- 2013
 - No calculators are allowed.
 - Pictures are only sketches and are not necessarily drawn to scale or proportion.
 - You have one hour and fifteen minutes to complete the entire team session.

These 9 problems (except problem 5) require exact numerical or algebraic answers. Exact answers must be written with fractions reduced, radicals simplified, and denominators rationalized. Do not make an approximation for π or other irrational numbers.

The tiebreaker for the team competition is time. If your team reaches a point where you are satisfied or expect that you will not have more solutions in the allotted time, then you may wish to turn in your paper a little early to get a time advantage.

1. A number of unit squares are placed in a line as shown in the diagram below.

Let O be the bottom left corner of the first square and let P and Q be the top right corners of the 2012th and 2013th squares respectively. The lines OP and OQ intersect the right side of the first square at X and Y, respectively. Determine the area of triangle OXY.

- 2. Find a way to cut a 4×9 rectangle into two pieces and when repositioned form a 6×6 square.
- 3. How many positive integer divisors does 12! have? (include 12! and 1).
- 4. If m and n are positive integers such that

$$m^3 - n^3 = 485$$

find $m^3 + n^3$.

5. Two circles, C_1 and C_2 with radii r_1 and r_2 , respectively, $r_1 < r_2$, are tangent to each other and C_1 is not contained in C_2 . A line is tangent to both circles at the points D_1 and D_2 with $|D_1D_2| = d$.

Which of the following three statements about r_1 , r_2 and d are then true:

A $d < r_1 + r_2$; B $2r_1 < d < 2r_2$; C $d = 2\sqrt{r_1 r_2}$.

6. In the picture below, |AB| = 12, |CD| = 6, and the area of the rectangle MNPQ is 10.

Find the lengths of the sides of the rectangle MNPQ.

- 7. The Math Club needs to choose a committee consisting of two girls and two boys. If the committee can be chosen in 3630 ways, how many students are there in the Math Club?
- 8. Compute the following sum

2

$$S = \frac{1}{7^0} + \frac{1}{7^1} + \frac{2}{7^2} + \frac{3}{7^3} + \frac{5}{7^4} + \frac{8}{7^5} + \cdots,$$

where the numerators are the Fibonacci sequence $1, 1, 2, 3, 5, 8, 13, \ldots$ and the denominators are the successive powers of 7. Your answer should be a rational number.

9. If a man walks to work and rides back home it takes him an hour and a half. When he rides both ways it takes 30 minutes. How long would it take him to make the round trip by walking?