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Summary

In part I, a new method for solving functional-difference equations of the second order was
proposed. The shift of the equation was assumed to coincide with the period of the coefficients.
The method is based on the theory of the Riemann—Hilbert problem on a hyperelliptic surface
and the Jacobi inversion problem. The procedure is applicable to any finite number of zeros of
the discriminant of the equation in the strip. It yields the general single-valued meromorphic
solution.

In the present paper, electromagnetic scattering by a right-angled magnetically conductive
wedge is analysed. The physical problem reduces to a second-order difference equation with
2r-periodic coefficients and with the shift A rigorous procedure for constructing the general
solution is proposed. It consists of two steps. First, an auxiliary equation with the shift 2
and the periodr is derived and solved by the method proposed in part | (the corresponding
Riemann surface is a torus). Next, necessary and sufficient conditions for the solution of the
auxiliary equation to satisfy the governing equation are derived. These conditions separate the
general solution of the main equation from those solutions of the auxiliary equation which fail
to satisfy the governing difference equation. In addition, the particular case of no branch points
is analysed by the machinery of the Riemann—Hilbert problem for a segment on the complex
plane. A high-frequency asymptotic expression for the electric field is presented. Numerical
results for the backscattering coefficient are reported.

1. Introduction

In recent years considerable attention has been focused on electromagnetic scattering by wedges
whose sheets have a finite and non-zero electric resistivity. Such sheets support only an electric
current with the strength proportional to the value of the tangential electric field at the surface. The
electromagnetic dual of an electrically resistive sheet is (Senior and VolBjig (magnetically
conductive one which simulates a thin layer of lossy material. On the boundary, in the case of
an electrically resistive sheet, the electric field is continuous, the normal derivative of the field
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is discontinuous and its jump is proportional to the electric field. If the sheet is magnetically
conductive and its conductivity is finite and non-zero, then the electric field is discontinuous. Its
normal derivative is continuous and it is proportional to the jump of the field.

By using the Maliuzhinets metho@)(based on the use of the Sommerfeld integral representation
of the electric field, the corresponding boundary conditions for the above problems may be brought
into second-order functional-difference equations with periodic coefficients. In general, the shift in
the equation and the period of the coefficients are not the same. Even in the simplest case of the
wedge, namely for a right-angled wedge, the period is twice as much as the shift. For this geometry,
when one of the sheets is electrically resistive and the second one is perfectly electrically conductive,
Demetrescuet al. (3) have derived the governing difference equation of the second order with 2
periodic coefficients and the shitt whose solution has to be an odd function. A similar equation
has been derivedl for the problem of diffraction by a two-sided impedance plane with a resistive
sheet attached to it. The authors of these papers have reduced the governing equations to solution of
auxiliary equations of the second order witkperiodic coefficients and the shiftr2 Each solution
of the initial equation satisfies the auxiliary equation but the inverse statement, in general, is not
correct. Therefore, to solve the physical problem, one needs

(i) asingle-valued meromorphic solution of the auxiliary equation, and
(i) a mechanism for separating odd single-valued meromorphic solutions of the governing
equation from mock solutions which satisfy the auxiliary equation only.

In (3, 4), the authors found a non-physical multi-valued solution (for comments56¥.( Also

they have proposed to represent the general odd soldtignof the main equation in the form

f(s) = f.(s) — f.(—s), where f.(s) is defined through a partial solution of the auxiliary equation
and a periodic meromorphic function with prescribed properties. However, as it is shown in the
Appendix below, this method does not produce the general solution of the main equation.

Senior and Legaulty( 7) have proposed another method that can be applied for constructing a
partial singled-valued meromorphic solution of the equation whose shift is a multiple of the period
of the coefficients. At the first stage, this method reduces the second-order difference equation to a
pair of first-order difference equations. Then by logarithmic differentiation of these equations and
elimination of the polar and cyclic periods of the solution of the first-order equations, the authors
construct a solution that is single-valued on a Riemann surface. These derivations ultimately lead to
abranch-free partial solution of the second-order equation, the auxiliary equation for the governing
one. We notice that the metho§, ¥) is worked out either for genus = 1, or for genus three,
when the surface has a special symmetry, and the problem is solvable in terms of elliptic functions
(reducible to the case = 1). The general solution of the auxiliary equation with prescribed poles,
was not constructed ing, 7). Second-order difference equations with a period that is a multiple of
the shift, have not been analysed in those papers either.

In the present paper we aim to

e derive a governing equation of the electromagnetic problem of diffraction by a right-angled
wedge when one of the sheets is magnetically conductive and the second one is perfectly
electrically conductive;

e construct the general single-valued meromorphic solution of the corresponding auxiliary
equation with shift equal to;2 andx-periodic coefficients. For these purposes, we use a new
method based on the machinery of the Riemann—Hilbert problem on a hyperelliptic surface
proposed in the first part of this investigatids);(
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e work out arigorous method for the general solution of the governing second-order equation with
2 -periodic coefficients when the shift is equabio

e find a closed-form solution of the problem dpolarization of a right-angled magnetically
conductive wedge.

The article is organized as follows. In section 2, the physical problem is formulated. Section
3 brings in two functional-difference equations of the second order. The first one, the governing
equation, has shift and 2r-periodic coefficients. The second one is an auxiliary equation with shift
27 andr-periodic coefficients. The general single-valued meromorphic solution of the auxiliary
equation is found in section 4. The derivations are based on the results of the first part of this
study ©). Then, section 5 offers a technique for the general solution of the governing equation that
is required to be odd. The main idea of the method is to use the general solution of the auxiliary
equation on the axis of symmetry of the strip and substitute it into the main equation. Then deduce
the necessary and sufficient conditions for arbitramyr@eromorphic functions involved in the
general solution of the auxiliary equation in order that the main equation is satisfied. Analytical
continuation of these conditions from the contour into the whole complex plane completes the
procedure. In section 6, we show that the spectral functions found belong to the prescribed class of
solutions and we find arbitrary constants from additional physical conditions. A detailed analysis
of the particular case when there are no branch points is presented in section 7. To find the general
solution of the auxiliary second-order equation, we solve two scalar Riemann—Hilbert problems on
the segmenf—1, 1]. So, the solution of the Riemann—Hilbert problem on a Riemann surface is
bypassed. This method, proposed in section 7.1, can be regarded as an alternative to the classical
expansion in terms of the Maliuzhinets functions for difference equations when the discriminant of
the equation does not have zeros of odd order. In section 8 we derive high-frequency asymptotics of
the electric field. We construct the reflected, transmitted, surface and diffracted waves. Numerical
results are presented for the backscattering coefficient. In Appendix A, for the simplest case of no
branch points, we show that the use of the mett8)dpfoduces less constants than are required
by the physical problem. Appendix B presents formulae used for numerical calculations of the
backscattering coefficient.

2. Formulation

The problem to be considered is the two-dimensional one presented in Fig.1. The halfgplane
r < oo, ¢ = 3r/4+ 0} is a magnetically conductive sheet with the conducti®ly. The second
sheet{f0 < r < 00,9 = 7w + 7 /4 F 0} is electrically perfectly conducting (opaque) with the
resistivity Re = 0. The system is illuminated by the-polarized plane wave

El, = g kor cody—yo) (2.1)

where(r, ¢) is a point of observatiorkg is the wave numbeyy is the incident angle. On the second
sheet, the electric fiell#; is continuous and it vanishes:

Ezly=57/4-0 = Ezlp=—37/410 =0, O <r < c0. (2.2)

As for the first sheet, the electric fiel, is discontinuous on it, and its jump is proportional to the
magnetic fieloH, (Senior and Volakisi))

Hp|<p=3n/4io = —Rm[Ez|<p=3n/470 - EZ|(p=37T/4+O]- (2-3)
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Point of
observation

[
Magnetically conductive sheet

Electrically perfectly
conductive sheet

Fig. 1 E-polarization of a conductive wedge

By expressing the componehi, through the normal derivative of the electric field

1 JE;
ZoH, = ———= 2.4
oMp |kor 3(p ( )
we derive the boundary conditions
29 .
F%EZ|¢=3JT/4—O —ikoy (Ezlp=3r/4-0 — Ezlg=37/410) =0, 0<r < o0,
oE 0E
— =— , O0<r < oo, (2.5)
a(p (p:37'[/4—0 a¢ @:371/44—0

wherey = 2RnZg # 0, Zg is the intrinsic impedance of the medium. Generally, the parameter
y = sin@ is complex and O< Ref < /2.
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Everywhere in the medium apart from the two sheets, the electricEiesdtisfies the Helmholtz
equation
(V2 + k3)E; = 0. (2.6)

To satisfy the differential equation (2.6) we represent the total field in the form of the Sommerfeld
integrals (Maliuzhinets2))

1 - 3
E.(r,¢) = —/ Jhr oS, (s 4 g)ds, o] < —
r

2mi 4’
1 i 3 5
Ez(r,p) = —f glhorcossg, (s + ¢ — m)ds, bl << —n, 2.7)
2 Jr 4 4
whereI" is the Sommerfeld double loop contour symmetric with respect to the origin. The
asymptotes for its branches ae= 37 /2 ands = —x/2 for the upper loop and = = /2 and

s = —3x/2for the lower one. The functiof(s) is analytic everywhere in the strjfRes| < 37 /4
and continuous in the strip up to the boundpiRes| = 3 /4 apart from the poins = ¢, where it
has a simple pole with the residue defined by the incident field (2.1)

res S1(s) = 1. (2.8)
S=¢0

The second spectral functid(s) is analytic in the strig Res| < /4 and continuous everywhere
in the strip| Res| < n/4. Atinfinity, as Ims — +o0o and Res is finite, both functions are at most
bounded]Sj(s)| < const,j =1, 2.

3. Derivation of a functional-difference equation

The symmetry of the contout and the boundary conditions (2.2), (2.5) imply (Maliuzhin&g (
(sins—y) [Sl <s+ 3%) + 8o (—s — %)} =—(sins+y) [81 (—s+ 3%) + 8o (s - %)} ,
51 <s+ 37”) ~S(-s-7)=—& (—s+ 37”) +82(s- %)

(e )= (- %)

T T
Sy (S+ Z):SZ (—S+ Z) . (31)
This system expresses the functi§nthrough the functiorbs:
sin(s + 7 /4) sin(s + /4)
—(1- = 7Y — ) 2
S2(9) ( <ing > S1(s+m) Sro S1(s — 2) (3.2)

The spectral functio; is a solution to the functional-difference equation

. . 7 9 ) 3 5
(sins + sing) [81 (s+ %) -8 (s - %)] = sins [81 (s+ %) -8 (s — %)] .

(3.3)
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The usual trick, found in Maliuzhinetg), of eliminating the pole a = ¢ is to split the function
S1(s) into two factors

&®=2©wG+%>, (3.4)
where
_ 2C0s 2o

It may be noted that the functiof(s) is analytic everywhere in the strjfRes| < 37 /2 and also it
is even. To simplify equation (3.3) introduce the new function

f(s) =y(s+m)—yY(s—m), (3.6)
which is a solution to the following problem.

Find an odd function f (s) meromorphic in the s-plane, free of polesin the strip | Res| < n/2 and
satisfying the functional-difference equation

(coss —sind)[f(s+ ) + f(s—m)] = coss f (). 3.7)
At infinity, the function f (s) may grow:

[f(s)| <Ce?'MSl Ims— oo, Res isfinite, C = const (3.8)

Analysis of equation (3.7) shows that the functib(s) can have simple poles at the zeros of the
function coss + sind, that is, at the points=(r/2 + 0) + 27n (n € Z). As for the zeros of the
function coss, the pointss = 7/2+ 7n (n € Z), they cannot be poles of the functidiis). Indeed,
the functionf (s) is analytic in the strip-7/2 < Res < = /2. Therefore

s:rfﬂs/2 f(s)=0. (3.9)
This requirement and equation (3.7) at the poihts/2 yield f (£37/2) = — f (F7/2), that is, the

pointss = +3x/2 are removable points. By the same argument the fundti@his bounded at the

other pointst5r /2, +77/2, . ...

For the method to be used, it is vital to have the shift in a functional-difference equation to be not
less than the period of the coefficients. In the case under consideration the shift and the period are
equal tor and 2r, respectively. To transform equation (3.7) into the desired form, we replace
(3.7) first bys + 7 and then bys — 7. Afterwards, we eliminate the termfs(s + ) from the two
new equations. Finally, we obtain the following functional-difference equation

a)[f(s+2r)+ f(s—21)]+b(s)f(s) =0, (3.10)
where

a(s) = cogs —sif0, b(s) = cogs — 2sirf 6. (3.11)
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Now the coefficients are-periodic functions, and the shift equats.2Clearly, if the functionf (s)

is a solution of equation (3.7), then it satisfies the auxiliary equation (3.10). However, generally, the

inverse statement is not correct. In sections 4 and 5 we construct the general solution of the auxiliary

equation and show what to do with it in order to find the general solution of the main equation (3.7).
Solving the functional-difference equation (3.7) is crucial for derivation of the spectral functions

S1(s) and S»(s). Assume the functionf (s) has been found. Then the general even solution to

equation (3.6) growing at infinity a&2'™msl becomes

Y (s) = Co+ Crcoss+ Cocos L+ %S/ A(r,8)f(rt —m)dr, —m <Res<m, (3.12)
TU Q

f
Y(o £m) =C0—C1c030+C2c0527:|:% - % A(t,0 +7m)f(r —m)dr, Reo =0,
7l Jo

(3.13)

where

T—S T—9 1

A(1,S) = t—— — cot ) 3.14
(z,9) <co 5 cot— ) v (3.14)

Q = {s e C: Res=n}, andsg is an arbitrary fixed internal pointinthe stip={se C: —n <
Res < 7} such that Regy # 0. Relations (3.13) are the Sokhotski—Plemelj formulae for the integral
(3.12) with the periodic analogue (3.14) of the Cauchy kernel. The choice of the kernel ensures the
convergence of the integrals (3.12), (3.13) with the density satisfying the inequality (3.8). The
integral in (3.13) is understood in the sense of the principal value. The con§igatsd C; are
arbitrary. We next show that the const&it is zero. Indeed, ifC; # 0, theny (s) ~ C,cos 3,
Ims — oo, and therefore by (3.2), (3.4) and (3.5),
4 cos2¢p
20 sing
This means tha%(s) has an exponential growth at infinity that is not acceptableCSe: 0.
Outside the strip-7 < Res < x, the functiony (s) is defined by analytical continuation. For
example

Cgsin<s+ %) Ims — oo. (3.15)

()= f(s—n)+yY(s—2r), n <Res<2r,
v =—f(s+n)+¢¥(s+2r), —2r <Res< —m. (3.16)

Now express the spectral functiof§s(s), S2(s) in terms of the function/ (s) and the solution to
the functional-difference equation (3.7), the functibs). From (3.4) and (3.16) we derive

3 T T
S1(8) = 2 ()Y <S+ T), Y < Res < 1
5t Vg T 51

The relations (3.2) and (3.16) give

. sin(s + n/4) bid 3T

sin(s + /4) 37 b4 3 T
~ang [w <s+ 7) — f (s— —)]} —— < Resg 7 (3.18)
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Analysis of the last formula indicates that if the functibfs) has a pole at the poist= 7/2 + 9,
then the spectral functiofi2(s) has an inadmissible pole at the potnt= —z /4 + 0 in the strip
—n/4 < Res < w/4. Therefore, because the functidiis) is odd,s = +(r/2 + 0) have to be
removable points:

res f(s)=0. (3.19)
Ss==+(/246)

4. General solution of the auxiliary functional-difference equation (3.10)
4.1 Derivation of a scalar Riemann—Hilbert problem on an elliptic surface

In this section we reduce the functional-difference equation (3.10) first to a vector Riemann—Hilbert
boundary-value problem on a complex plane and then to a scalar problem on an elliptic surface.
Introduce two functions

d1(s) = f(s), Po(s)= f(s+2r), sell={seC:—n <Res<r}. (4.2)

Then on the contouf2, ®1(c) = ®2(c — 27), and equation (3.10) can be written as a vector
functional-difference equation of the first order

P(0) =G(0)P(oc —271), o€, (4.2)

where
_{ P1(9) (0 1
P(s) = <cl>2(s)> , G(s) = (_1 —b(s)/a(s)) . (4.3)

4.1.1 Eigenvaluesof thematrix G(s). Analyse the eigenvalues of the mat€xs)

—b(s) + (=1)I-1Al/? .
R T (4.4)

where the functiom\ (s) has the form

A(S) = b%(s) — 4a2(s) = co€ s(4sirf 6 — 3co<s). (4.5)
Let
= arccos(i sine) (4.6)
77 = ﬁ . .

Because of the assumption<ORef < 7/2, Resi > 0, and thus 0< Ren < 7/2. Clearly, if
n = 0 (this means sifl = y = 34/3 > 0) then the functiom/?(s) does not have branch points in
the stripI1. This particular case is reported in section 7. Here we assume thdl. Let

B(S) = /coZs — coZ . 4.7)
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% b-65 1*;',-(:- 0,
L4 L4
—-7T+N ]

Fig. 2 The branch points and the cuts

Then AY2(s) = i+/38(s) coss, and the eigenvalues (4.4) of the matfiXs) can be written as
follows:

coss — (=1)Jiv/38(s)
coss + (—1)ii/38(s)’

The functiong(s) has four branch points in the strip. These points arey = —7 + n, S1 = —7,
$ = npandsg = w — 5. To fix abranch of the functiorB(s), cut the stripIT along smooth curves
g, I'1 joining the branch points- + » with —» andn with = — 5 (Fig.2). The curvd'y is chosen
such that it passes through the point& — 6, =/2 andx/2 + 6 and it is located symmetrically
with respect to the poirg = /2. The curvel'g is obtained by reflecting the cunig through the
origin. This special choice of the culfy, I'1 is required for the solutior (s) to be odd and will be
used later in this section. The branch curves do not intersect the cantdtnis fact is essential for
the solution of equation (3.10) to be single-valued. We fix the brgishsuch tha{g(0) = sinn.
This branch is an even function and possesses the following properties:

—1,2. (4.8)

B(s) ~coss, Ims— too0, (4.9)

B(stm)=—B(S), sell, (4.10)
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Br(o)=-p"(0), oelj, j=01 (4.12)

Theni | (s) are even single-valued analytic functions in the skfiput along the curveBp, I'1. On
the sides of the cuts,

Af(a)xj—(o) =1 oelj, j=01 (4.12)

Lets = n ands = —n be the initial points and = = — n ands = —x + n be the terminal
points of the curve$'; andl'g, respectively. Denote by;f the left and byl":™ the right banks of

the cutsl'j (j = 0, 1) with respect to the positive direction. Because of the choice of the cuts the
functions ¥21(s) and11(s) have zeros of the first order at the poiﬁ{% =n/2—-0 € Ff and

9; =m/24+0 € Ff, respectively. On the right side of the dbf at the corresponding opposite
pointsf; = 7/2 -6 € I'] andd, = n/2+ 6 e I'}, the functionsii(s) and Y/r1(s) have
first-order zeros. The zeros of the functiona.4(s) andx1(s) on the sides of the cuty are defined

by the symmetry. In Fig. 2 the zeros of the functiongs) and J/A1(s) are circled and starred
respectively. These properties of the eigenvalugs) anda,(s) will be used later for solution of

the Jacobi inversion problem and specification of the general solution of equation (3.7) from the
solution of equation (3.10).

4.1.2 Vector Riemann—Hilbert problem on a system of curves. Next, we diagonalize the matrix
G(s):

[T(8)]1G(s)T(s— h) = A(s), (4.13)
where
(1 1 (a0
T® = (/\1(8) Az(S)) - A= ( 0 /\2(S)> : (4.14)
and introduce the new vector functigrns) = [T(s)]~1®(s), s € I1, with the components
1 b(s) a(s)
019 = 5 (a1 1) 019+ 355029,
1 b(s) a(s)
@2(8) = > <_AT2(S) + 1) D1(S) — m‘bz(s)- (4.15)

Then these functions satisfy the two separate equations
¢j(0) =1rj(0)pj(c —2m), o€, j=12 (4.16)

In order that the vector functiof (s) is single-valued in the stril it is necessary and sufficient
that (see))

¢ (0)=¢,(0), ¢;(@)=¢;(), oeTlj, j=0.1, (4.17)

Where¢ji(o) are the limiting values of the functions (s) on the left §-) and the right {) sides
of the contourd’g, I'1. Transform now the problem (4.16), (4.17) into a vector Riemann—Hilbert
problem on a system of segments. Take the mapping funztiem(s) as follows:

n S
S) = tan— cot—. 4.18
ues) 5 COt5 (4.18)
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4 Imz

Fig. 3 The canonical cross-sectioad and the contouk

Then its inverse functios = v(z) becomes

z+itani
0(2) = —i log 2 202" (4.19)

z—itan3y
The single branch of the logarithmic functieiz) is chosen such that(co) = 0. The contour?
is mapped onto the left side of the straight segmenmtith the starting point; = i tan%n and the
ending pointt; = —i tan%n (Fig.3). The left boundarys € C : Res = —x} of the stripIT is
mapped onto the right side of the contdurAs for the branch pointsy, s1, S, andss, they fall into
the points—1/k, —1, 1 and I/ k, wherek = cof %77- The cutsl'g, I'1 become smooth curves, y1
joining the points—1/k, —1and 1 1/k. The curvesy, y1 do not cross the contodr.

We write down the vector Riemann—Hilbert problem that is equivalent to equations (4.16), (4.17):

Fj+(t) =ljOF ®, tel, j=12 (4.20)

FFoy=F®, FfO=F"@t, teym m=01 (4.21)
where

Fr®) =97 (0), 1) =1j(0),

t +itand
o =—ilog———2" -1 2 (4.22)

t—itanin’
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4.1.3 Scalar Riemann—Hilbert problem on an elliptic surface. To solve the vector problem
(4.20), (4.21), convert it into a scalar Riemann—Hilbert problem on a Riemann surfacek Let
be the elliptic surface of the algebraic function

w?>=q(, q@=1-2°1-k2, (4.23)

formed by gluing two copie€; andC; of the extended complex plaf&u oo cut along the curves
yo andy1. The positive (left) sides of the cuig, (m = 0, 1) onC; are glued to the negative (right)
sides of the curvegy, on C, and vice versa.

Let q'/2(z) be the branch chosen such tla@t?(0) = 1. Then the functionv defined by (4.23)
is single-valued on the surfad® w = q%/2(2), z € Cy. Introduce now the following functions on
the surfaceR:

Fi1(2), (z,w) e Cq, l1(t), (t, &) €Ly, (4.24)

F(Z’w)z{Fz(z), (z.w) € Ca, '(t"S):{b(t% t.6) €l

From (4.21) it becomes evident that the functi(e, w) is meromorphic everywhere on the surface
R apart from the contou€ = L1 U Lo, with L1 = L ¢ C;andL, = L ¢ Ca. Onthe contour
L C R, this function satisfies the boundary condition

Fr. &) =1t HF (&), (8§ L, (4.25)
whereé = w(t). At the end points the functioR (z, w) has the following asymptotic behaviour:

IF(z,w)| < Ajlz—tj|72, (zw)eR, z—1tj, j=12 Aj=const (4.26)

4.2 Factorization of the function | (t, &)

To solve the Riemann—Hilbert problem (4.25) one needs to factorize the coeffigtes?.
This means constructing a canonical solution to the problem (4.25), that is, a fubotmm)
meromorphic orR \ £ with at most a finite number of poles and zerosfosuch that its boundary
valuesX*(t, &) are non-zero, and thét, £) € £ ¢ R and satisfy the boundary condition

Xt &) =1, e)X (t,&), (t,&) e L CR. (4.27)
At the end pointz = t; andz = t; this solution is bounded:
X(z,w)| <A, (zZw)eR, z—tj, j=12  A=const (4.28)

First, definea- andb-canonical cross-sections of the surfd€eThe cross-sectioa consists of the
banks of the cuj (Fig. 3) which simultaneously belong € andC,. The positive direction on
ais chosen such that the first shé&atis always on the left. The cross-sectioiis a smooth closed
curve that consists of two parts. The first part is a curv&€pjoining the points tk and —1/k
and passing through infinity. The second part lies on the shigeind joins the points-1/k and
1/k through infinity. The starting point is/k and the first sheet is traced first. Both parts of the
cross-sectiot are symmetric with respect to the origin.

Itis directly verified that.j (c) = 1 (@), 0 € Q. Therefore)(t) =1j(-t),teL,j =12, and
the coefficient of the problem (4.27) is evén-t, &) =1 (1, &), (1, §) € L. To explore this property
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of the functionl (t, &), we first find a meromorphic solution of the following auxiliary problem for
ahalf of the contourC
Xg &) =1t 5HX5 .8, (t,§) el (4.29)

where£’ consists of the two segmerit$ = [t1, O] lying on the two sheet€; andC, of the surface.
We seek a solution bounded at the end paint t; and do not prescribe the asymptotics of the
solution at the poing = 0.

A canonical solution to the problem (4.29) is given by Antipov and SilvesB®){(

Xo(z, w) = exp{x (z, w)},

|K/,¢| Pyj
Xz w)=o— / loglt, "g“)dW—l—ngn/cM / 'd
Puo

(00,Uo)
+/ dW + mg % dw + I’lo% dw, (4.30)
(60,v0) a b
where
w+ & dt

is the Weierstrass kernel, an analogue of the Cauchy kernel on the sRrfdtes directly verified
that

. 1 1043
|j(t1)=)xj(ﬂ—|00):—§+(—l)]l%, =12 (4.32)
Wefix the single branches of the logarithmic functions as follows:
4 2
argli(ty)) = 3 argla(ty) = -3 (4.33)

Analysis of the Weierstrass integrals in (4.30) implies that
Xoz w) =Of{(z—t)P}, (Zw)eCj, z—t, j=12 (4.34)

wherep; = 2, B2 = 1. Thus, the functionXo(z, w) is bounded at the end poiat= t;. The
integerse,, (u = 1, 2) are usedq) to achieve the prescribed behaviour of the solution at the second
end point,z = 0. Since we have not fixed the asymptotics of the solution at this point, it is possible
to choose the integekg andx» in an arbitrary way. The simplest choiceds= k2 = 0. Then the
second term in (4.30) vanishes. The final formula for the fundii¢n w) is independent of1 and
K. The point(8g, vo) € C1, vo = q¥2(8p) is arbitrarily fixed. The pointoo, ug) (Uo = w(op)) and
the integersng, ng are not arbitrary and will be fixed later.

The second integral in (4.30) is taken over a smooth curve which joins the end pRints)
and (o, Ug) and which does not intersect the cross-sectmrsand the contour’. This integral
is independent of the shape of the integration path. The first integral in (4.30) is discontinuous
through the contouf’ with the jump lod (t, &). The other integrals are also discontinuous through
the contours of integration. The corresponding jumps are equatitm2m is an integer). Hence
the functionXo(z, w) satisfies the homogeneous boundary condition (4.29).



280 Y. A. ANTIPOV AND V. V. SILVESTROV

4.3 Elimination of an essential singularity at infinity

4.3.1 Jacobi’sinversion problem. In general, for an arbitrary poing§, up) and arbitrary integers

mg, Ng, the function Xp(z, w) in (4.30) has an essential singularity at infinity. This is because
w(®) ~ (-1)IkZ%, z — o0, z € Cj, and the Weierstrass kernel (4.31) has a pole at infinity. To
eliminate the essential singularity we evaluate the principal terms of the expansions of the function
x (z, w) at infinity on both sheets of the surface:

k—z(—l)j_l if [logl1i(t) — logl (t)]i+/(ao’uw£+m f£+n %ﬂ
2 2mi J 09 V2120 ™ Jisu &0 T RED TR D [
(4.35)

Thus in order that the functioko(z, w) is bounded at infinity it is necessary and sufficient that

(0.U0) gt dt dt
N + _ + _— = dO’ 436
/(ao,v(,) PO AT ”Oﬁ 0 (4-36)

where

. 1
d° = ﬁfu[loglz(t)—logh(t)] (4.37)

ql2t)
This nonlinear equation is the Jacobi inversion problem for the suRaskgenusp = 1. We next
solve this problem in closed form.

4.3.2 Evaluation of the constant d°. To find the solution of the problem (4.36) explicitly we
simplify the expression (4.37) for the constalit The procedure consists of two steps. At the first
stage we transform the integral (4.37) into an integral over an infinite line. The second step is to
ewvaluate this integral by non-trivial application of the Cauchy theorem.

It follows from (4.8) thal 1 (t)I2(t) = 1. Since in additiot; (t) = I (—t), for the chosen branches
of the functions log); (t) we establish

loglj(—t) =loglj(t), logly(t) +logla(t) = —2ni,

logli(t) — logla(t) = 2logl1(t) + 27i. (4.38)
Therefore
1 logli(t) + mi 1 logly(t) + mi
d°=-— | ———dt=—-—— | ————dt. 4.39
mi Juoo qt2() 27i Ju gl (4.39)

On making substitutioh = —1/(kt), we establish the following identities:

1/2 1
loglyt) = logly(x),  qY2(t) = — 2 (T), t=——. (4.40)
kr2 kz
The second formula in (4.40) is verified directly. Show the validity of the first identity. Assume that
the image (4.18) of a poirt ist € L. Then the point corresponds to the poiat— =. Because of
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Fig. 4 The domainD and the contour of integratiom: # 0

the relations lody (t) = logA1(o) and lod1(t) = logi1(c — ) and also since the image (4.18) of
the pointt = t; coincides with this point; = ty, the first formula in (4.40) follows.

The substitutionn = —1/(kt) transforms (4.39) into the integral over two semi-infinite segments
L. which expand the segmefti, t2] in both directions

do__i/ Iogll(r)+71id
T2 T a2

The positive direction on the contolyr, is fromt, to the point at infinity and then to the point
By adding the two relations (4.39) and (4.41) we obtain

1 logly(t) + i
2d° = —— =7 17 dt. 4.42
d 27 /Lul_* q¥/2(t) at ( )

(4.41)

By the Cauchy theorem applied to the function

__logly(2) + 7i

90 = =7 (4.43)

which is holomorphic in the domaib with p = 0 (Fig.4), this integral can be written as follows:

1 logli(2) +7i 1 [Y¥logly (t) +logly (t) + 27i

d°e = — O T =
47i Jo qY2(2) i J4 gl/2(t+)

dt. (4.44)
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We notice that the half-plane located to the left from the contour L, is the imagez = u(s) of

the strip 0< Res < 7. Heret™ is a point on the left bank of the cui; If(t) andl; (t) are the
limiting values of the functiot;(z) on the Ieftyl+ and righty;” banks of the cuy;. Let zf € yljE

andzy e y;- be the images (4.18) of the poirtts andé;” and

71 = tang cot(% — %) , = tang cot(% + %) . (4.45)
At the pointszir andz, the functionl1(z) equals zero. At the other two poires andzzr it equals
infinity. Therefore, the functiog(z) has logarithmic singularities at the poir@, zf. Apart from
these points, the functiog(z) is continuous everywhere on the bound&ry We also notice that
lg(2)| < constz|~2, z — oo. This justifies the application of the Cauchy theorem (4.44) to the
functiong(2).

We next prove the following property of the functiol’i&(t)

—27i, te(z1,2) Cy,

logl(t) +logl; (t) =
gly ® +logly ) —4xi, te[l z1)U(22,1/K] C y1.

(4.46)

First, we note that formula (4.12) implié§(t)li(t) = 1,t € y1. Therefore, on a portion of the
contourys say,(z1, 22), where the function lofy (z) is continuous,

logl; (t) +logl; (t) = 27in, (z1,2) C 1. (4.47)

wheren is an integer to be defined. Clearly, when the paittaverses the contounq*, ZELL
the positive direction and passes the potqtszg (the points where the function ldg(z) becomes
infinite), the function lod (z) receives the increment . Its increment becomesxi when it passes
the other two pointg; andzj . Thus,

logly (t) +logl (t) = 27i(n—1), te[l 21)U(z,1/KlC n. (4.48)

To fix n we first evaluate the values lbgz) at the two opposite pointd/vK)* € (z1, 22)* C y;t.
The pointt = 1/vk € y1 is the image of the poirg = /2 € T'1. This implies lod; (1/vk) =
log Af(n/Z). One may observe that

(1 T, . \P°
logl; (W) =logiy (E — |oo) + log g (E + |y) . (4.49)
To find the increment of the function log (/2 + iy) in (4.49), we evaluate the integral
T\ Y=0T 0 T
log A1 <§ +|y>‘y:_w=/_00dlogkl (E + |y)
0 .
—2V3i f cos’ n coshydy =T (450

—% (4sink?y + 3cog n),/sin? y + co

Here we have made two substitutions. First, we{ut sinhy, & = cosn, and then we set =
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£(&% + £2)~Y2. Finally, on using (4.32) and (4.49), we obtain the desired valuel;16ty vk) =
—ni. Similarly, logl{ (1/vk) = —ri. Hence

logl] (t) +logly (1) = —27i, t=1/Vke (z, 2) C . (4.51)

On comparing the last formula with (4.41) = —1. The relation (4.46) is proved.
By making the substitution = 1/(kt) and using the relation (4.46) and

. 1 dt _ dr
Q22 = K’ ql/2(t+) - _q1/2(r+)’

(4.52)

we can further simplify the integral (4.44)

. z z
‘ :_/1 q1/2<t+>:/1 a2’ (459)

4.3.3 Solution to the Jacobi problem. On exploring the new expression for the const@htwe
find it is a straightforward matter to write down a solution of the Jacobi problem (4.36) in explicit
form. Replacel® by (4.53) in equation (4.36)

(00.U0) (i dt dt 2 dt
—+mof—+no —:/ —_. 4.54
/(So,vo) £(t) aé(t) b &) 1 qY2(to) (4-54)
We observe that the above condition is identically satisfied if the p@itatsvo), (00, Ug) and the
integersmg, ng are chosen as follows:

(60, v0) = (1,0), (00, Uo) = (z7,9Y?(z))) € y;, Mo =no=0. (4.55)

Under such a choice of the points and the integers, the funetign, w) in (4.30) is bounded at
infinity and has the form

1 (00,Uo)
Xo(z, w) = exp —/ Iogl(t,é)dW+/ dw i . (4.56)
2ri Jp 0.1)
4.4 General solution to the Riemann—Hilbert problem

To study the behaviour at the end points of the canonical solution of the auxiliary problem (4.29)
we rewrite formula (4.56) as follows:

Xo(z, w) = exp{x10(2) + w(2) x20(2)}, (4.57)
where
1 —t)(z—
x10(2) = > log %,
1 [Ylogly(t) +xildt 1 (2 dt
D=0 )y ROt -2 5/1 qi2thHt -2 (4.58)
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At the pointz = t; this solution is bounded. In the vicinity of the point= 0 it behaves as follows:
Xo(z, w) = ZY2HEDox 7 w), 250, (zZw) e Cj, =12 (4.59)

wherevg = [logl1(0) + 7i]/(27i) and X, (z, w) is a bounded function as— 0.

On using the condition (4.29) and also the identityt, —w) = 1/I(t, w), (t,w) € L, that
can be derived frony (t)I2(t) = Landlj(t) = 1j(-t), j = 1,2, one may show that the function
X1(z, w) = Xp(—2, —w) provides a canonical solution of another auxiliary problem on the second
half of the contour :

XT(t,6) =1tHXI (.8, & eLl\L. (4.60)
Atthe pointz = —t; =ty itis bounded and in the vicinity of the point= 0 it has the representation
Xo(z, w) = V2Dl (—z _y), 250, (zw)e Cj, i=12 (4.61)

From the boundary conditions (4.29), (4.60) and also from relations (4.59) and (4.61) we deduce
that the functionX(z, w) = zXo(z, w) X1(z, w) is the canonical solution for the problem (4.27).
This solution is bounded not only at the ends of the contdbut also at the poing = 0. Finally,

after straightforward transformations we obtain

X(z, w) = x3(2) exp{w(2) x2(2)}, (4.62)
where
@ = _i/tl [logli(t) + mildt 2/21 dt
REETH L P -2 CTh aPehe-2)
@ -)(B -7 o o T 0
x3(2) = \/ 21 , ti=i tani, 1= tani cot(z — E) . (4.63)

A single-valued branch of the functigns(z) is chosen such thgtz(z) ~ z, z — oo. The first
integral is taken over the segmdt t;]. The contour of integration for the second integral is the
portion of the positive bank of the cyf with the starting poinz = 1 and the terminal point = z;.
Both functionsy2(z) and x3(z) are odd holomorphic functions in theeplane with the cuts along
the lineL and the curves—z;, —1) C yo, (1, 21) C 1.

Now we can use the above formula for the canonical funckén w) to write down the general
solution of the auxiliary Riemann—Hilbert problem (4.27), (4.28):

F(z, w) = X(z, w)[R1(2) + w(2) Ra(2)], (4.64)

whereR1(2), R2(2) are arbitrary rational functions with zeros and poles defined by the properties of
the functiong- (z, w) and X (z, w). These functions for the problem of interest (3.7) will be derived
in section 5.

4.5 Thefunction f(s)

Finally, we find the general odd solution of the auxiliary equation (3.10). According to formulae
(4.1), (4.15), (4.22) and (4.24) the general solution of equation (3.10) in thdktripr < Res <
7 is given by

f(s) = ®1(s) = Pp1(S) + ¢2(S) = F1(2) + F2(2) = F(z, w) + F(z, —w), (4.65)



SECOND-ORDER FUNCTIONAL-DIFFERENCE EQUATIONS Il 285

wherew = q%/2(z). By making use of formulae (4.64), (4.62) and (4.63) we transform the above
formula to the form

f(S) = x3(2)[M1(s) coshxa(2) + M2(s)qY/?(2) sinhya(2)], = < Res <, (4.66)

where

s
2@y, z= tang coté. (4.67)

xa(2) =q
The functionsM; (s) = 2R;(2), j = 1, 2, are arbitrary 2-periodic meromorphic functions. Their
zeros and poles are defined by the properties of the unknown furfct®rand the known functions
a'2(2), x3(2), xa(z). The functionsys(z) and x4(z) are odd and the functiog/2(z) is even.
Therefore, for the general solution of equation (3.10Q3) to be odd, it is necessary and sufficient
that the functiorM1(s) is even and the functioNl»(s) is odd.

In what follows, we show how to select the general odd solution of equation (3.7) from the family
of solutions given by (4.66). To do this it is sufficient to know the general solution of equation
(3.10) in the strip—7 < Res < =& only. However, we write down the solution in the next strip
7 < Res < 3r in case its necessity might arise in other applications. So dfRes < 3, then

b(s) AY2(s)

f(s) = —T(S)[F(Z, w) + F(z, —w)] + 2a(5)

[F(z, w) — F(z, —w)]. (4.68)

Analytical continuation of the solution for the whadepane can be derived by equation (3.10). The
function f (s) is meromorphic and single-valued in thglane.

5. Solution of the governing functional-difference equation (3.7)

This section presents a procedure for constructing the general odd solution of a second-order
difference equation when the shift is less than the period of the coefficients involved. We exemplify
the technique by solving equation (3.7). The method picks up those functions from the general
solution of equation (3.10) which satisfies the equation (3.7). To achieve this goal we first
assume thas is any point of the imaginary axis. Next, we substitute the general solution of the
auxiliary equation (3.10) into equation (3.7) and establish conditions for the arbittape@odic
meromorphic functiongvi1(s) and Mx(s), in order that the solution of equation (3.10) satisfies
equation (3.7). Thirdly, by the uniqueness of analytical continuation we find the most general form
of the meromorphic solution of the equation of interest. Finally, by requiring for the solution to be
within the prescribed class we find the functidig(s) andMax(s).

5.1 General meromorphic solution

Let s be a point of the imaginary axis. To simplify the expressionsffs & &) we notice that the
image (4.18) of the poind is the pointz = taniy cot%s on one of the semi-infinite segmeritg
(Fig.4). The points + 7 fall into the pointst* = (—1/kz2)* e L*, whereL™t (L™) isthe left
(right) bank of the contouk.. Therefore

f(s+7) = xF(OIMa(s+ 7) coshyf (¢) + Ma(s + m)q¥2(¢) sinhyF (01, (5.1)

where¢ = —1/(kz), ¢ € L.
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5.1.1 Functions g/2(¢) and B(s). We first establish a relation between the branches of the
functionsq2(¢) andg(s). The single branch of the functigh(s) has been chosen by the condition
B(0) = siny. As for the branch of the functiog/2(z), it meets the conditioq/2(0) = 1. By
using relationg = tan3n cot}s we observe that

2B(s)

12, _
G @ eosinn(l—coss)’

(5.2)
whereeg is real andleg] = 1. To fix the sign ofeg we putz = 0. Because the poirg = =

corresponds to the poiat= 0 on using formula (4.10), we find tha(r) = — sinn, and the right-
hand side in (5.2) equalseg. S0,e0 = —1. The desired relation between the functigh&(z) and
B(s) is obtained by exploring formula (4.40)

28(s)

1/2 _
ave@) = sinn(1+ coss)’

(5.3)

5.1.2 The functions X; (¢) and x5 (¢). At the next stage we derive a relation between the
function x3(2), z € L, and the limiting values(:f(g) on the bankd.* of the contourL. Clearly,
X3 (¢) = —x5 (£). By noticing thatk®t? = 1/t2, from (4.63) one can deduce

B(s)v/coPs — sirt o anS

+ — — —
%3 4) = Q@2 QA= (coss — sind)(coss + cosy) 2’

(5.4)

wheree1 could be either 1 o—1. We next fix the sign of the parameter. The function
Vco2s —sint g is single-valued in the strigl cut along the curves—62, —61) C I'p and
(61,62) C T'1. The branch of this function is fixed such that at the paint O it is equal to
cosd. Equivalently,y/co®s —sirPd ~ coss as Ims — +oco. Now, because the branch of the
function x3(z) has been chosen by the conditigg(z) ~ z = tan% cot%, asz — oo (s — 0),
the sign of the parametef cannot be arbitrary and has to be defined. On settiagO in the first
equation in (5.4), we obtain

+ : n T 0
0) = —ityz; =tarf = cot( = — =
x3 (0 It1zg > (4 2>,

0 s s
Q12 ~ tan%cot(% — 5) tani, x3(2) ~ tangcoti, z—>o00 (s—0). (55)

Comparing the limiting value of the functio®(z) x3(z) asz — oo (s — 0) with x?j“(O) yields
€1 = 1. Therefore

x50 = Q@) x3(2). (5.6)

5.1.3 The functions Xj(g) and x, (¢). By the Sokhotski—Plemelj formulae applied to the
function x2(2) in (4.63) we obtain

logl1(¢) + i

+ —
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where x2(¢) is the principal value of the integral in (4.63). On using (4.40) we havé;lgg =
logl1(z). Therefore, the limiting values of the functign(z) = q/%(2) x2(2) on the banks.* can
be written as follows:

logli(2) + mi

i@ ==+ 5

+ x5(8) + x6(2). (5.8)

Here

cq¥?(¢) [ [logla(t) + mwildt
x5(8) = — por /0

Q2 -¢?)’

) =- 1”()/21 @ (5.9)
x6(8) = —¢q7°(& | A=) )
Notice that the integrand in the first integral in (5.9) is even and therefore
_ a2 [ logli(t) + 7ildt
o) = 2 [ SR, (5.10)

On making the substitutions = —1/(kz) andt = —1/(kr) and using formulae (4.40) and (5.3),
we transform the above integral

_ a"2@ [ logli(r) +xildt g% [ [logli(t) + xi]ldt
x5(8) = — i L ql/z(t)(r—z) T Toriz . q1/2(t) . (5.11)

Also, from (4.41) and (5.10)

1/2 0
@ ht)dt + d?ql/z(z), (5.12)

x5(8) = x5(2) — 271l

where

logly(t) + mi
a2t -2)

The functionh(t) is holomorphic in the domail (Fig.4) aside from a semi-circle of sufficiently
small radiuse and centre € L. Itis continuous up to the boundary apart from the poi:jjisz;t €
yli, where the functiom(t) has logarithmic singularities. By the Cauchy theorem

t, t
( +fR+/ +/ +7§) h(t)dt = 0. (5.14)
—tr t, Cp Cr a

Because of (4.46), the last integral in (5.14) over the cross-seattian be transformed as follows:

Yk logl (t) + logl; (t) + 2ri
fpoa= | T

. YA\ 1/k dt

h(t) = (5.13)
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On the circular arc,,

logli(z) +xi 1
qQY2(z)  t—

ht) = _Fhut). [hi®)] < A Ap = const. (5.16)

On the contouCR, the functionh(t) admits the representatidrit) = ha(t)t =3, where|ha(t)| <
A2, Ay = const. Finally, takingg — 0 andR — oo, from (5.14) and (5.12) we find

_ _logh@ +7i - ap /Zl /Uk _oodtd
15(0) = x52) ; q (z)( L) g g 0@ 64D

Now we transform the integrads (¢). On using formula (4.41), we find it is a straightforward matter
to show that

dO 12 q1/2(§) /-21 tZdt
= —— — . 5.18

By making the substitutions = —1/(kz) andt = —1/(kt) the integral becomes

dt

—ql/z(t+)(t2 2 (5.19)

dO 1/k
x6(0) = ——aqY%(2) + 29Y%(2) /
zZ 2

Here we used that fan = —7, q¥/2(z ") = q¥/%(z;) = —q¥2(¢;h.
Having transformed the integrajg;(¢) and xg(z) we obtain from (5.8), (5.17) and (5.19) the
following relation for the limiting values(jf(;):

logli(2) + mi

X5 = xa@ + 5

+ x7(2), (5.20)

where

_loghi@+7i g% [ (2 Ik 1 1 dt
x(D== 2 2 /1 +/22 (t—z+t+z) ql/2(t+)

logli(z) + i q¥2(2) /—22 /—1 /zl /1/k dt
- - — . (5.21
2 2 71/k+ le+ 1 * 2 ql/z(t+)(t—z) ( )

The functiony7(2) is an even holomorphic function in tteeplane cut along the curves, y1. The

first relation in (5.21) reveals that the functigf(z) is bounded at infinity. We next prove theai(z)

is identically equal to zero. Indeed, from the relation (4.46) and the Sokhotski—Plemelj formulae it
follows thatx;r(t) + x7 () = 0fort € y1. Since the functiory7(2) is even the same relation is
valid on the curvey: X;“(t) + x7 () = 0. Thus, the functiory7(2) is bounded at infinity and at

the ends of the contour), y1, it is holomorphic inC \ {yo U y1}, continuous up to the boundary

1o U y1 and it satisfies the boundary condition

X7 =—x;71), teyUyn. (5.22)

This Riemann—Hilbert problem has the trivial solution only. $g(z) = 0,z € C.
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Since formula (5.1) requires the values of the functions qq"s@) and sinhxf({) we find first

e ©) —ipeen®, eu© = —ﬁeﬂ(a, (5.23)

wherep(s) = exp{3 10g11(s)}. Next,

coshy; (¢) = pa(s) coshya(2) £ pa(s) sinhxa(2),

sinhyz(¢) = £p2(s) coshxa(2) + pu(s) sinhxa(2), z€ L, (5.24)
where 73
i 1 36(s)
(=5 ( (s — ) = ,
P 2\P p(s) 2y/co2s — sint 6
i 1 i coss
(S)=—< (S)+—)=— . 5.25
PO \PY 0] T oogs—sive &2

Here the branch of the functioficog s — sir’ 6 is chosen in the same manner as in (5.4).

5.1.4 Relation for the functions M1(s) and M2(s). On substituting the expressions fb(s) and
f (s £ 7) into equation (3.7) and using (4.66), (5.1), (5.3), (5.6) and (5.24) we obtain

B(S)
- "M h -
sinn(coss + 1) 2(8 + ) COShxa(2) + COss + cosy
2B(s)
sinn(coss — 1)
The functions cosha(z) and sinhy4(z) are linearly independent over the field of meromorphic
functions. Therefore, the conditions for the functib¢s) to satisfy equation (3.7) become

S [2(0053 — cosn)
2

M1(S+ m) sinhx4(z):|

= Mj(s) coshys(2) + Ma(s) sinhxa(2). (5.26)

. COSS — cosy s
M1(s) = -2l —— tan-Mo>(s ,
1) sinn(coss + 1) 2 2(s+70)
s Mi(s 2Mo(s
LitanS MiStT) 2(5) Res = 0. (5.27)

2coss+ cosy  sinp(coss — 1)

By the unigueness theorem these conditions are valid not only on the imaginary axis but also in
the wholes-plane. We next notice that the first equation in (5.27) coincides with the second one if
we replaces by s + 7. This means that in order that the general solution of equation (3.10) is the
general solution of the equation (3.7) it is necessary and sufficient that

i sinp sins(coss — 1)
~ 2(coss + 1)(coss + cosn)
Thus, the general solution of (3.7) depends upon the fundfipfs) only and has the form
i sinsB(s)M1(s + ) sinhx4(2)
(coss + 1)(coss + cosn)

Ma(s) =

Ma(s + 7). (5.28)

j| , —nm <Res<m.
(5.29)

Werecall thatM;(s) is an arbitrary 2 -periodic meromorphic function to be defined. We emphasize
that the solution (5.29) is odd if and only if the functity (S) is even.

f(s) = x3(2) [Ml(s) coshya(z) —
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5.2 Properties of the functions x3(z), coshys(z), sinhx4(z)

To identify the functionM1(s) we need to study the properties of the functions

i sinsB(s) x3(2) sinhxa(z)
(coss + 1)(coss + cosy)

fi(s) = xa(2) coshxa(z),  fa(s) = (5.30)
In the strip—n < Res < &, the functionsfy(s) and f2(s) are odd, and it is sufficient to study their
properties in the strip & Res < . Analysis of the functions (4.63) and (5.30) indicates that in the
strip 0 < Res < & the functionsfi(s) and f2(s) may have singularities and zeros at the following
points:s =X +ico (0< X < n),s=0,s=1n,s= eli € Ff (the corresponding points in the
z-plane arez = Ft1,z=o00,2=1,z2 = zf € yli) and also, because of the denominator of the
function f,(s), at the pointss = 7= ands = = — 5. Apart from the above points, the functiofig(s)
and f»(s) are bounded and do not equal zero.

Now we look into the behaviour of the functiorig(s) and f2(s) as Ims — —oo, s € II. In the
vicinity of the end point = t; of the contour_,

x3(2) = Ao(z— t)"? + O{(z — t)¥?}
x4(2) = tlog(z—ty) + O(1), z—ty, Ag=consts 0. (5.31)

Therefore,

x3(2) coshxa(2) = Ar(z — t) Y3 + Ax(z — 1% + Ol — t)*/3),
x3(2) sinhya(2) = —A1z— )2+ Apz—1)?P + O{z—t)*3), z—>t1, (5.32)
whereA;, A, are non-zero constants. Next, since

; i sinsB(s _
Z— 1t ~ 2t1e7'S, ) ~1, Ims— —oo, sell, (5.33)
(coss + 1)(coss + cosn)

it follows that
fi(s) = ALe 93 4 ALe2%/3 4 O 45/%),
fa(s) = —ALe'S3 4+ A,e @3 L O(e /%), Ims— —oc0, sell, (5.34)

whereA;, A, are some non-zero constants. So, the functifaiis) and f2(s) decay exponentially
at the lower end of the strip. Since they are odd functions, they decay exponentially at the upper end
as well:

fl(S) — _A&ei$/3 _ A/ZeZiS/3 + o(e4i$/3)’
fa(s) = ALeS3 — ALe?S3 L 0e¥9?), Ims— +oo, sell (5.35)

Next, we analyse these functions at the posts 0 ands = 7. Asz — oo, x3(2) ~ z, and
the functiony4(2) is bounded and continuous at the paint co. Since this function is odd then,
clearly, x4(co) = 0. This meansg(z) ~ A3z 1,z - 0o, Az = const#£ 0. Then

coshya(z) = 14+ O(z7?), sinhxa(2) = Asz 1+ 0@z %), z— oo (5.36)

From the above formulae it follows that the pognt= 0 is asimple pole of the functiorf1(s) and a



SECOND-ORDER FUNCTIONAL-DIFFERENCE EQUATIONS Il 291

simple zero of the functiorfa(s). To recover the properties of these functions at the poeist 7,
we notice that

coshy, (0) = p1(0) # 0, sinhy, (0) = p2(0) # 0. (5.37)

The functionfy(s) is clearly bounded and non-zero at the paint 7. Asfor the second function,
f2(s), because of the factor sii(coss + 1), it has a simple pole at the poisit= 7.

Now we prove that both functions are bounded and non-zero at thegpeimt The image of this
point in thez-plane is the point = 1. Analysis of the Cauchy integral in (4.63) shows (Gak®y (

x2(2) = — -V’ + x.(2, (5.38)

i
29.(1)
whereq,(2) = (z — 1)~Y2q¥2(z) and x.(2) is a function bounded @ = 1 and (1) # 0. Then
by the definition (4.67)

x4(2) = —”—Zi +aDx@z-DY2, z- 1. (5.39)

Hence cosly4(z) ~ —i As(z — 1)V/2, sinhya(z) ~ —i,z — 1, whereAs = 0, (1) x.(1) # 0. Use
of this result and also of the asymptotics
x32) ~ As(z—1)7Y? z—1, As=const#0,
B(s) ~ As(s— Y2, s—1n, A= const 0, (5.40)
yields the boundness of the functiofigs), fo(s) at the points = n andfj(n) #0,j =1, 2.
The next potential singular point §s= 7 — 7. Its image is the point = 1/k. From (4.63) we
find x4(2) ~ A7(z—1/k)Y2, z — 1/k, A; = const+# 0. Therefore, coshs(1/k) = 1 and the
function sinhy4(z) has a zero of orde%. Because the functiofi(s) has also a zero of ordér at

the points = & — 5, both functionsf(s) and f2(s) are bounded and do not equal zero at this point.
Finally, we analyse the behaviour of the functioings), f2(s) at the points = eli € Fli. Since

3@ ~ Ag(z—z)Y?, z— z1, Ag=const£0,
x4 ~Filogz—2z1), z—7, z¢y, (5.41)

it follows that in the vicinity of the points = 6:° € ',

coshxa(2) ~ Ag(s — 61) Y2, sinhya(2) ~ £Ag(s — 61) Y2,

x3(2) ~ Ag(s—0DY?, s— 6, s¢Ty, (5.42)
where A;, Ag are non-zero constants. On using that#1) = —B~(61) # 0, we obtain that the
functions f1(s) and f2(s) are bounded at the poist= 6; and, in addition,fj+ 61) = fj* (61) #0,

=12

In summary, the odd functionf (s) and f2(s) are bounded and non-zero everywhere in a finite
part of the strip—7 < Res < & apart from the points = 0 ands = +x. At the points = 0, the
function f1(s) has a simple pole, and the functidp(s) has a simple zero. At the poings= £,
the functionfi(s) is bounded and non-zero, and the functiois) has simple poles. At the ends of
the strip these functions decay exponentially as described in (5.34), (5.35).
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5.3 Definition of the function M1(s)

First we prove that the evernr2periodic functionM(s) is entire. Equation (3.7) and formulae
(4.15) indicate that the functiol1(s) may have simple poles at the pointgz/2 + 6) + 27n,

n € Z, and at the zeros of the functioh(s) = i+/38(s) coss, that is, at the points/2 + 7n,
+n + 7n, n € Z. Analyse the function

f(s) = fi(s)M1(s) — fa(S)M1(S+ 7) (5.43)

atthe poins = 7/2+6. Sinces = 37 /2+0 is not a pole of the functioM1(s) and f1(;r/2+6) # 0
then from the analyticity of the functiofi(s) at the points = 7 /2 + 6, it follows the analyticity of
the functionM1(s) at this point and therefore, by the periodicity, at the paénts +(r /2+6)+27n,
neZ.

It has been shown that the functiofig(s) and fo(s) are non-zero at the poings= +#. Clearly,
the functionf (s) is analytic at these points if the functidny (s) is analytic at the pointsn + 7n,
nez.

Now we study the functiorM1(s) at the points = 7/2. Represent it as followsM;(s) =
Mo(s) secs, where the functiorMg(s) is an even 2-periodic function. From (5.43) and (5.30) the
residue of the functiorf (s) at the points = /2 becomes

ces, 10 =0 (5) () - 1 (5) o (5 ) = wo(5) e (eas

wherezg = tan%n = 1//k. Here we used the analyticity of the functiog(s), j = 1,2, in

the stripII, their definition (5.30) and also the relatioNg)(37/2) = Mo(—7/2) = Mo(r/2) (the
function Mg(s) is even and 2-periodic). We can further reason, on using the analyticity of the
function f (s) at the points = /2 andalsoxg(zo) # 0, thatMg(r/2) = 0. This means that the
function M1(s) is analytic at the points /2 + 7n, n € Z.

At the points = 0, the functionf1(s) has a simple pole. For the functidi(s) to be analytic at
this point, it is necessary thad;(0) = 0. But the functionM1(S) is even and therefore its zero at
the points = 0 is o order not less than two. Note that although the functigfs) has simple poles
at the points = +, the functionf (s) is bounded at these points.

On using (3.8), (5.34), (5.35) and (5.43), we find that the fundifiaits) may grow exponentially
as Ims — oo, s € I as follows:

IM1(s)| < A.e3'msl A — const. (5.45)

Thus, the most general form of the even-geriodic entire functiorM (s) that meets all the above
conditions is

M1(s) = (1 — coss)(Bg + B1 coss), (5.46)
where By, B; are arbitrary constants. Then the desired odd solution of equation (3.7) in the class
(3.8) in the striplT has the form
f(8)=x3(2) {(1 — ¢0ss)(Bo + By coss) costa™%(2) x2(2)]

i sinsB(s)

— —— 7 (Bp-— Bjcoss)sinhg2(2)x2(2)]}, —7 <Res<nw. (5.47
coss+cosn(o 1 ) Sinq~“(2) x2(2)] T m. (5.47)

Outside the strifil, the solution can be found by analytical continuation by means of equation (3.7).
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6. Analysis of the spectral functions S1(s), S2(s)
6.1 Asymptotics at infinity
First we write down the asymptotics at infinity of the functioh&) andy (s). From (5.34), (5.35),
(5.43) and (5.46) for the odd functiof(s) we obtain
f(s) = FASFIS + O(¥5'%), Ims— +oo, A=—1A,B,. (6.1)

To analyse the asymptotics of the functigris) as Ims — —oo, we make the substitutions =
e 'S, xg=¢€""%,& =e7'7in (3.12) C2 = 0). Then the kernel (3.14) becomes

4iE%(X — Xo)
A(T.S) = — . 6.2
8= € —0E D (6.2)
We next introduce the function
_ coss 00 _(x= Xo) (X2 + 1) [ &fo(§)dg
Ve® = gt | AT =" b E-0E-xo@+y &I

where fo(§) = f(ilog&). From (6.1) we may conclude that the functiéfp(§) has a power
singularity at the poin§ = O:

gfoe) = A2 L 0EY3), £ 0. (6.4)

Analysis of the Cauchy integral (6.3) at the point= 0 gives

A o5 -
L(S) = —g"i/6+3is s)EeS, Ims— —oo, 6.5
Y (S) 7 Yo(S) (6.5)
whereyy(s) is a bounded function with a definite finite limit as fm> —oco. Then
Y(s) = i—AegiS +¥1(5)€S, Ims— — (6.6)
73 , ,

whereyr1(s) = 1c, - Yo(s — ). We notice that the function (s) is even and therefore
Y(s) = i—Ae‘%is +Y1(—s)e'S,  Ims — +oo. (6.7)
\/§ bl

Having found the asymptotics at infinity of the functiotigs) and f (s) we now define the
asymptotics of the spectral functions. Formulae (3.17), (3.18), (6.1), (6.6) and (6.7) imply

S1(s) = ALeT3 4 5 (s)e™S,  Ims— +oo, (6.8)
where
A —i(i —1)Acos2p, A_=—iA (6.9)
+ — \/6 0, - = =+ .

and the bounded functiors. (s) have the definite finite limit§; (ico) = —S_(—io0). Thus, the
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spectral functiors;(s) decays exponentially as Isn— +o0: S1(S) = O(e‘% IMsly . To specify the
asymptotics at infinity of the second spectral function, we notice that

S1(5+ ) + Si(s — 2m) = A (e517/3  e727/3)gHis/3
+[St(5+ 7) + Se(s—21)]et'S, Ims — +oo.  (6.10)

Since the first term in the right-hand side in (6.10) vanishes, on using formula (3.2), we obtain that
the spectral functio®,(s) is bounded as Il — 400 and it has the definite finite limitSy(4ioco)
such thatSz(i 00) = —Sa(—i00).

6.2 Définition of the arbitrary constants

In general, the spectral functions may have some inadmissible poles which should be eliminated by
fixing the arbitrary constants. The functiGa(s) must be analytic everywhere in the strif37 /4 <

Res < 37/4 apart from the poins = ¢g, where it has to have a simple pole to reproduce the
incident field (2.8)

res S1(s) = 1. (6.11)
S=¢0

The functionSz(s) must be free of poles everywhere in the strip/4 < Res < 7 /4. Among the
poles of the functiorE(s), s = go+nmn, S = —go+x/2+7n (N =0, £1, £2, ...) determine now
those which violate the analyticity of the spectral functi®hés) andSz(s) in the strips{—3r/4 <
Res < 3n/4}\ {s = ¢o} and{—n/4 < Res < 7 /4}, respectively.

Letfirstr /4 < ¢g < 37/4. Then there are only two inadmissible poles at the p@intspg — 7
ands = —¢o + 7/2 for the functionS1(s). As for the functionSz(s), it has only one forbidden pole
at the points = /2 — ¢p. Inthe next zone;-7/4 < ¢o < 7/4, the poles, we need to remove, are
s = —go—m/2ands = —gg-+7/2 for the functionSy(s) ands = ¢g for the second functiosz(s).

In the last possible case;37/4 < ¢o < —n /4, the functionSy(s) has two poles = —gpg — /2
ands = ¢g + m, and the functiorS2(s) has again only one pole= —¢g — 7 /2 which should be
removed. Thus, we have found three new additional conditions

resS1(s) =0, resSi(s)=0, resSy(s) =0, (6.12)
S=ou1 S=u2 S=u3
where
©o — T, /4 < po < 3m/4, —po+7m/2, —mw/4< @< 3n/4,
a1 = oo =
YT leeo-ns2 —sra<go<a/a T |eo+m  —3r/A<go< —m/4

—po+7/2, w/A4< ¢o< 3n/4,
—po—n/2, —3n/4<¢o< —m/4
To fix the four constant8y, B1, Cop andC1, we hawe the four conditions (6.11) and (6.12). On

ewvaluating the residues in (6.11) and (6.12), we can express these conditions in terms of the functions
f(s) andy(s). Let

84 = sinf £ sin(pp + 7 /4). (6.14)
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Suppose first that-37/4 < g9 < —n/4. Then by using (6.13) and substituting the expressions
(3.17) and (3.18) into the conditions (6.11), (6.12) we replace them by

S4lf (po—n/4H—1]=0, f(po+3m/4 =0,
V(po—7/4) =0, ¥ (po+3r/4) =1 (6.15)
It will be shown in section 8.1 that the assumptibn = 0 implies the existence of non-physical

reflected wave in the shadow domain. The parantateranishes if and only ipg = —7/4—6 and
0 is real. Therefore we exclude this case and from the first condition in equations (6.15) we have

fpo—m/4 =1
Correspondingly, in the caser/4 < ¢o < /4, the conditions (6.11), (6.12) become
fpo—n/H=1 6 f(po+3n/4) =0,
Vi(po—7m/4) =0, V¥ (po+3n/4 =1 (6.16)
Analysis of the reflected waves and the surface waves (section 8.1) indicates that thg ease
0 —m /4,0 isreal _ = 0), is singular and gives rise to the infinite reflected and surface coefficients.

Therefores_ # 0 and f (o + 37/4) = 0. Finally, if 7/4 < ¢o < 37/4, then the additional
conditions can be written in the form

fpo—m/4) =1 &_f (—¢o+57/4) =sin(po+ 7/4),
V(po—m/4) =0, ¥ (—¢o+5r/4) =0. (6.17)

The assumptiod_ = 0 meanspg = 37/4—06 andd is real,0 # 0. It conflicts with the requirement
for the functionS2(s) to be analytic everywhere in the strip 24 < Res < 57 /4. Also, if §_ = 0,
then the reflected and the surface coefficients become infinite (section 8.1). Thetrefgr®,and

f(—go+57/4) =8y, 8 =8_Lsin(go+ 7/4). (6.18)

We next aim to find the constan®;, Cj (j = 0, 1) explicitly. Rewrite the expressions for the
functions f (s) and (s) as follows:

f(s) = BoFo(s) + B1F1(s), —m < Res < m,
¥(s) = Cg + C1coss + BpGo(s) + B1G1(s), —m < Res <, (6.19)

where the functionsFj (s) andgj (s) (j = 0, 1) are independent of the constafs Cj:

; — j _ 1/2 _ (_1)ji sinsﬁ(s) . 1/2
Fij(s) = cod s x3(2) {(1 coss) cosiq™(2) x2(2)] 0SS 1 Cosy sinq™“(2) x2(2)]1¢ ,
Gj(s) = ﬁs AT, 9)Fj(r —m)dr, j=0,1. (6.20)
4T Q

Now it is straightforward to write down the desired constants in explicit form. By substituting the
expressions (6.19) into equations (6.15) we obtain

F—8F, Fi —8Fy
0= ~ 812_71
D D
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1 8
COZ—E[BO(QO_-FQS_)-FBl(gf+gf)—1+8—i|,

*

1 8
Ci=——— | By(Gy —GF Bi(GT — G 1—-—1. 6.21
! Zcos(wo—n/4)[ odo — o)+ BulGy —G) + 6*] (6.21)
Here
Fr=Fiwo—7n/4, G =Gjpo—n/4, D=FF —F F,
g+ | Fiwo+3n/4), —31/4< o< 7/4,
J Fi(—¢po+57/4), m/4< ¢o < 3r/4,
Gt — Gj(po+3r/4), —3n/4<go<7/4, (6.22)
J Gj (—po+5m/4), /4 < g0 < 3m/4, '
and
_ 10, —3n/4< o< /4,
0= {5*, 7/4 < go < 31/4. (6.23)

The determination of the four constants completes the procedure that constructs the exact
formulae for the spectral functior$ (s), S2(s). The functionS1(s) is analytic everywhere in the
strip —37/4 < Res < 3mn/4 apart from the poles = ¢g. It decays exponentially at infinity
ase !Msl/3. The second functiorS,(s) is analytic in the strip-7/4 < Res < /4. Itis
bounded at infinity and»(ico) = —S2(—io0). In the exterior of the above strips both functions
are meromorphic and single-valued. We have also established that if the par@isetsal and the
incident anglepg equals—m /4 — 6, then a non-physical reflected wave is observed in the shadow
domain. Forpg = —m/4+ 6 or oo = 3 /4 — 6 (6 is real), the reflected and surface coefficients
become infinite.

7. Casen = 0: nobranch points

In this section we aim to find a solution of equation (3.10) in the case when there are no branch
points, and solving the Riemann—Hilbert problem on the elliptic surface can be bypassed.

7.1 General solution of the auxiliary equation
If » =0, then sird = /3,

a(s) =cofs— 3, b(s)=cods—3, A(s) =3cosssirs, (7.1)
and the eigenvalues, > become

coss + +/3sins Ap(S) = 1 . 7.2)

)\. S) = )
1s) coss — +/3sins 2 r1(8)
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The matrix of transformatiofi (s) is single-valued, and the functiof§ (z) = ¢j(s) (j = 1, 2),
zZ= cot%s, are solutions to the following scalar Riemann—Hilbert problems:

Fro=LoF ®, te(=11, j=12 (7.3)
where
1+t 1+t2— (=1)i2i/3t
INU=M<n+Hw +‘>= eocvava (7.4)
1-t 1+t24 (—1)i2i/3t
In view of
1 3 1 3
xl(niioo):—éigi, )\z(n:i:ioo):—iq:\/?_i, rj(m) =1, (7.5)

and since Inkj (o), o € ©, vanishes if and only it = 7, the increments of the arguments of
the eigenvaluess, 1 are equal to‘g—‘n, —%n, respectively. Choose the branches of the functions
loglj(t) as follows:

2n 2n
argli(—1) = —3 argla(—1) = 3 (7.6)
Then, obviously,
27 27
argli(1) = 3 arglo(1) = -3 (7.7)

The general solutions to the problems (7.3) have the fBfitz) = Fjo(2)Rj(2), where R;(2),
j =1, 2, are rational functions, and

1 (Yloglj(t ,
Fjo(z):exp{ﬁ/l tg_J(Z)dt}, zeC\[-1,1], j=12 (7.8)

Because of the relations (7.4), (7.6) and (7.7)
loglj(=t) = —loglj), te[-11], j=12

logla(t) = —logly(t), te[-1,1]. (7.9)
Therefore,
_ 1 [Ytlogly(t) 1

are even functions. At the end points,

Fio@ = O{FDY?), Fo(@=0{@F ) %), z- £1L (7.11)
The general solution of the auxiliary equation (3.10) when there are no branch points becomes
f(s) = ®10(8) P1(S) + P20(S) P2(9), (7.12)
where
S
D =F , P =—— Pj(5) =R, =icot=. 7.13
10(8) = F10(2) 20(S) B10(S) i () j(2, z=ico 3 (7.13)

The functionsd jo(s) are even, andP; (s) (j = 1, 2) are 2r-periodic meromorphic functions.
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7.2 General solution of the governing equation (3.7)

Define now which conditions have to satisfy the functidgs), j = 1, 2, in order that formula
(7.12) provides the general solution of equation (3.7). As in the general case, we substitute the
general solution (7.12) of the auxiliary equation into equation (3.7)

(coss — sind){[P1o(S+ ) + P10(S — 1) IPL(S + ) + [P20(S + 7) + Poo(S — 7)]P2(S + 7))
= c0ss[P10(S) P1(S) + P20(S) P2(9)] (7.14)

and assume first that Re= 0. By the mappingz = i cots/2, a points of the imaginary axis
is transformed into the point = i cots/2 € (—oo0, —1) U (1, 00). As for the boundary points
s+, they fall into the pointg1/x)* € (—1, 1)* on the upper and lower banks of the ¢utl, 1].
Therefore

1 [1logly(t)dt s
CD]_O(S) = F]_O(X) = eXpX]_(X), Xl(x) = % Kl ﬁ, X =1 COtE. (715)
By the Sokhotski—Plemelj formulae,
1
Dio(s+ ) = Fig (;) = 110072 expyx. (%), (7.16)
wherey, (x) is the principal value of the Cauchy integral
1 [1logly(t)dt
0= — [ ==—"—. 7.17
000 =5 [ SH (7.17)

On replacingt by 1/t and using the identit{4 (1/x) = 11(x), we obtain another formula for the

integral . (X):
1 -1 *\ /1 1\ logly(t)dt
X*(X)_ﬁ</;oo+/:; )(?_t—x> o (7.18)

The next step of the procedure is to establish a relation between the fungtiogsand y. (X).
From (7.15) and (7.18),

K100 — 10 = 5= C, (7.19)

1 /OO logly(t)dt
21i J_ o t—X

where the constar is given by

1 -1 >\ logly(t)dt
g ([ ) o0t (720

To evaluate the integral in (7.19) consider the function

9(2) = 'Ozg'_liz), 7 € (=00, 0). (7.21)
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Fig. 5 The domainD and the contour of integratiom: = 0
Since
1+722+2i/3z z— (2-3)illz+ 2+ /3
logl(@ = log L2+ V3 o2 VR)illz+ 2+ V3)i] logl1(00) = O,

1+22-2/3z2 g[z— 2+ V3illz+ 2- V3l
(7.22)

it follows that the functiorg(z) is analytic in thez-plane cut along the segmerfits(2++/3)i, —(2—
V)il and[(2 — V3)i, (2 + +/3)i] of the imaginary axis, apart from the simple pole at the point
Z=x. Asz — o0, g(2) ~ 4i+/3z 2. To apply the Cauchy theorem to the functig(z) analytic in

the domainD (Fig.5), we notice that

/ 9(2dz = —xilogli(x) + pZ(p), |Z(p)] < Ko, Ko = const
Co
/ 9(2dz=R7(R), |7/(R)| <K} K{=const (7.23)
Cr

and

X — (2= /)i

. 7.24
X — (24 VI (7.24)

/ 0(2)dz = 2ri log
L+uL-
On lettingp — 0 andR — oo, wefinally obtain

1 °°Iogll(t)dt_}log[x—(2+x/§)i][x+(2+«/§)i] (7.25)
mi Jooo t=x 277 [x—@2-VB)illx+2- VIl '
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On applying this result it is possible to evaluate the constarfhe identity lod1(1/t) = logl1(t)
and formula (7.20) imply

1 (Ylogli(tdt
- /_ e (7.26)
By adding (7.20) and (7.26) and settirg= 0 in (7.25) we find
C = log(2 + V3). (7.27)
Substituting formulae (7.25) and (7.27) into (7.19) yields the desired relation
1, [x—@2+V3illx+ 2+ V3]
(X)) = x1(X) +log(2 ++/3) — = lo . 7.28
Xx(X) = x1(X) + log( R Ny XTSI Y (7.28)

On using (7.15), (7.16) and (7.28), we observe that the limiting values of the fundii@is + ),
j =1, 2, have the following representations, which are required in the sequel:

21 V3 EC- VI

Pio(stm) = ———=-P1009),
X F (24 /3)i
X F (24 V/3)i
Doo(S£ ) = (2 — V3) " Dy(S). 7.29
20( )= ( )x:F(Z—Jﬁ)i 20(S) (7.29)
Consequently, by using the relations
W2 coss+1
- coss—1’

2coss®o(s)

Sio(s+m)+ Djo(s—m)= - ,
jot ) jot ) 2coss + (—1)1/3

=12 (7.30)

we are able to replace equation (7.14) by

2coss — /3
@10(8)Pi(S + ) + ——=D20(S) P2(S + 1) = D10(S) P1(S) + P20(S)P2(s), Res=0.
2coss + /3
(7.31)
Because of the linear independence of the functibpngs) and ®,0(s) we obtain
Pi(s+ m)=Pi(s),
(2€0ss — v/3) Po(s + 1) = (2¢0ss + v/3) Pa(S). (7.32)

By the uniqueness theorem, these relations are valid not just on the imaginary axis but also in the
wholes-plane. Thus, if the 2-periodic meromorphic functionB (s), P2(s) meet the requirements
(7.32), then the functior (s) given by (7.12) is not only a solution of the auxiliary equation (3.10)
but also the general solution of equation (3.7) in the strip < Res < .

We next specify the behaviour of the meromorphic functions at infinity and their possible poles.
From (7.11),

D1g(s) = O M3 @yp(s) = OE™3),  Ims > +oo. (7.33)
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Therefore the function®;(s) and P,(s) may grow at infinity and
IPLO)| < K1e3!™S, [Py(s)] < Kze3!™S,  Ims — oo, (7.34)

whereK1, Ko are non-zero constants. Similarly to the general case, we outline the set of potential
poles of the meromorphic functiori(s), P»(s). They are the zeros of the functiar/2(s) =
V3cosssins and also the pointign +2rn,neZ©® = %n). However, the assumption that

s = %n is a pole of the functiorP1(s) conflicts with the first relation (7.32). This is because the
function Py(s+ ) is bounded as = %n. The points = %n cannot be a pole of the functidp(s)
for the function f (s) being analytic at the poirg = %n. Next, the functionsPy(s) and P»(s) are

2r-periodic and odd. Therefore they are analytic at all the pdhgs +27n,n € Z. So, they may
have simple poles at the zeros of the function singly.
The most general form of the described functions is

1 & 1 3
Pi(s) = —— E/ cosns, P(s) = —— E/ cosns, 7.35
1(®) S|n25r]2::O n 2(5) sm25nz::0 n (7.35)

where E, and E|} are arbitrary constants. Satisfying the conditions (7.32) yi&lfils= E; = 0,
E = —3Ej, E; = Ej, Ej = 0. Hence

Ep + E;cos 34 Ej cos &

sinXxs ’
Because of the analyticity of the functidn(s) in the strip—n < Res < 7 we need to make sure
that

_ Egcoss—+/3)

Pi(s) =
1(8) 2sins

Pa(s) (7.36)

srgg f(s) =0, 55352 f(s) =0, sr:e7§ f(s) =0. (7.37)
On using thatb10(0) = ®20(0) = 1, we find from the first two conditions
Eo+E,+ E,+(2—-+3)Ej =0, E,=E,+E,. (7.38)
From the relationsb1o(r) = 2 + /3, ®20() = (24 +/3)~1 and also (7.38) it follows that the

third condition in (7.37) is satisfied automatically. Finally, the general solution of equation (3.7) in
the chosen class becomes

Bo + B1cos X+ (By — Bp) cos % (2+ +/3)B1(2coss — v/3)
D10(8) —

f =
® sins sins®1¢(S)

, (7.39)
where we introduced the new constaBts= E; andB; = E,. So, as in the casg # 0, there are
two arbitrary constantBp andBs in the representation of the functidrn(s). To adjust the procedure
of section 6.2 for the constanB; andC;j (j = 0, 1) to the casgy = 0, we rewrite the expression
(7.39) for the functionf (s) in the form f (s) = BoFo(S) + B1F1(s), where

Fo(s) = 2sin2sd1(S),

cos 3+ cossk B (2++/3)(2coss — +/3)

- D10(s .
sins 10(9) sins®1p(S)

Fa(s) = (7.40)
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We emphasize that the above functions are boundsd=a0 (F; (0) = 0) and they are free of the
constantsBy, B;. Then the four unknown constants can be found by the method of section 6.2 by
formulae (6.21).

Finally, we note that the spectral functiofs(s), S2(s) defined by (3.17), (3.18) have the same
asymptotics at infinity as in the cage# 0.

8. High frequency asymptotics
8.1 Reflected, transmitted and surface waves

As kor — o0, the electric fielde; can be represented as follows:
E, ~ El + E} + EL + ES + EJ, (8.1)

whereE}, Ef, E!, ES andEJ are the incident, reflected, transmitted, surface and diffracted waves,
respectively. In this section we define these waves for the wed@ag4 < ¢ < 37 /4 and
3r/4 < ¢ < 5w /4. The usual trick of constructing the above waves is to apply the method of
steepest descent and to deform the confoimto another one consisting of two steepest descent
paths. The right-hand path is given by e 7 + gd(Ims) sgn Ims, where g is the Gudermann
function gdx = arccogl/ coshx). This curve goes from the infinite poist= 7 /2 — i 0o, crosses
the real axis at the poirst = 7 and then travels to the upper infinite point= 37/2 + ico. The
lines Res = /2 and Res = 3 /2 are the asymptotes for the lower and the upper part of the path,
respectively. The second path is symmetric to the first one with respect to the origin.

Let first the point of observation be a point in the external wed@e/4 < ¢ < 37 /4. Analysis
of the first spectral functio®1(s + ¢) and the conditions (6.12) shows that the geometrical optics
poles should be among the ones listed below:

S=—¢+¢o, mMmax{—3r/4,¢o—7n} <@ <min3r/4, eo+n}, —3n/4< o< 37/4,
S=—p+4+@o+nw, @o<¢<3/4 —n/4<q¢o<3n/4,
S=—¢p+4+¢@o—n, -3n/h<¢@<¢o, —3n/4<q¢o<mn/4,
S=—@p—wo+7r/2, —Tw/2—¢po<¢<3n/4, -3n/4<q@o<—1/4,
S=—@p—@po—1n/2, -3n/d<q@<n/2—¢y 7/4<qp<3r/4,
S=—9p—@o+31/2, 7w/2—¢9o<¢<3n/4, —7/4< o< 37/4,
S=—@p—@o—3n/2, —-3n/d<¢<—n/2—¢y, —3n/4<¢o<m/4,
S=—@p+4+@o+2n, w+eo<e<3n/4, —-3n/4<¢@o<—1/4,
S=—¢+¢@o—2n, —-3Sa/d<p<@o—m, n/4<gy< 3/4. (8.2)

To ewvaluate the residues of the functidh(s) at the above poles we need to continue the function
S1(s) into the strip /4 < Res < 9 /4:

. B 5_7r B B 9_71 cogs —/4) f(s— 51/4)
S19) = X(9) [W (S 4 ) f <S 4 ) + cogs — /4) +sind } ' ®3)
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On using formulae (6.15) to (6.18) we deduce the following result3f /4 < o < —m /4, then

) ) 3 ) 3
E, = gkor cos(w—wo)w(p (_T”’ T+ <P0), E; — glkor coso—po) [1 —f ((00 —_ %)]ww (n + o, _71)’

4
: : 3 0w b4 b4 3
r _ _ Aikor sin(p+g¢o) oo _ _ - -
E;=-¢ {%( 472 ‘”°>+[1 f(‘po 4)]“’*"( 2 o 4)}’
(8.4)
where
1, ¢elab],
w,(@, b) = 8.5
’ {o, ¢ ¢ [a,bl. ©9)

In view of (6.15), for allpg apart fromgg = —n/4 — 6 (6 is real), the valuef (po — 7/4) has to
be 1. The assumption thdt(go — 7/4) # 1 inthe cas&; = O gives reflected waves in the sector
—m/2 — ¢o < ¢ < 3m/4; that is impossible. Therefore, for alh, f(po — 7/4) = 1, and the
transmitted and reflected waves in (8.4) have the form

El=0, EL=—krsinetely, (_37/4, —7/2 — o). (8.6)
In the case-n/4 < ¢o < m/4the incident, transmitted and reflected waves are
Eiz — ¢ kor costg—ypo) El =0,
EL = —8,e71 Ko Sinw+00) o (/2 — g, 3 /4) — 40N SNOH90) oy (—3r /4, —11/2 — ). (8.7)
In the last possible case/4 < ¢o < 3r/4, the waves have the form

El, =gk costy=¢0) ey, (9o — 7, 3m/4), EL=0,
E) = —8,.e7 k" sine+90) oy (77/2 — o, 3 /4). (8.8)

Heres, is the same parameter as in (6.18). In the singular case, fthen0 we have is real and
wo=6—m/4if —/4 < 9o < w/dandpg = —0 + 3 /4 if 1/4 < o < 3 /4. In both cases the
reflected coefficient-§,. is infinite.

On using the conditions (6.12), we next write the poles of the funcfig(s) which may
correspond to the reflected and transmitted waves in the sectdr3 ¢ < 57 /4:

S=—¢p+4+e+n, 3n/b<¢e<5x/4, nw/4<|po|l < 3n/4,
S=—¢p—¢@o+37/2, maX3r/4,7w/2— o} <@ <57/4, —-3n/4< @< m/4,
S=—¢p—@o+7n/2, 3n/4<¢ <min{3n/2— ¢, 57/4}, —m/4< o< 37/4,

S=—p+¢@o+2r, max{3r/4, 1w+ ¢o} <@ <brx/4, —-3n/4<q¢o<mn/4,
S=—¢+¢o, 3n/4<¢ <min{x + ¢g,5t/4}, -—-m/4< o< 37/4,
S=—@—@o+57/2, 37/2—¢@o<¢ <5r/4, 7w/4< @< 37/4,
S=—@p—@o—n/2, 3n/d<e<m/2—¢o, —-3n/d<¢p<-—m/4. (8.9)

As in the case of the angular regign < 3m/4, to evaluate the residues at these poles in addition
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to formulae (3.18) we need the relevant spectral function in the strigs< Res < 57 /4 and
—77/4 < Res < —3r/4. By analytical continuation of (3.18) to the left and to the right we obtain

S2(8)=Z(s) {(1 siné st 4 siné

3T T sin(s+ /4 f(s+ 3n/4) Ve 3
x [I// (S+ T) +1 <S+ 7) B sin(s + m/4) + sing “ 4 SRes< 4

_ sin(s + /4) T 57

ST (s Ty wu (- )]} Ecmes< (8.10)

B sin(s + n/4)> " ( 7n> B sin(s + m/4)

sing 4 4

Because of the relations (6.15) and (6.17) not all the residues of the fuggtignat the poles (8.9)
are non-zero. The reflected and transmitted waves can be written straightforviyeyQ):

E; =0, EtZ =0, —-3n/4<¢o<—m/4,

sing 37 ; _ T T
E;:O, E;=—5_ Wy <—4 ,7T+(P0> elkol‘COS((p (ﬂO)’ —Z <@ < Z,
sino 3 57\ ks ¢ sing _ b/ 3
El = — - a)(p( 5~ %0 )e|korsm(<p+<po)’ El = - g/ kor cosp—go) 7<w<

The coefficient_ is defined by (6.14) and it is assumed to be non-zero.

We now specify the poles of the functiafy(s) which define the surface waves in the sector
—3n/4 < ¢ < 3 /4. Analysis of formulae (3.17) and (8.3) indicates that there is only one pole of
the functionSi(s + ¢) at the points = —¢ — 6 + 7z /4 that gives rise to the surface wave

ES = Wekor cosr/4+e+0) (37 /4 — Red + gd(Im6) sgn(im §), 37 /4), (8.12)
where
2C0s pp tand T
=" f(=-9). 8.13
€cos B + sin 2pg (2 ) ( )

Clearly, the surface coefficieW is infinite if the incident anglepg coincides with one of the
singular values-n/4 + 6, or 3r/4 — 6. If o9 = —n/4 — 6, then f(z/2 — ) = 0, and the
coefficientW is finite.

Let now 3t/4 < ¢ < 5m/4. The surface wave pole of the functidh(s + ¢ — ) iss =
—¢ + 6 — /4. On evaluating the residue of the functiSs(s + ¢ — ) at this point, we find the
surface wave

ES = —Wwekor cosm/4e=0) ) (37 /4, 37 /4 4+ Red — gd(Im 6) sgn(im 0)), (8.14)

with the coefficien\W given by (8.13).
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Fig. 6 The real and imaginary parts of the backscattering coefficienigar (—3r /4, —7/4)

8.2 Diffracted field. Numerical results

An important characteristic in the geometrical theory of diffraction is the diffraction coefficient (the
scattering diagram). By applying the steepest descent meth&gtfor 1 (see, for example, Senior
and Volakis ()) we obtain the diffracted field

e—i kor

Ed = I D(p), ¢ € (—=37/4,57/4) \ {9 = 37/4}, (8.15)
where
(©) = !Dl(q)), —3r/4 < ¢ < 31/4,
Do(p), 37/4 < ¢ < 51/4,
/4 eizr/4
Di(p) = m[&(w —n)—=Si1(g+m)], Dap) = m[Sz(cp —2m) — S2(p)]. (8.16)

To illustrate the method presented we consider the most interesting and complicatedA£dse
Clearly, to evaluate the above coefficients we need the spectral fun&igsisand S»(s) given
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Fig. 7 The real and imaginary parts of the backscattering coefficienger (—x /4, w/4)

by (3.17), (3.18), (8.3) and (8.10). The functiohss), ¥ (s) appearing in these formulae and the
constantsBj, Cj (j = 0, 1) are defined in terms of the functiotf§ (s) andgj(s) (j = 0, 1) by

(6.19) to (6.22). Next, the functior5;j (s) andg; (s) are found in terms of elementary functions and

the three quadratures (4.63) and (6.20). Without loss of generality, we take the contour of integration
for the second integral in (4.63) as the straight segment joining the po#atd andt = z; with

the starting point = 1. Let x2(2) = J1(2) + J2(2). The three integrals to be evaluated can be
represented in the form

. 1 [logli(t1x) + mildx

HO=T3 h wraode -2 fFE
logli(t) + i
TF®) = % +AM). telt (seQ).

dx

m, t=(z1—Dx+1, tT e (1, Zl)+,

1
J2(2) = —2(za — 1)/0
X+1

coss [l Fj(r—m)
A — A(— = —ilog —— j =0,1. (8.17
on Jy T1ox@ AES A 7.9Jdx, 7=-ilog;—. =01 (817)

Ggj(s) =
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Here71(t) is the principal value of the Cauchy integr@l(z) on the contout.
If the angle of observatiop coincides with the angle of incidegl, then the corresponding
diffracted field becomes the backscattering field. The backscattering coefficient

D(go) = lim Di(e) (8.18)
$—>90

is evaluated on using (8.16) and (6.15) to (6.18):

gn/A 3T 3 b
D(¢0)=—mf/<¢o+7>, g << (8.19)

and

im/4 ;
D(go)= & [ff (wo_ 5_”) IO LT/D g1 (4 - T)

V2 4 S 4
26_ coq g + 7 /4) + COS 2pg T 3

, - —. 8.20

+ %2 4 <%0 < (8.20)

Numerical computations are implemented for different values of the impedance pargm#ter
for instanced = 7 /3 + i, then the values for the parameters of interest becpme 1.3363+
0-5876, n = 0-4918—1.1591, t; = 0-5459+0-1794, 1/k = —0-2658— 0-1959, z; = 1.0800—
0-0917, z = —0-2291— 0-2008. In Figs 6 to 8 we present the real and imaginary parts of the
backscattering coefficierid (¢pg) for 6 = 7/3+1i andd = 7/12+i. As ¢ tends to one of the
critical values+3r /4, £ /4, the real and imaginary parts of the backscattering coefficient tend to
infinity.

Let us analyse the case of largelf Re6d € (0, 7/2) and|Im 6| — oo, then|y| — oo, and the
magnetically conductive shegt= 37 /4 vanishes since the boundary conditions (2.5)yfoe oo
mean the continuity of the fiel&; and its normal derivative through the lige= 37 /4. In this
elementary case the spectral functions can be found in terms of elementary functions

sin(go/2 + 37/8)
2[coSpo/2 + 3 /8) — cogS/2+ 37/8)]’

Si(s) = Sa(s) = Si(s+ 1), (8.21)

and the backscattering coefficient is given by

e7/4cof(po/2 — 7/8)

Doo(0) = — . 8.22
eoto N 2m[coF(po/2 — m/8) — c0R(po/2 + 37/8)] (8.22)
This coefficient is continuous &y = %n, it is discontinuous and unbounded @s = —%n or

Yo = %n, andDy, = 0if g = —%n.

As | Im y| grows the numerical values of the backscattering coefficient evaluated by the formulae
(8.19), (8.20) approach the limiting value.,(¢g). Figure 9 shows the real part dD(¢o)
(ImDs = ReDy) and the real and imaginary parts Bf(¢g) for 6 = n/3 +iv, v = 4
(v = 23650+ 13645). Apart from small neighbourhoods of the poigis= — 37 andgo = 37,
where D(¢p) is discontinuous and unbounded abd, (¢o) is continuous, the coefficient® and
D are very close to each other. The differenfe— D.,| decreases as| approaches 6 and

lv| < 6. Forg = %n + 6i the impedance parameter becompes 17469+ 10086 . The numerical
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Fig. 8 The real and imaginary parts of the backscattering coefficiertgar (7 /4, 37 /4)

procedure is unstable for> 6. This is because the critical poirgs t1, —1/k and 1 are very close
to each other. For example, for= 6 z; = 1.000575— 0-000332, t; = —0-992— 0-00459 and
—1/k = 0-9926— 0-0043.

Clearly, in the case of no branch points the computer implementation becomes even simpler.

9. Conclusion

We have found a closed-form solution of the problem on electric polarization of a right-angled

magnetically conductive wedge. The problem has been reduced to the second-order difference

equation (3.7) with the shift and 2r-periodic coefficients. To solve this equation we have analysed

the auxiliary equation (3.10) whose shift is 2nd coefficients are-periodic functions. On using

the new method for difference equations based on the theory of the Riemann—Hilbert problem

on Riemann surfaces introduced i8),(we have solved the auxiliary equation in terms of two

quadratures (4.63). The corresponding Riemann surface is a torus, and because of the choice of

the branch cuts, we have managed to solve the Jacobi inversion problem without elliptic functions.
We have also proposed a new procedure for the general solution of a second-order difference
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equation when the period of the coefficients is twice as much as the shift. It indicates which solutions
of the auxiliary equation form the basis of the solutions and which ones are mock solutions.

The spectral functionsS1(s) and Sa(s) found in the paper are meromorphic single-valued
functions in the complex plane. In the strip37/4 < Res < 3r/4 the functionSy(s) has a

prescribed pole and it decays exponentiafly(s) = O(e‘%| IMsly Ims — +o0. Asfor the second
function, it is free of poles in the strip/4 < Res < 7 /4 and bounded as I — +o0. It has
definite finite limits at infinity, an@2(i 00) = —Sa(—i00).

The procedure presented is viable and sufficient for numerical purposes. To compute the
diffraction coefficient, for example, it is required to evaluate three integrals. For the backscattering
coefficient, one needs just two integrals from (8.17)(2), J2(2), and their first derivatives; (2),

J5(2). Asthe impedance parametgr — oo the values of the backscattering coefficiéhtyo)
approach the valuB, (¢g) of the coefficient when the magnetically conductive screen vanishes.

The method presented iB)(and this paper can be applied to governing second-order difference
equations of the diffraction theory with any finite number of zeros of the discriminant of the
equation.
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APPENDIX A
Analysis of the method by Demetrescu et al.

We aim to show that the procedur®, 4) does not give the general solution of the problem, and the number of
arbitrary constants is less than it is required by the physical problem. For illustration, we choose the simplest
casen = 0 (sinf = l«/§) when there are no branch points. According3®] the general odd solution of
equation (3.7) has the form

f(s) = fu(s) — (-9, (A1)

where

fi(s) = fA(s)M(s) + (1— %) [f(s+n) + f(s MG+ 7w), -7 <Res<m, (A.2)

and M(s) is a 2r-periodic meromorphic function to be determined. As for the functigs), it is apartial
solution to the auxiliary equation (3.10) given by

f(s) = — b(S)¢p4+(S) + +/3sinscossp_(s)

, —3m <Res< —m,

2a(s)
f(s)=¢1(s), —m <Res<m,
fs) = —b(s)p1 (s) + ~/3sinscossy_ (s)’ < Res < 3, A3)

2a(s)
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where
¢+(s) = F10(2) £ F20(2). (A.4)
Here the functionsjo(2) (j = 1, 2) are the integrals (7.8). The auxiliary functidp(s) becomes

N(SM(s+ 7)
fe(s) = S\M(s) + ————, —m < Res<,
#(S) = g4 (S)M(9) 2cos+ /3
{cosw+(s+n)+ﬁsin9¢_(s+n), O<Res<

N(s) = COSSp_(S+m) — «/§sins<p_(s+n), -7 < Res 0.

(A.5)

It can be verified that the functiof(s) is continuous through the imaginary axis and is analytic in the strip
—n < Res < . Next, by the technique presented in section 7 we find

1 1 Foo(z
Fio (E) — Cu+(DF102), Fao (E) - C*zr‘l((i), Res < 7,
1\ 1\ _ Fo®@
F1o (E) =Cir—(9F102, Fao <Z> =cir @ TS Res <0, (A.6)
where
z+ (2- /3
== Y C,=2+3 A7
(2 z+ 2+ V3 +V3 (A7)

Let first 0< Res < . Onusing (A.4) and (A.6) and the relations

px(s+m) = F1(1/2) £ F2(1/2),
1 4aZ+iz-1) 1 23+

Cyiry (2 + = , Cury(2 — = - A.8
#+(2) Cul +(2) 2 4+4iz—1 +1+(2) Cir+ (20 Z+4iz—-1 A8
we derive
N(s) = 2c0ssg.y(S) + v3p_(s), 0< Res< . (A.9)
It turns out that the above formula is also valid for the strip < Res < 0. Hence
2Cc0ssp+ (s 3p_(s
fx(S) = o+ (S)M(S) + 0+(9) +v/3p-( )M(s+n), -7 < Res< 7. (A.10)

2c0ss + +/3

Because of the asymptotics of the solution at infinity, the most general form of the fuht®ns given by
M(s) = Ag + Ag coss + By sins. (A11)

On using the property of the functions. (s) to be even and from formula (A.1), the general solution of
equation (3.7) becomes

(A.12)

f(s) = 2By sins ((p+(s) _ ZCOSS;P;)(ii gtpf (s)> _

So, the two constantdg and A; are eliminated from the representation of the solution. This means that
the solution of the problem has only three arbitrary const&atsC, from (3.13) andBy in (A.12). At the

same time, there are five additional conditions to be satisfied: four conditions (6.11) and (6.12) as well as the
condition that removes the extra pole in (A.12) at the psigat %7{. Thus, the representation (A.1), (A.2) is a
partial solution of equation (3.7), not the general one. Note that without the procedure of section 7, a priori, it
is not clear how many constants are missed.
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—1/k L

Z1%

1/k

Fig. 10 The branch cuts for the functiap'2(z)

APPENDIX B
Evaluation of the function f’(s)

To evduate the backscattering coefficient by using formulae (8.19) and (8.20) one needs the defivafive
BoFy(S) + B1F;(s), where

Fi(9) = [Zx4@H}(9) + xs@H (9] cod s — sinsx3 @] (9)51. (B.1)

i1 is the Kronecker symbol, = 0, 1,

1 n S
Z = — > tan~ cose€ >
2 2 2’

222 2
Lo z 2 2 o @)@ -179
1@ = (22— Dx3(2) [22 a-h 2-1 '

e (—Dlisinsg(s) .
Hj(s) = (1— coss) coshys(2) — “ooss 1 cosy sinhx4(2),
H: (6) = sinscoshea(@) -+ (1— cos9) sinhya(2) - xa() - — 2
I X4 x4(2) g x4 coss 1 cosy

X [(cossﬁ(s) +sinsg’(s) + %) sinhx4(2) + sinsB(s) coshx4(z)dgsx4(z)} ,

1/2 d 2z %2(2) 2 o220 /2,8
1@ =a2@x2@. @ = G ATk~ +24 @15,
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B(s) = —% sinn(1 — coss)ql/2(z), x5(2) = J{(2) + T5(2),
77 (1 + k2 — 2k272)
q'/2(2) ’

B'(s) = —3 siny [sinsql/z(z) — (1 — coss)

t; 1 [logly(t1x) + i 1(t2x? + z?)dx

J@) =~
! miJo 20 2x2 - 22)2
1 (24 2)dx
2)=(1-2z /— t=(z7 — Dx + 1. B.9
The branch of the logarithmic function has to be fixed by the conditiohl@g) = —%ni. For numerical

purposes, we present the chosen branch of the fungfiti(z) as follows (Fig.10):
qY2(2) = kig¥2(z) | (r o +75+15)/2. (B.3)

where

1
+ +

=argz+1), =arg(z£ - ),
21 o ), T 9( k)

7y €log, 27 + o], ‘L']'_" el-m 4oy, w4+ o],
T, €[=27 +ap, a2l r2+ €7+ a2, 7+ 2],
_q11Im(z1 =1 _q11m(z1 — 1/k)

1 1 1 1
=tan - —, =tan - —.

1 Rezi—1) *? Re(zg — 1/K)

For the integrals7>(2), jz/(z) we needql/z(t+), wheret™ is a point of the left bank of the cut along the

straight line joining the pointg = 1 andz = z;. The quan'[itie@:ljE andrzdE become

(B.4)

_1Im@z+1)
Re(z+ 1)’

- _1Im@z-1/k + 1 Im(z+ 1/k)
T, = —2m + tan 7Re(z TS T, =tan 7Re(z+ 7K
Finally, we describe how to evaluate the functjey(z). For the backscattering coefficient, we have to calculate
the functiony3(z) on the straight lind.g = {z = it17, T € (—00, 00)}. The single branch of this function is
fixed in section 4.4 and it is discontinuous at the pairt 0. This function can be written in the form

(B.5)

#3(2) = |x3(2)|d @+ H0-+05 —0r +657—61)/2. (B.6)
where
br =argz+ty), 6f =argz+l), 65 =argz+z),

a<0+<2t+a «a=argty (for Imo >0, O<argty <n/2),
+

a1<9f<27t+oz1, —n+a1<9j <Tm+ao, j=12. (B.7)



