• Problem 1.4.13 is incorrect. It should read as follows:

The given equation is in standard form, $p(t) = \cos t$, an antiderivative is $P(t) = \sin t$, and the integrating factor is $\mu(t) = e^{\sin t}$. Now multiply by the integrating factor to get

$$\mathrm{e}^{\sin t}y' + (\cos t)\mathrm{e}^{\sin t}y = (\cos t)\mathrm{e}^{\sin t},$$

the left hand side of which is a perfect derivative $((e^{\sin t})y)'$. Thus

$$((\mathrm{e}^{\sin t})y)' = (\cos t)\mathrm{e}^{\sin t}$$

and taking antiderivatives of both sides gives $(e^{\sin t})y = e^{\sin t} + c$ where $c \in \mathbb{R}$ is a constant. Now multiply by $e^{-\sin t}$ to get $y = 1 + ce^{-\sin t}$ for the general solution. To satisfy the initial condition, $0 = y(0) = 1 + ce^{-\sin 0} = 1 + c$, so c = -1. Thus, the solution of the initial value problem is $y = 1 - e^{-\sin t}$

• Problem 1.4.15 has an error. It should read as follows: The given linear differential equation is in standard form, $p(t) = \frac{-2}{t}$, an antiderivative is $P(t) = -2 \ln t = \ln t^{-2}$, and the integrating factor is $\mu(t) = t^{-2}$. Now multiply by the integrating factor to get

$$t^{-2}y' - \frac{2}{t^3}y = \frac{t+1}{t^3} = t^{-2} + t^{-3},$$

the left hand side of which is a perfect derivative $(t^{-2}y)'$. Thus

$$(t^{-2}y)' = t^{-2} + t^{-3}$$

and taking antiderivatives of both sides gives $(t^{-2})y = -t^{-1} - \frac{t^{-2}}{2} + c$ where $c \in \mathbb{R}$ is a constant. Now multiply by t^2 to and we get $y = -t - \frac{1}{2} + ct^2$ for the general solution. Letting t = 1 gives $-3 = y(1) = \frac{-3}{2} + c$ so $c = \frac{-3}{2}$ and

$$y(t) = -t - \frac{1}{2} - \frac{3}{2}t^2.$$

- Problem 1.4.31 has a misprint. In line 11 $c = P_0 cV$ should read $k = P_0 cV$.
- Problem 2.8.11. In lines 2 and 3 the expression $\frac{1}{s^2 + b^2}$ should read $\frac{1}{a^2 + b^2}$.
- Problem 3.3.13 has a typographic error. The second line in the solution should read ... $y(t) = c_1 e^t + c_2 e^{-t}$.