. (6.17)

The assumptionδ− = 0 meansϕ0 = 3π/4−θ andθ is real,θ �= 0. It conflicts with the requirement
for the functionS2(s) to be analytic everywhere in the strip 3π/4 � Res � 5π/4. Also, if δ− = 0,
then the reflected and the surface coefficients become infinite (section 8.1). Therefore,δ− �= 0 and

f (−ϕ0 + 5π/4) = δ∗, δ∗ = δ−1− sin(ϕ0 + π/4). (6.18)

We next aim to find the constantsB j , C j ( j = 0, 1) explicitly. Rewrite the expressions for the
functions f (s) andψ(s) as follows:

f (s) = B0F0(s) + B1F1(s), −π < Res < π,

ψ(s) = C0 + C1 coss + B0G0(s) + B1G1(s), −π < Res < π, (6.19)

where the functionsF j (s) andG j (s) ( j = 0, 1) are independent of the constantsB j , C j :

F j (s) = cosj s χ3(z)

{
(1 − coss) cosh[q1/2(z)χ2(z)] − (−1) j i sinsβ(s)

coss + cosη
sinh[q1/2(z)χ2(z)]

}
,

G j (s) = coss

4π i

∫



�(τ, s)F j (τ − π)dτ, j = 0, 1. (6.20)

Now it is straightforward to write down the desired constants in explicit form. By substituting the
expressions (6.19) into equations (6.15) we obtain

B0 = F+
1 − δF−

1

D , B1 = −F+
0 − δF−

0

D ,
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C0 = −1

2

[
B0(G−

0 + G+
0 ) + B1(G−

1 + G+
1 ) − 1 + δ

δ∗

]
,

C1 = − 1

2cos(ϕ0 − π/4)

[
B0(G−

0 − G+
0 ) + B1(G−

1 − G+
1 ) + 1 − δ

δ∗

]
. (6.21)

Here
F−

j = F j (ϕ0 − π/4) , G−
j = G j (ϕ0 − π/4) , D = F−

0 F+
1 − F+

0 F−
1 ,

F+
j =

{
F j (ϕ0 + 3π/4) , −3π/4 � ϕ0 � π/4,

F j (−ϕ0 + 5π/4) , π/4 � ϕ0 � 3π/4,

G+
j =

{
G j (ϕ0 + 3π/4) , −3π/4 � ϕ0 � π/4,

G j (−ϕ0 + 5π/4) , π/4 � ϕ0 � 3π/4,
(6.22)

and

δ =
{

0, −3π/4 � ϕ0 � π/4,

δ∗, π/4 � ϕ0 � 3π/4.
(6.23)

The determination of the four constants completes the procedure that constructs the exact
formulae for the spectral functionsS1(s), S2(s). The functionS1(s) is analytic everywhere in the
strip −3π/4 � Res � 3π/4 apart from the poles = ϕ0. It decays exponentially at infinity
as e−| Im s|/3. The second functionS2(s) is analytic in the strip−π/4 � Res � π/4. It is
bounded at infinity andS2(i∞) = −S2(−i∞). In the exterior of the above strips both functions
are meromorphic and single-valued. We have also established that if the parameterθ is real and the
incident angleϕ0 equals−π/4 − θ , then a non-physical reflected wave is observed in the shadow
domain. Forϕ0 = −π/4 + θ or ϕ0 = 3π/4 − θ (θ is real), the reflected and surface coefficients
become infinite.

7. Case η = 0: no branch points

In this section we aim to find a solution of equation (3.10) in the case when there are no branch
points, and solving the Riemann–Hilbert problem on the elliptic surface can be bypassed.

7.1 General solution of the auxiliary equation

If η = 0, then sinθ = 1
2

√
3,

a(s) = cos2 s − 3
4, b(s) = cos2 s − 3

2, �(s) = 3cos2 s sin2 s, (7.1)

and the eigenvaluesλ1, λ2 become

λ1(s) = coss + √
3sins

coss − √
3sins

, λ2(s) = 1

λ1(s)
. (7.2)
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The matrix of transformationT(s) is single-valued, and the functionsFj (z) = φ j (s) ( j = 1, 2),
z = i cot 1

2s, are solutions to the following scalar Riemann–Hilbert problems:

F+
j (t) = l j (t)F−

j (t), t ∈ (−1, 1), j = 1, 2, (7.3)

where

l j (t) = λ j

(
π + i log

1 + t

1 − t

)
= 1 + t2 − (−1) j 2i

√
3t

1 + t2 + (−1) j 2i
√

3t
, j = 1, 2. (7.4)

In view of

λ1(π ± i∞) = −1

2
±

√
3

2
i, λ2(π ± i∞) = −1

2
∓

√
3

2
i, λ j (π) = 1, (7.5)

and since Imλ j (σ ), σ ∈ 
, vanishes if and only ifs = π , the increments of the arguments of
the eigenvaluesλ1, λ2 are equal to4

3π , −4
3π , respectively. Choose the branches of the functions

log l j (t) as follows:

argl1(−1) = −2π

3
, argl2(−1) = 2π

3
. (7.6)

Then, obviously,

argl1(1) = 2π

3
, argl2(1) = −2π

3
. (7.7)

The general solutions to the problems (7.3) have the formFj (z) = Fj0(z)R j (z), where R j (z),
j = 1, 2, are rational functions, and

Fj0(z) = exp

{
1

2π i

∫ 1

−1

log l j (t)

t − z
dt

}
, z ∈ C \ [−1, 1], j = 1, 2. (7.8)

Because of the relations (7.4), (7.6) and (7.7)

log l j (−t) = − log l j (t), t ∈ [−1, 1], j = 1, 2,

log l2(t) = − log l1(t), t ∈ [−1, 1]. (7.9)

Therefore,

F10(z) = exp

{
1

π i

∫ 1

0

t log l1(t)

t2 − z2
dt

}
, F20(z) = 1

F1(z)
, z ∈ C \ [−1, 1], (7.10)

are even functions. At the end points,

F10(z) = O{(z ∓ 1)1/3}, F20(z) = O{(z ∓ 1)−1/3}, z → ±1. (7.11)

The general solution of the auxiliary equation (3.10) when there are no branch points becomes

f (s) = �10(s)P1(s) + �20(s)P2(s), (7.12)

where

�10(s) = F10(z), �20(s) = 1

�10(s)
, Pj (s) = R j (z), z = i cot

s

2
. (7.13)

The functions� j0(s) are even, andPj (s) ( j = 1, 2) are 2π -periodic meromorphic functions.
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7.2 General solution of the governing equation (3.7)

Define now which conditions have to satisfy the functionsPj (s), j = 1, 2, in order that formula
(7.12) provides the general solution of equation (3.7). As in the general case, we substitute the
general solution (7.12) of the auxiliary equation into equation (3.7)

(coss − sinθ){[�10(s + π)+�10(s − π)]P1(s + π) + [�20(s + π) + �20(s − π)]P2(s + π)}
= coss[�10(s)P1(s) + �20(s)P2(s)] (7.14)

and assume first that Res = 0. By the mappingz = i cots/2, a points of the imaginary axis
is transformed into the pointx = i cots/2 ∈ (−∞, −1) ∪ (1, ∞). As for the boundary points
s ± π , they fall into the points(1/x)± ∈ (−1, 1)± on the upper and lower banks of the cut[−1, 1].
Therefore

�10(s) = F10(x) = expχ1(x), χ1(x) = 1

2π i

∫ 1

−1

log l1(t)dt

t − x
, x = i cot

s

2
. (7.15)

By the Sokhotski–Plemelj formulae,

�10(s ± π) = F±
10

(
1

x

)
= [l1(x)]±1/2 expχ∗(x), (7.16)

whereχ∗(x) is the principal value of the Cauchy integral

χ∗(x) = 1

2π i

∫ 1

−1

log l1(t)dt

t − 1/x
. (7.17)

On replacingt by 1/t and using the identityl1(1/x) = l1(x), we obtain another formula for the
integralχ∗(x):

χ∗(x) = 1

2π i

(∫ −1

−∞
+

∫ ∞

1

) (
1

t
− 1

t − x

)
log l1(t)dt

t − x
. (7.18)

The next step of the procedure is to establish a relation between the functionsχ1(x) andχ∗(x).
From (7.15) and (7.18),

χ1(x) − χ∗(x) = 1

2π i

∫ ∞

−∞
log l1(t)dt

t − x
− C, (7.19)

where the constantC is given by

C = 1

2π i

(∫ −1

−∞
+

∫ ∞

1

)
log l1(t)dt

t
. (7.20)

To evaluate the integral in (7.19) consider the function

g(z) = log l1(z)

z − x
, z ∈ (−∞, ∞). (7.21)
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Re z

Fig. 5 The domainD and the contour of integration:η = 0

Since

log l1(z) = log
1 + z2 + 2i

√
3z

1 + z2 − 2i
√

3z
= log

[z − (2 − √
3)i][z + (2 + √

3)i]
[z − (2 + √

3)i][z + (2 − √
3)i] , log l1(∞) = 0,

(7.22)

it follows that the functiong(z) is analytic in thez-plane cut along the segments[−(2+√
3)i, −(2−√

3)i] and[(2 − √
3)i, (2 + √

3)i] of the imaginary axis, apart from the simple pole at the point
z = x . As z → ∞, g(z) ∼ 4i

√
3z−2. To apply the Cauchy theorem to the functiong(z) analytic in

the domainD (Fig.5), we notice that∫
cρ

g(z)dz = −π i log l1(x) + ρI(ρ), |I(ρ)| � K0, K0 = const,

∫
CR

g(z)dz = R−1I ′(R), |I ′(R)| � K ′
0, K ′

0 = const, (7.23)

and ∫
L+∪L−

g(z)dz = 2π i log
x − (2 − √

3)i

x − (2 + √
3)i

. (7.24)

On lettingρ → 0 andR → ∞, wefinally obtain

1

2π i

∫ ∞

−∞
log l1(t)dt

t − x
= 1

2
log

[x − (2 + √
3)i][x + (2 + √

3)i]
[x − (2 − √

3)i][x + (2 − √
3)i] . (7.25)
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On applying this result it is possible to evaluate the constantC . The identity logl1(1/t) = log l1(t)
and formula (7.20) imply

C = 1

2π i

∫ 1

−1

log l1(t)dt

t
. (7.26)

By adding (7.20) and (7.26) and settingx = 0 in (7.25) we find

C = log(2 + √
3). (7.27)

Substituting formulae (7.25) and (7.27) into (7.19) yields the desired relation

χ∗(x) = χ1(x) + log(2 + √
3) − 1

2
log

[x − (2 + √
3)i][x + (2 + √

3)i]
[x − (2 − √

3)i][x + (2 − √
3)i] . (7.28)

On using (7.15), (7.16) and (7.28), we observe that the limiting values of the functions� j0(s ± π),
j = 1, 2, have the following representations, which are required in the sequel:

�10(s ± π) = (2 + √
3)

x ∓ (2 − √
3)i

x ∓ (2 + √
3)i

�10(s),

�20(s ± π) = (2 − √
3)

x ∓ (2 + √
3)i

x ∓ (2 − √
3)i

�20(s). (7.29)

Consequently, by using the relations

x2= coss + 1

coss − 1
,

� j0(s + π) + � j0(s − π)= 2coss� j0(s)

2coss + (−1) j
√

3
, j = 1, 2, (7.30)

we are able to replace equation (7.14) by

�10(s)P1(s + π) + 2coss − √
3

2coss + √
3
�20(s)P2(s + π) = �10(s)P1(s) + �20(s)P2(s), Res = 0.

(7.31)

Because of the linear independence of the functions�10(s) and�20(s) we obtain

P1(s + π)= P1(s),

(2coss − √
3)P2(s + π)=(2coss + √

3)P2(s). (7.32)

By the uniqueness theorem, these relations are valid not just on the imaginary axis but also in the
wholes-plane. Thus, if the 2π -periodic meromorphic functionsP1(s), P2(s) meet the requirements
(7.32), then the functionf (s) given by (7.12) is not only a solution of the auxiliary equation (3.10)
but also the general solution of equation (3.7) in the strip−π � Res � π .

We next specify the behaviour of the meromorphic functions at infinity and their possible poles.
From (7.11),

�10(s) = O(e−| Im s|/3), �20(s) = O(e| Im s|/3), Im s → ±∞. (7.33)
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Therefore the functionsP1(s) andP2(s) may grow at infinity and

|P1(s)| � K1e
7
3 | Im s|, |P2(s)| � K2e

5
3 | Im s|, Im s → ±∞, (7.34)

whereK1, K2 are non-zero constants. Similarly to the general case, we outline the set of potential
poles of the meromorphic functionsP1(s), P2(s). They are the zeros of the function�1/2(s) =√

3coss sins and also the points±5
6π + 2πn, n ∈ Z (θ = 1

3π ). However, the assumption that
s = 5

6π is a pole of the functionP1(s) conflicts with the first relation (7.32). This is because the
function P1(s +π) is bounded ass = 5

6π . The points = 5
6π cannot be a pole of the functionP2(s)

for the function f (s) being analytic at the points = 5
6π . Next, the functionsP1(s) and P2(s) are

2π -periodic and odd. Therefore they are analytic at all the points±5
6π +2πn, n ∈ Z. So, they may

have simple poles at the zeros of the function sin 2s only.
The most general form of the described functions is

P1(s) = 1

sin 2s

4∑
n=0

E ′
n cosns, P2(s) = 1

sin 2s

3∑
n=0

E ′′
n cosns, (7.35)

whereE ′
n and E ′′

n are arbitrary constants. Satisfying the conditions (7.32) yieldsE ′
1 = E ′

3 = 0,
E ′′

1 = −√
3E ′′

0, E ′′
2 = E ′′

0, E ′′
3 = 0. Hence

P1(s) = E ′
0 + E ′

2 cos 2s + E ′
4 cos 4s

sin 2s
, P2(s) = E ′′

0(2coss − √
3)

2sins
. (7.36)

Because of the analyticity of the functionf (s) in the strip−π � Res � π we need to make sure
that

res
s=0

f (s) = 0, res
s=π/2

f (s) = 0, res
s=π

f (s) = 0. (7.37)

On using that�10(0) = �20(0) = 1, we find from the first two conditions

E ′
0 + E ′

2 + E ′
4 + (2 − √

3)E ′′
0 = 0, E ′

2 = E ′
0 + E ′

4. (7.38)

From the relations�10(π) = 2 + √
3, �20(π) = (2 + √

3)−1 and also (7.38) it follows that the
third condition in (7.37) is satisfied automatically. Finally, the general solution of equation (3.7) in
the chosen class becomes

f (s) = B0 + B1 cos 2s + (B1 − B0) cos 4s

sin 2s
�10(s) − (2 + √

3)B1(2coss − √
3)

sins�10(s)
, (7.39)

where we introduced the new constantsB0 = E ′
0 andB1 = E ′

2. So, as in the caseη �= 0, there are
two arbitrary constantsB0 andB1 in the representation of the functionf (s). To adjust the procedure
of section 6.2 for the constantsB j andC j ( j = 0, 1) to the caseη = 0, we rewrite the expression
(7.39) for the functionf (s) in the form f (s) = B0F0(s) + B1F1(s), where

F0(s) = 2 sin2s�10(s),

F1(s) = cos 2s + cos 4s

sin 2s
�10(s) − (2 + √

3)(2coss − √
3)

sins�10(s)
. (7.40)
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We emphasize that the above functions are bounded ats = 0 (F j (0) = 0) and they are free of the
constantsB0, B1. Then the four unknown constants can be found by the method of section 6.2 by
formulae (6.21).

Finally, we note that the spectral functionsS1(s), S2(s) defined by (3.17), (3.18) have the same
asymptotics at infinity as in the caseη �= 0.

8. High frequency asymptotics

8.1 Reflected, transmitted and surface waves

As k0r → ∞, the electric fieldEz can be represented as follows:

Ez ∼ Ei
z + Er

z + Et
z + Es

z + Ed
z , (8.1)

whereEi
z , Er

z , Et
z , Es

z andEd
z are the incident, reflected, transmitted, surface and diffracted waves,

respectively. In this section we define these waves for the wedges−3π/4 < ϕ < 3π/4 and
3π/4 < ϕ < 5π/4. The usual trick of constructing the above waves is to apply the method of
steepest descent and to deform the contour� into another one consisting of two steepest descent
paths. The right-hand path is given by Res = π + gd(Im s) sgn Ims, where gdx is the Gudermann
function gdx = arccos(1/ coshx). This curve goes from the infinite points = π/2 − i∞, crosses
the real axis at the points = π and then travels to the upper infinite points = 3π/2 + i∞. The
lines Res = π/2 and Res = 3π/2 are the asymptotes for the lower and the upper part of the path,
respectively. The second path is symmetric to the first one with respect to the origin.

Let first the point of observation be a point in the external wedge−3π/4 < ϕ < 3π/4. Analysis
of the first spectral functionS1(s + ϕ) and the conditions (6.12) shows that the geometrical optics
poles should be among the ones listed below:

s = −ϕ + ϕ0, max{−3π/4, ϕ0 − π} < ϕ < min{3π/4, ϕ0 + π}, −3π/4 < ϕ0 < 3π/4,

s = −ϕ + ϕ0 + π, ϕ0 < ϕ < 3π/4, −π/4 < ϕ0 < 3π/4,

s = −ϕ + ϕ0 − π, −3π/4 < ϕ < ϕ0, −3π/4 < ϕ0 < π/4,

s = −ϕ − ϕ0 + π/2, −π/2 − ϕ0 < ϕ < 3π/4, −3π/4 < ϕ0 < −π/4,

s = −ϕ − ϕ0 − π/2, −3π/4 < ϕ < π/2 − ϕ0, π/4 < ϕ0 < 3π/4,

s = −ϕ − ϕ0 + 3π/2, π/2 − ϕ0 < ϕ < 3π/4, −π/4 < ϕ0 < 3π/4,

s = −ϕ − ϕ0 − 3π/2, −3π/4 < ϕ < −π/2 − ϕ0, −3π/4 < ϕ0 < π/4,

s = −ϕ + ϕ0 + 2π, π + ϕ0 < ϕ < 3π/4, −3π/4 < ϕ0 < −π/4,

s = −ϕ + ϕ0 − 2π, −3π/4 < ϕ < ϕ0 − π, π/4 < ϕ0 < 3π/4. (8.2)

To evaluate the residues of the functionS1(s) at the above poles we need to continue the function
S1(s) into the strip 5π/4 � Res � 9π/4:

S1(s) = �(s)

[
ψ

(
s − 5π

4

)
− f

(
s − 9π

4

)
+ cos(s − π/4) f (s − 5π/4)

cos(s − π/4) + sinθ

]
. (8.3)
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On using formulae (6.15) to (6.18) we deduce the following result. If−3π/4 < ϕ0 < −π/4, then

Ei
z = eik0r cos(ϕ−ϕ0)ωϕ

(
−3π

4
, π + ϕ0

)
, Et

z = eik0r cos(ϕ−ϕ0)
[
1 − f

(
ϕ0 − π

4

)]
ωϕ

(
π + ϕ0,

3π

4

)
,

Er
z = −eik0r sin(ϕ+ϕ0)

{
ωϕ

(
−3π

4
, −π

2
− ϕ0

)
+

[
1 − f

(
ϕ0 − π

4

)]
ωϕ

(
−π

2
− ϕ0,

3π

4

)}
,

(8.4)

where

ωϕ(a, b) =
{

1, ϕ ∈ [a, b],
0, ϕ /∈ [a, b]. (8.5)

In view of (6.15), for allϕ0 apart fromϕ0 = −π/4 − θ (θ is real), the valuef (ϕ0 − π/4) has to
be 1. The assumption thatf (ϕ0 − π/4) �= 1 in the caseδ+ = 0 gives reflected waves in the sector
−π/2 − ϕ0 < ϕ < 3π/4; that is impossible. Therefore, for allϕ0, f (ϕ0 − π/4) = 1, and the
transmitted and reflected waves in (8.4) have the form

Et
z = 0, Er

z = −eik0r sin(ϕ+ϕ0)ωϕ(−3π/4, −π/2 − ϕ0). (8.6)

In the case−π/4 < ϕ0 < π/4 the incident, transmitted and reflected waves are

Ei
z = eik0r cos(ϕ−ϕ0), Et

z = 0,

Er
z = −δ∗e−ik0r sin(ϕ+ϕ0)ωϕ(π/2 − ϕ0, 3π/4) − eik0r sin(ϕ+ϕ0)ωϕ(−3π/4, −π/2 − ϕ0). (8.7)

In the last possible caseπ/4 < ϕ0 < 3π/4, the waves have the form

Ei
z = eik0r cos(ϕ−ϕ0)ωϕ (ϕ0 − π, 3π/4) , Et

z = 0,

Er
z = −δ∗e−ik0r sin(ϕ+ϕ0)ωϕ(π/2 − ϕ0, 3π/4). (8.8)

Hereδ∗ is the same parameter as in (6.18). In the singular case, whenδ− = 0 we haveθ is real and
ϕ0 = θ − π/4 if −π/4 < ϕ0 < π/4 andϕ0 = −θ + 3π/4 if π/4 < ϕ0 < 3π/4. In both cases the
reflected coefficient−δ∗ is infinite.

On using the conditions (6.12), we next write the poles of the functionS2(s) which may
correspond to the reflected and transmitted waves in the sector 3π/4 < ϕ < 5π/4:

s = −ϕ + ϕ0 + π, 3π/4 < ϕ < 5π/4, π/4 < |ϕ0| < 3π/4,

s = −ϕ − ϕ0 + 3π/2, max{3π/4, π/2 − ϕ0} < ϕ < 5π/4, −3π/4 < ϕ0 < π/4,

s = −ϕ − ϕ0 + π/2, 3π/4 < ϕ < min{3π/2 − ϕ0, 5π/4}, −π/4 < ϕ0 < 3π/4,

s = −ϕ + ϕ0 + 2π, max{3π/4, π + ϕ0} < ϕ < 5π/4, −3π/4 < ϕ0 < π/4,

s = −ϕ + ϕ0, 3π/4 < ϕ < min{π + ϕ0, 5π/4}, −π/4 < ϕ0 < 3π/4,

s = −ϕ − ϕ0 + 5π/2, 3π/2 − ϕ0 < ϕ < 5π/4, π/4 < ϕ0 < 3π/4,

s = −ϕ − ϕ0 − π/2, 3π/4 < ϕ < π/2 − ϕ0, −3π/4 < ϕ < −π/4. (8.9)

As in the case of the angular region|ϕ| < 3π/4, to evaluate the residues at these poles in addition
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to formulae (3.18) we need the relevant spectral function in the stripsπ/4 � Res � 5π/4 and
−7π/4 � Res � −3π/4. By analytical continuation of (3.18) to the left and to the right we obtain

S2(s)=�(s)

{(
1 − sin(s + π/4)

sinθ

)
ψ

(
s + 7π

4

)
− sin(s + π/4)

sinθ

×
[
ψ

(
s + 3π

4

)
+ f

(
s + 7π

4

)
− sin(s + π/4) f (s + 3π/4)

sin(s + π/4) + sinθ

]}
, −7π

4
� Res � −3π

4
,

S2(s)=�(s)

{(
1 − sin(s + π/4)

sinθ

) [
ψ

(
s − π

4

)
− f

(
s − 5π

4

)]

−sin(s + π/4)

sinθ

[
f
(

s − π

4

)
+ ψ

(
s − 5π

4

)]}
,

π

4
� Res � 5π

4
. (8.10)

Because of the relations (6.15) and (6.17) not all the residues of the functionS2(s) at the poles (8.9)
are non-zero. The reflected and transmitted waves can be written straightforwardly (Ei

z = 0):

Er
z = 0, Et

z = 0, −3π/4 < ϕ0 < −π/4,

Er
z = 0, Et

z = sinθ

δ−
ωϕ

(
3π

4
, π + ϕ0

)
eik0r cos(ϕ−ϕ0), −π

4
< ϕ0 <

π

4
,

Er
z = −sinθ

δ−
ωϕ

(
3π

2
− ϕ0,

5π

4

)
eik0r sin(ϕ+ϕ0), Et

z = sinθ

δ−
eik0r cos(ϕ−ϕ0),

π

4
< ϕ0 <

3π

4
.

(8.11)

The coefficientδ− is defined by (6.14) and it is assumed to be non-zero.
We now specify the poles of the functionS1(s) which define the surface waves in the sector

−3π/4 < ϕ < 3π/4. Analysis of formulae (3.17) and (8.3) indicates that there is only one pole of
the functionS1(s + ϕ) at the points = −ϕ − θ + 7π/4 that gives rise to the surface wave

Es
z = W eik0r cos(π/4+ϕ+θ)ωϕ(3π/4 − Reθ + gd(Im θ) sgn(Im θ), 3π/4), (8.12)

where

W = 2cos 2ϕ0 tanθ

cos 2θ + sin 2ϕ0
f
(π

2
− θ

)
. (8.13)

Clearly, the surface coefficientW is infinite if the incident angleϕ0 coincides with one of the
singular values−π/4 + θ , or 3π/4 − θ . If ϕ0 = −π/4 − θ , then f (π/2 − θ) = 0, and the
coefficientW is finite.

Let now 3π/4 < ϕ < 5π/4. The surface wave pole of the functionS2(s + ϕ − π) is s =
−ϕ + θ − π/4. On evaluating the residue of the functionS2(s + ϕ − π) at this point, we find the
surface wave

Es
z = −W eik0r cos(π/4+ϕ−θ)ωϕ(3π/4, 3π/4 + Reθ − gd(Im θ) sgn(Im θ)), (8.14)

with the coefficientW given by (8.13).
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Fig. 6 The real and imaginary parts of the backscattering coefficient forϕ0 ∈ (−3π/4, −π/4)

8.2 Diffracted field. Numerical results

An important characteristic in the geometrical theory of diffraction is the diffraction coefficient (the
scattering diagram). By applying the steepest descent method fork0r � 1 (see, for example, Senior
and Volakis (1)) we obtain the diffracted field

Ed
z = e−ik0r

√
k0r

D(ϕ), ϕ ∈ (−3π/4, 5π/4) \ {ϕ = 3π/4}, (8.15)

where

D(ϕ) =
{

D1(ϕ), −3π/4 < ϕ < 3π/4,

D2(ϕ), 3π/4 < ϕ < 5π/4,

D1(ϕ) = eiπ/4

√
2π

[S1(ϕ − π) − S1(ϕ + π)], D2(ϕ) = eiπ/4

√
2π

[S2(ϕ − 2π) − S2(ϕ)]. (8.16)

To illustrate the method presented we consider the most interesting and complicated caseη �= 0.
Clearly, to evaluate the above coefficients we need the spectral functionsS1(s) andS2(s) given
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Fig. 7 The real and imaginary parts of the backscattering coefficient forϕ0 ∈ (−π/4, π/4)

by (3.17), (3.18), (8.3) and (8.10). The functionsf (s), ψ(s) appearing in these formulae and the
constantsB j , C j ( j = 0, 1) are defined in terms of the functionsF j (s) andG j (s) ( j = 0, 1) by
(6.19) to (6.22). Next, the functionsF j (s) andG j (s) are found in terms of elementary functions and
the three quadratures (4.63) and (6.20). Without loss of generality, we take the contour of integration
for the second integral in (4.63) as the straight segment joining the pointst = 1 andt = z1 with
the starting pointt = 1. Let χ2(z) = J1(z) + J2(z). The three integrals to be evaluated can be
represented in the form

J1(z) = − zt1
π i

∫ 1

0

[log l1(t1x) + π i]dx

q1/2(t1x)(t2
1 x2 − z2)

, z /∈ L ,

J +
1 (t) = log l1(t) + π i

2q1/2(t)
+ J1(t), t ∈ L+ (s ∈ 
),

J2(z) = −z(z1 − 1)

∫ 1

0

dx

q1/2(t+)(t2 − z2)
, t = (z1 − 1)x + 1, t+ ∈ (1, z1)

+,

G j (s) = coss

2π

∫ 1

0

F j (τ − π)

1 − x2
[�(τ, s) − �(−τ, s)]dx, τ = −i log

x + 1

x − 1
, j = 0, 1. (8.17)
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HereJ1(t) is the principal value of the Cauchy integralJ1(z) on the contourL.
If the angle of observationϕ coincides with the angle of incidentϕ0, then the corresponding

diffracted field becomes the backscattering field. The backscattering coefficient

D(ϕ0) = lim
ϕ→ϕ0

D1(ϕ) (8.18)

is evaluated on using (8.16) and (6.15) to (6.18):

D(ϕ0) = −eiπ/4

√
2π

f ′
(

ϕ0 + 3π

4

)
, −3π

4
< ϕ0 <

π

4
, (8.19)

and

D(ϕ0)= eiπ/4

√
2π

[
f ′

(
ϕ0 − 5π

4

)
+ sin(ϕ0 + π/4)

δ−
f ′ (ϕ0 − π

4

)

+2δ− cos(ϕ0 + π/4) + cos 2ϕ0

2δ2−

]
,

π

4
< ϕ0 <

3π

4
. (8.20)

Numerical computations are implemented for different values of the impedance parameterγ . If
for instanceθ = π/3 + i , then the values for the parameters of interest becomeγ = 1·3363+
0·5876i , η = 0·4918−1·1592i , t1 = 0·5459+0·1794i , 1/k = −0·2658−0·1959i , z1 = 1·0800−
0·0917i , z2 = −0·2291− 0·2008i . In Figs 6 to 8 we present the real and imaginary parts of the
backscattering coefficientD(ϕ0) for θ = π/3 + i andθ = π/12 + i . As ϕ0 tends to one of the
critical values±3π/4, ±π/4, the real and imaginary parts of the backscattering coefficient tend to
infinity.

Let us analyse the case of largeγ . If Reθ ∈ (0, π/2) and| Im θ | → ∞, then|γ | → ∞, and the
magnetically conductive sheetϕ = 3π/4 vanishes since the boundary conditions (2.5) forγ = ∞
mean the continuity of the fieldEz and its normal derivative through the lineϕ = 3π/4. In this
elementary case the spectral functions can be found in terms of elementary functions

S1(s) = sin(ϕ0/2 + 3π/8)

2[cos(ϕ0/2 + 3π/8) − cos(s/2 + 3π/8)] , S2(s) = S1(s + π), (8.21)

and the backscattering coefficient is given by

D∞(ϕ0) = − eiπ/4 cos2(ϕ0/2 − π/8)√
2π [cos2(ϕ0/2 − π/8) − cos2(ϕ0/2 + 3π/8)] . (8.22)

This coefficient is continuous atϕ0 = 1
4π , it is discontinuous and unbounded asϕ0 = −1

4π or
ϕ0 = 3

4π , andD∞ = 0 if ϕ0 = −3
4π .

As | Im γ | grows the numerical values of the backscattering coefficient evaluated by the formulae
(8.19), (8.20) approach the limiting valueD∞(ϕ0). Figure 9 shows the real part ofD∞(ϕ0)

(Im D∞ = ReD∞) and the real and imaginary parts ofD(ϕ0) for θ = π/3 + iν, ν = 4
(γ = 23·650+ 13·645i). Apart from small neighbourhoods of the pointsϕ0 = −3

4π andϕ0 = 1
4π ,

whereD(ϕ0) is discontinuous and unbounded andD∞(ϕ0) is continuous, the coefficientsD and
D∞ are very close to each other. The difference|D − D∞| decreases as|ν| approaches 6 and
|ν| � 6. Forθ = 1

3π +6i the impedance parameter becomesγ = 174·69+100·86i . The numerical
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Fig. 8 The real and imaginary parts of the backscattering coefficient forϕ0 ∈ (π/4, 3π/4)

procedure is unstable forν > 6. This is because the critical pointsz1, t1, −1/k and 1 are very close
to each other. For example, forν = 6 z1 = 1·000575− 0·000332i , t1 = −0·992− 0·00459i and
−1/k = 0·9926− 0·0043i .

Clearly, in the case of no branch points the computer implementation becomes even simpler.

9. Conclusion

We have found a closed-form solution of the problem on electric polarization of a right-angled
magnetically conductive wedge. The problem has been reduced to the second-order difference
equation (3.7) with the shiftπ and 2π -periodic coefficients. To solve this equation we have analysed
the auxiliary equation (3.10) whose shift is 2π and coefficients areπ -periodic functions. On using
the new method for difference equations based on the theory of the Riemann–Hilbert problem
on Riemann surfaces introduced in (6), we have solved the auxiliary equation in terms of two
quadratures (4.63). The corresponding Riemann surface is a torus, and because of the choice of
the branch cuts, we have managed to solve the Jacobi inversion problem without elliptic functions.

We have also proposed a new procedure for the general solution of a second-order difference
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Fig. 9 The real and imaginary parts of the backscattering coefficient for the impedance parameters
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equation when the period of the coefficients is twice as much as the shift. It indicates which solutions
of the auxiliary equation form the basis of the solutions and which ones are mock solutions.

The spectral functionsS1(s) and S2(s) found in the paper are meromorphic single-valued
functions in the complex plane. In the strip−3π/4 � Res � 3π/4 the functionS1(s) has a

prescribed pole and it decays exponentially:S1(s) = O(e− 1
3 | Im s|), Im s → ±∞. Asfor the second

function, it is free of poles in the strip−π/4 � Res � π/4 and bounded as Ims → ±∞. It has
definite finite limits at infinity, andS2(i∞) = −S2(−i∞).

The procedure presented is viable and sufficient for numerical purposes. To compute the
diffraction coefficient, for example, it is required to evaluate three integrals. For the backscattering
coefficient, one needs just two integrals from (8.17),J1(z), J2(z), and their first derivativesJ ′

1(z),
J ′

2(z). As the impedance parameterγ → ∞ the values of the backscattering coefficientD(ϕ0)

approach the valueD∞(ϕ0) of the coefficient when the magnetically conductive screen vanishes.
The method presented in (6) and this paper can be applied to governing second-order difference

equations of the diffraction theory with any finite number of zeros of the discriminant of the
equation.
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APPENDIX A

Analysis of the method by Demetrescu et al.

We aim to show that the procedure (3,4) does not give the general solution of the problem, and the number of
arbitrary constants is less than it is required by the physical problem. For illustration, we choose the simplest
caseη = 0 (sinθ = 1

2

√
3) when there are no branch points. According to (3, 4) the general odd solution of

equation (3.7) has the form
f (s) = f∗(s) − f∗(−s), (A.1)

where

f∗(s) = f̂ (s)M(s) +
(

1 − sinθ

coss

)
[ f̂ (s + π) + f̂ (s − π)]M(s + π), −π � Res � π, (A.2)

and M(s) is a 2π -periodic meromorphic function to be determined. As for the functionf̂ (s), it is apartial
solution to the auxiliary equation (3.10) given by

f̂ (s) = −b(s)ϕ+(s) + √
3sins cossϕ−(s)

2a(s)
, −3π � Res � −π,

f̂ (s) = ϕ+(s), −π � Res � π,

f̂ (s) = −b(s)ϕ+(s) + √
3sins cossϕ−(s)

2a(s)
, π � Res � 3π, (A.3)
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where
ϕ±(s) = F10(z) ± F20(z). (A.4)

Here the functionsFj0(z) ( j = 1, 2) are the integrals (7.8). The auxiliary functionf∗(s) becomes

f∗(s) = ϕ+(s)M(s) + N (s)M(s + π)

2 coss + √
3

, −π � Res � π,

N (s) =
{

cossϕ+(s + π) + √
3sinsϕ−(s + π), 0 � Res � π,

cossϕ−(s + π) − √
3sinsϕ−(s + π), −π � Res � 0.

(A.5)

It can be verified that the functionf∗(s) is continuous through the imaginary axis and is analytic in the strip
−π � Res � π . Next, by the technique presented in section 7 we find

F10

(
1

z

)
= C∗r+(z)F10(z), F20

(
1

z

)
= F20(z)

C∗r+(z)
, 0 � Res � π,

F10

(
1

z

)
= C∗r−(z)F10(z), F20

(
1

z

)
= F20(z)

C∗r−(z)
, −π � Res � 0, (A.6)

where

r±(z) = z ± (2 − √
3)i

z ± (2 + √
3)i

, C∗ = 2 + √
3. (A.7)

Let first 0� Res � π . On using (A.4) and (A.6) and the relations

ϕ±(s + π) = F1(1/z) ± F2(1/z),

C∗r+(z) + 1

C∗r+(z)
= 4(z2 + i z − 1)

z2 + 4i z − 1
, C∗r+(z) − 1

C∗r+(z)
= 2

√
3(z2 + 1)

z2 + 4i z − 1
(A.8)

we derive
N (s) = 2cossϕ+(s) + √

3ϕ−(s), 0 � Res � π . (A.9)

It turns out that the above formula is also valid for the strip−π � Res � 0. Hence

f∗(s) = ϕ+(s)M(s) + 2cossϕ+(s) + √
3ϕ−(s)

2coss + √
3

M(s + π), −π � Res � π . (A.10)

Because of the asymptotics of the solution at infinity, the most general form of the functionM(s) is given by

M(s) = A0 + A1 coss + B1 sins. (A.11)

On using the property of the functionsϕ±(s) to be even and from formula (A.1), the general solution of
equation (3.7) becomes

f (s) = 2B1 sins

(
ϕ+(s) − 2cossϕ+(s) + √

3ϕ−(s)

2coss + √
3

)
. (A.12)

So, the two constantsA0 and A1 are eliminated from the representation of the solution. This means that
the solution of the problem has only three arbitrary constantsC0, C1 from (3.13) andB1 in (A.12). At the
same time, there are five additional conditions to be satisfied: four conditions (6.11) and (6.12) as well as the
condition that removes the extra pole in (A.12) at the points = 5

6π . Thus, the representation (A.1), (A.2) is a
partial solution of equation (3.7), not the general one. Note that without the procedure of section 7, a priori, it
is not clear how many constants are missed.



312 Y. A. ANTIPOV AND V. V. SILVESTROV

Fig. 10 The branch cuts for the functionq1/2(z)

APPENDIX B

Evaluation of the function f ′(s)
To evaluate the backscattering coefficient by using formulae (8.19) and (8.20) one needs the derivativef ′(s) =
B0F ′

0(s) + B1F ′
1(s), where

F ′
j (s) = [z′χ ′

3(z)H j (s) + χ3(z)H′
j (s)] cosj s − sinsχ3(z)H j (s)δ j1, (B.1)

δ j1 is the Kronecker symbol,j = 0, 1,

z′ = −1

2
tan

η

2
cosec2

s

2
,

χ ′
3(z) = z

(z2 − 1)χ3(z)

[
2z2 − z2

1 − t2
1 − (z2 − t2

1)(z2 − z2
1)

z2 − 1

]
,

H j (s) = (1 − coss) coshχ4(z) − (−1) j i sinsβ(s)

coss + cosη
sinhχ4(z),

H′
j (s) = sins coshχ4(z) + (1 − coss) sinhχ4(z)

d

ds
χ4(z) − (−1) j i

coss + cosη

×
[(

cossβ(s) + sinsβ ′(s) + sin2 sβ(s)

coss + cosη

)
sinhχ4(z) + sinsβ(s) coshχ4(z)

d

ds
χ4(z)

]
,

χ4(z) = q1/2(z)χ2(z),
d

ds
χ4(z) = − zz′χ2(z)

q1/2(z)
(1 + k2 − 2k2z2) + z′q1/2(z)χ ′

2(z),
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β(s) = −1
2 sinη(1 − coss)q1/2(z), χ ′

2(z) = J ′
1(z) + J ′

2(z),

β ′(s) = −1
2 sinη

[
sinsq1/2(z) − (1 − coss)

zz′(1 + k2 − 2k2z2)

q1/2(z)

]
,

J ′
1(z) = − t1

π i

∫ 1

0

[log l1(t1x) + π i](t2
1 x2 + z2)dx

q1/2(t1x)(t2
1 x2 − z2)2

,

J ′
2(z) = (1 − z1)

∫ 1

0

(t2 + z2)dx

(t2 − z2)2q1/2(t+)
, t = (z1 − 1)x + 1. (B.9)

The branch of the logarithmic function has to be fixed by the condition logl1(t1) = −4
3π i . For numerical

purposes, we present the chosen branch of the functionq1/2(z) as follows (Fig.10):

q1/2(z) = k|q1/2(z)|ei(τ+
1 +τ−

1 +τ+
2 +τ−

2 )/2, (B.3)

where

τ±
1 = arg(z ± 1), τ±

2 = arg

(
z ± 1

k

)
,

τ−
1 ∈ [α1, 2π + α1], τ+

1 ∈ [−π + α1, π + α1],
τ−
2 ∈ [−2π + α2, α2], τ+

2 ∈ [−π + α2, π + α2],

α1 = tan−1 Im(z1 − 1)

Re(z1 − 1)
, α2 = tan−1 Im(z1 − 1/k)

Re(z1 − 1/k)
. (B.4)

For the integralsJ2(z), J ′
2(z) we needq1/2(t+), wheret+ is a point of the left bank of the cut along the

straight line joining the pointsz = 1 andz = z1. The quantitiesτ±
1 andτ±

2 become

τ−
1 = α1, τ+

1 = tan−1 Im(z + 1)

Re(z + 1)
,

τ−
2 = −2π + tan−1 Im(z − 1/k)

Re(z − 1/k)
, τ+

2 = tan−1 Im(z + 1/k)

Re(z + 1/k)
. (B.5)

Finally, we describe how to evaluate the functionχ3(z). For the backscattering coefficient, we have to calculate
the functionχ3(z) on the straight lineL0 = {z = i t1τ , τ ∈ (−∞, ∞)}. The single branch of this function is
fixed in section 4.4 and it is discontinuous at the pointz = 0. This function can be written in the form

χ3(z) = |χ3(z)|ei(θ++θ−+θ−
2 −θ−

1 +θ+
2 −θ+

1 )/2, (B.6)

where
θ± = arg(z ± t1), θ±

1 = arg(z ± 1), θ±
2 = arg(z ± z1),

α � θ± � 2π + α, α = argt1 (for Im θ > 0, 0 < argt1 < π/2),

α1 � θ−
j � 2π + α1, −π + α1 � θ+

j � π + α1, j = 1, 2. (B.7)


