- Problem 1.4.13 is incorrect. It should read as follows:

The given equation is in standard form, $p(t)=\cos t$, an antiderivative is $P(t)=\sin t$, and the integrating factor is $\mu(t)=\mathrm{e}^{\sin t}$. Now multiply by the integrating factor to get

$$
\mathrm{e}^{\sin t} y^{\prime}+(\cos t) \mathrm{e}^{\sin t} y=(\cos t) \mathrm{e}^{\sin t}
$$

the left hand side of which is a perfect derivative $\left(\left(e^{\sin t}\right) y\right)^{\prime}$. Thus

$$
\left(\left(\mathrm{e}^{\sin t}\right) y\right)^{\prime}=(\cos t) \mathrm{e}^{\sin t}
$$

and taking antiderivatives of both sides gives $\left(\mathrm{e}^{\sin t}\right) y=\mathrm{e}^{\sin t}+c$ where $c \in \mathbb{R}$ is a constant. Now multiply by $\mathrm{e}^{-\sin t}$ to get $y=1+c \mathrm{e}^{-\sin t}$ for the general solution. To satisfy the initial condition, $0=y(0)=1+c \mathrm{e}^{-\sin 0}=1+c$, so $c=-1$. Thus, the solution of the initial value problem is $y=1-\mathrm{e}^{-\sin t}$

- Problem 1.4.15 has an error. It should read as follows: The given linear differential equation is in standard form, $p(t)=\frac{-2}{t}$, an antiderivative is $P(t)=-2 \ln t=\ln t^{-2}$, and the integrating factor is $\mu(t)=t^{-2}$. Now multiply by the integrating factor to get

$$
t^{-2} y^{\prime}-\frac{2}{t^{3}} y=\frac{t+1}{t^{3}}=t^{-2}+t^{-3}
$$

the left hand side of which is a perfect derivative $\left(t^{-2} y\right)^{\prime}$. Thus

$$
\left(t^{-2} y\right)^{\prime}=t^{-2}+t^{-3}
$$

and taking antiderivatives of both sides gives $\left(t^{-2}\right) y=-t^{-1}-\frac{t^{-2}}{2}+c$ where $c \in \mathbb{R}$ is a constant. Now multiply by $t^{2}$ to and we get $y=-t-\frac{1}{2}+c t^{2}$ for the general solution. Letting $t=1$ gives $-3=y(1)=\frac{-3}{2}+c$ so $c=\frac{-3}{2}$ and

$$
y(t)=-t-\frac{1}{2}-\frac{3}{2} t^{2}
$$

- Problem 1.4.31 has a misprint. In line $11 c=P_{0}-c V$ should read $k=P_{0}-c V$.
- Problem 2.8.11. In lines 2 and 3 the expression $\frac{1}{s^{2}+b^{2}}$ should read $\frac{1}{a^{2}+b^{2}}$.
- Problem 3.3.13 has a typographic error. The second line in the solution should read ... $y(t)=c_{1} e^{t}+c_{2} e^{-t}$.

