
SIAM J. OPTIM. c© 2005 Society for Industrial and Applied Mathematics
Vol. 16, No. 1, pp. 170–192

A NEW CONJUGATE GRADIENT METHOD WITH
GUARANTEED DESCENT AND AN EFFICIENT LINE SEARCH∗

WILLIAM W. HAGER† AND HONGCHAO ZHANG†

Abstract. A new nonlinear conjugate gradient method and an associated implementation, based
on an inexact line search, are proposed and analyzed. With exact line search, our method reduces
to a nonlinear version of the Hestenes–Stiefel conjugate gradient scheme. For any (inexact) line
search, our scheme satisfies the descent condition gT

kdk ≤ − 7
8
‖gk‖2. Moreover, a global convergence

result is established when the line search fulfills the Wolfe conditions. A new line search scheme
is developed that is efficient and highly accurate. Efficiency is achieved by exploiting properties of
linear interpolants in a neighborhood of a local minimizer. High accuracy is achieved by using a
convergence criterion, which we call the “approximate Wolfe” conditions, obtained by replacing the
sufficient decrease criterion in the Wolfe conditions with an approximation that can be evaluated with
greater precision in a neighborhood of a local minimum than the usual sufficient decrease criterion.
Numerical comparisons are given with both L-BFGS and conjugate gradient methods using the
unconstrained optimization problems in the CUTE library.
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1. Introduction. We develop a new nonlinear conjugate gradient algorithm for
the unconstrained optimization problem

min {f(x) : x ∈ �n},(1.1)

where f : R
n �→ R is continuously differentiable. The iterates x0, x1, x2, . . . satisfy

the recurrence

xk+1 = xk + αkdk,

where the stepsize αk is positive and the directions dk are generated by the rule

dk+1 = −gk+1 + βN
k dk, d0 = −g0,(1.2)

βN
k =

1

dT
kyk

(
yk − 2dk

‖yk‖2

dT
kyk

)T

gk+1.(1.3)

Here ‖ · ‖ is the Euclidean norm, gk = ∇f(xk)
T, and yk = gk+1 − gk; the gradient

∇f(xk) of f at xk is a row vector and gk is a column vector. If f is a quadratic and
αk is chosen to achieve the exact minimum of f in the direction dk, then dT

kgk+1 = 0,
and the formula (1.3) for βN

k reduces to the Hestenes–Stiefel scheme [22]. In this
paper, however, we consider general nonlinear functions and an inexact line search.

As explained in our survey paper [19], the nonlinear conjugate gradient scheme
developed and analyzed in this paper is one member of a one-parameter family of con-
jugate gradient methods with guaranteed descent. Different choices for the parameter
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correspond to differences in the relative importance of conjugacy versus descent. The
specific scheme analyzed in this paper is closely connected with the memoryless quasi-
Newton scheme of Perry [30] and Shanno [36]. In particular, the scheme (1.2)–(1.3)
can be obtained by deleting a term in the Perry–Shanno scheme. If dk+1 is the
direction generated by the new scheme (1.2)–(1.3), then the direction dPS

k+1 of the
Perry–Shanno scheme can be expressed as

dPS
k+1 =

yT
k sk

‖yk‖2

(
dk+1 +

dT
kgk+1

dT
kyk

yk

)
,(1.4)

where sk = xk+1 − xk. We observe in section 2 that the dk+1 term in (1.4) dom-
inates the yk term to the right when the cosine of the angle between dk and gk+1

is sufficiently small and f is strongly convex. In this case, the directions generated
by the new scheme are approximate multiples of dPS

k+1. The Perry–Shanno scheme,
analyzed further in [34, 37, 39], has global convergence for convex functions and for
an inexact line search [36], but in general, it does not necessarily converge, even when
the line search is exact [33]. Of course, the Perry–Shanno scheme is convergent if
restarts are employed; however, the speed of convergence can decrease. Han, Liu, and
Yin [21] proved that if a standard Wolfe line search is employed, then convergence
to a stationary point is achieved when limk→∞ ‖yk‖2 = 0 and the gradient of f is
Lipschitz continuous.

Although we are able to prove a global convergence result for (1.2)–(1.3) when
f is strongly convex, our analysis breaks down for a general nonlinear function since
βN
k can be negative. Similar to the approach [13, 20, 38] taken for the Polak–Ribière–

Polyak [31, 32] version of the conjugate gradient method, we establish convergence for
general nonlinear functions by restricting the lower value of βN

k . Although restricting
βN
k to be nonnegative ensures convergence, the resulting iterates may differ signifi-

cantly from those of (1.2)–(1.3), and convergence speed may be reduced, especially
when f is quadratic. In our restricted scheme, we dynamically adjust the lower bound
on βN

k in order to make the lower bound smaller as the iterates converge:

dk+1 = −gk+1 + β̄N
k dk, d0 = −g0,(1.5)

β̄N
k = max

{
βN
k , ηk

}
, ηk =

−1

‖dk‖min{η, ‖gk‖}
,(1.6)

where η > 0 is a constant; we took η = .01 in the experiments of section 5.
For this modified scheme, we prove a global convergence result with inexact line

search. When ‖gk‖ tends to zero as k grows, it follows that ηk in (1.6) tends to −∞ as
k grows when dk is bounded. Moreover, for strongly convex functions, we show that
dk is bounded. In this case, where dk is bounded, the scheme (1.5)–(1.6) is essentially
the scheme (1.2)–(1.3) when k is large since ηk tends to −∞.

Another method related to (1.2)–(1.3) is the Dai–Liao version [7] of the conjugate
gradient method, in which βN

k in (1.2) is replaced with

βDL
k =

1

dT
kyk

(yk − tsk)
Tgk+1,(1.7)

where t > 0 is a constant parameter. Numerical results are reported in [7] for t = 0.1
and t = 1; for different choices of t, the numerical results are quite different. The
method (1.2)–(1.3) can be viewed as an adaptive version of (1.7) corresponding to
t = 2‖yk‖2/sT

kyk.



172 WILLIAM W. HAGER AND HONGCHAO ZHANG

With conjugate gradient methods, the line search typically requires sufficient
accuracy to ensure that the search directions yield descent [6, 16]. Moreover, it has
been shown [9] that for the Fletcher–Reeves [12] and Polak–Ribière–Polyak [31, 32]
conjugate gradient methods, a line search that satisfies the strong Wolfe conditions
may not yield a direction of descent for a suitable choice of the Wolfe line search
parameters, even for the function f(x) = λ‖x‖2, where λ > 0 is a constant. An
attractive feature of the new conjugate gradient scheme, which we now establish, is
that the search directions always yield descent when dT

kyk 	= 0, a condition which is
satisfied when f is strongly convex, or the line search satisfies the Wolfe conditions.

Theorem 1.1. If dT
kyk 	= 0 and

dk+1 = −gk+1 + τdk, d0 = −g0,(1.8)

for any τ ∈ [βN
k ,max{βN

k , 0}], then

gT
k+1dk+1 ≤ −7

8
‖gk+1‖2.(1.9)

Proof. Since d0 = −g0, we have gT
0 d0 = −‖g0‖2, which satisfies (1.9). Suppose

τ = βN
k . Multiplying (1.8) by gT

k+1, we have

gT
k+1dk+1 = −‖gk+1‖2 + βN

k gT
k+1dk

= −‖gk+1‖2 + gT
k+1dk

(
yT
kgk+1

dT
kyk

− 2
‖yk‖2gT

k+1dk

(dT
kyk)2

)

=
yT
kgk+1(d

T
kyk)(g

T
k+1dk) − ‖gk+1‖2(dT

kyk)
2 − 2‖yk‖2(gT

k+1dk)
2

(dT
kyk)2

.(1.10)

We apply the inequality

uTv ≤ 1

2
(‖u‖2 + ‖v‖2)

to the first term in (1.10) with

u =
1

2
(dT

kyk)gk+1 and v = 2(gT
k+1dk)yk

to obtain (1.9). On the other hand, if τ 	= βN
k , then βN

k ≤ τ ≤ 0. After multiplying
(1.8) by gT

k+1, we have

gT
k+1dk+1 = −‖gk+1‖2 + τgT

k+1dk.

If gT
k+1dk ≥ 0, then (1.9) follows immediately since τ ≤ 0. If gT

k+1dk < 0, then

gT
k+1dk+1 = −‖gk+1‖2 + τgT

k+1dk ≤ −‖gk+1‖2 + βN
k gT

k+1dk

since βN
k ≤ τ ≤ 0. Hence, (1.9) follows by our previous analysis.

By taking τ = βN
k , we see that the directions generated by (1.2)–(1.3) are descent

directions when dT
kyk 	= 0. Since ηk in (1.6) is negative, it follows that

β̄N
k = max

{
βN
k , ηk

}
∈ [βN

k ,max{βN
k , 0}].



CONJUGATE GRADIENT METHOD 173

Hence, the direction given by (1.5) and (1.6) is a descent direction. Dai and Yuan
[8, 10] present conjugate gradient schemes with the property that dT

k+1gk+1 < 0 when

dT
kyk > 0. If f is strongly convex or the line search satisfies the Wolfe conditions,

then dT
kyk > 0 and the Dai–Yuan schemes yield descent. Note that in (1.9) we bound

dT
k+1gk+1 by −(7/8)||gk+1||2, while for the schemes [8, 10], the negativity of dT

k+1gk+1

is established.
Our paper is organized as follows: In section 2 we prove convergence of (1.2)–(1.3)

for strongly convex functions, while in section 3 we prove convergence of (1.5)–(1.6) for
more general nonlinear functions. In section 4 we develop a new line search that is both
efficient and highly accurate. This line search exploits properties of linear interpolants
to achieve rapid convergence of the line search. High accuracy is achieved by replacing
the sufficient decrease criterion in the Wolfe conditions with an approximation that
can be evaluated with greater precision in a neighborhood of a local minimum. In
section 5 we compare the Dolan–Moré [11] performance profile of the new conjugate
gradient scheme to the profiles for the L-BFGS (limited memory Broyden–Fletcher–
Goldfarb–Shanno) quasi-Newton method [25, 28], the Polak–Ribière–Polyak PRP+
method [13], and the Dai–Yuan schemes [8, 10] using the unconstrained problems in
the test problem library CUTE (constrained and unconstrained testing environment)
[4].

2. Convergence analysis for strongly convex functions. Although the
search directions generated by either (1.2)–(1.3) or (1.5)–(1.6) are always descent
directions, we need to constrain the choice of αk to ensure convergence. We consider
line searches that satisfy either the Goldstein conditions [14],

δ1αkg
T
kdk ≤ f(xk + αkdk) − f(xk) ≤ δ2αkg

T
kdk,(2.1)

where 0 < δ2 < 1
2 < δ1 < 1 and αk > 0, or the Wolfe conditions [40, 41],

f(xk + αkdk) − f(xk) ≤ δαkg
T
kdk,(2.2)

gT
k+1dk ≥ σgT

kdk,(2.3)

where 0 < δ ≤ σ < 1. As in [8], we do not require the “strong Wolfe” condition
|gT

k+1dk| ≤ −σgT
kdk, which is often used to prove convergence of nonlinear conjugate

gradient methods.
Lemma 2.1. Suppose that dk is a descent direction and ∇f satisfies the Lipschitz

condition

‖∇f(x) −∇f(xk)‖ ≤ L‖x − xk‖

for all x on the line segment connecting xk and xk+1, where L is a constant. If the
line search satisfies the Goldstein conditions, then

αk ≥ (1 − δ1)

L

|gT
kdk|

‖dk‖2
.(2.4)

If the line search satisfies the Wolfe conditions, then

αk ≥ 1 − σ

L

|gT
kdk|

‖dk‖2
.(2.5)

Proof. For the convenience of the reader, we include a proof of these well-known
results. If the Goldstein conditions hold, then by (2.1) and the mean value theorem,
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we have

δ1αkg
T
kdk ≤ f(xk + αkdk) − f(xk)

= αk∇f(xk + ξdk)dk

≤ αkg
T
kdk + Lα2

k‖dk‖2,

where ξ ∈ [0, αk]. Rearranging this inequality gives (2.4).
Subtracting gT

kdk from both sides of (2.3) using the Lipschitz condition gives

(σ − 1)gT
kdk ≤ (gk+1 − gk)

Tdk ≤ αkL‖dk‖2.

Since dk is a descent direction and σ < 1, (2.5) follows immediately.
We now prove convergence of the unrestricted scheme (1.2)–(1.3) for the case

when f is strongly convex.
Theorem 2.2. Suppose that f is strongly convex and Lipschitz continuous on

the level set

L = {x ∈ R
n : f(x) ≤ f(x0)}.(2.6)

That is, there exist constants L and μ > 0 such that

‖∇f(x) −∇f(y)‖ ≤ L‖x − y‖ and(2.7)

μ‖x − y‖2 ≤ (∇f(x) −∇f(y))(x − y)

for all x and y ∈ L. If the conjugate gradient method (1.2)–(1.3) is implemented using
a line search that satisfies either the Wolfe or the Goldstein conditions in each step,
then either gk = 0 for some k, or

lim
k→∞

gk = 0.(2.8)

Proof. Suppose that gk 	= 0 for all k. By the strong convexity assumption,

yT
kdk = (gk+1 − gk)

Tdk ≥ μαk‖dk‖2.(2.9)

Theorem 1.1 and the assumption gk 	= 0 imply that dk 	= 0. Since αk > 0, it follows
from (2.9) that yT

kdk > 0. Since f is strongly convex over L, f is bounded from
below. After summing over k the upper bound in either (2.1) or (2.2), we conclude
that

∞∑
k=0

αkg
T
kdk > −∞.

Combining this with the lower bound for αk given in Lemma 2.1 and the descent
property (1.9) gives

∞∑
k=0

‖gk‖4

‖dk‖2
< ∞.(2.10)

By Lipschitz continuity (2.7),

‖yk‖ = ‖gk+1 − gk‖ = ‖∇f(xk + αkdk) −∇f(xk)‖ ≤ Lαk‖dk‖.(2.11)
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Utilizing (2.9) and (1.3), we have

|βN
k | =

∣∣∣∣yT
kgk+1

dT
kyk

− 2
‖yk‖2dT

kgk+1

(dT
kyk)2

∣∣∣∣
≤ ‖yk‖‖gk+1‖

μαk‖dk‖2
+ 2

‖yk‖2‖dk‖‖gk+1‖
μ2α2

k‖dk‖4

≤ Lαk‖dk‖‖gk+1‖
μαk‖dk‖2

+ 2
L2α2

k‖dk‖3‖gk+1‖
μ2α2

k‖dk‖4

≤
(
L

μ
+

2L2

μ2

)
‖gk+1‖
‖dk‖

.(2.12)

Hence, we have

‖dk+1‖ ≤ ‖gk+1‖ + |βN
k |‖dk‖ ≤

(
1 +

L

μ
+

2L2

μ2

)
‖gk+1‖.

Inserting this upper bound for dk in (2.10) yields

∞∑
k=1

‖gk‖2 < ∞,

which completes the proof.

We now observe that the directions generated by the new conjugate gradient up-
date (1.2) point approximately in the Perry–Shanno direction (1.4) when f is strongly
convex and the cosine of the angle between dk and gk+1 is sufficiently small. By (2.9)
and (2.11), we have

|dT
kgk+1|
|dT

kyk|
‖yk‖ ≤ L

μ
|uT

kgk+1| = c1ε‖gk+1‖,(2.13)

where uk = dk/‖dk‖ is the unit vector in the direction dk, ε is the cosine of the angle
between dk and gk+1, and c1 = L/μ. By the definition of dk+1 in (1.2), we have

‖dk+1‖2 ≥ ‖gk+1‖2 − 2βN
k dT

kgk+1.(2.14)

By the bound for βN
k in (2.12),

|βN
k dT

kgk+1| ≤ c2|uT
kgk+1|‖gk+1‖ = c2ε‖gk+1‖2,(2.15)

where c2 is the constant appearing in (2.12). Combining (2.14) and (2.15), we have

‖dk+1‖ ≥
√

1 − 2c2ε‖gk+1‖.

This lower bound for ‖dk+1‖ and the upper bound (2.13) for the yk term in (1.4)
imply that the ratio between them is bounded by c1ε/

√
1 − 2c2ε. As a result, when

ε is small, the direction generated by (1.2) is approximately a multiple of the Perry–
Shanno direction (1.4).
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3. Convergence analysis for general nonlinear functions. Our analysis of
(1.5)–(1.6) for general nonlinear functions exploits insights developed by Gilbert and
Nocedal in their analysis [13] of the PRP+ scheme. Similar to the approach taken
in [13], we establish a bound for the change uk+1 − uk in the normalized direction
uk = dk/‖dk‖, which we use to conclude, by contradiction, that the gradients cannot
be bounded away from zero. The following theorem is the analogue of [13, Lem. 4.1];
it differs in the treatment of the direction update formula (1.5).

Lemma 3.1. If the level set (2.6) is bounded and the Lipschitz condition (2.7)
holds, then for the scheme (1.5)–(1.6) and a line search that satisfies the Wolfe con-
ditions (2.2)–(2.3), we have

dk 	= 0 for each k and

∞∑
k=0

‖uk+1 − uk‖2 < ∞

whenever inf {‖gk‖ : k ≥ 0} > 0.
Proof. Define γ = inf {‖gk‖ : k ≥ 0}. Since γ > 0 by assumption, it follows from

the descent property, Theorem 1.1, that dk 	= 0 for each k. Since L is bounded, f is
bounded from below, and by (2.2) and (2.5), the following Zoutendijk condition [42]
holds:

∞∑
k=0

(gT
kdk)

2

‖dk‖2
< ∞.

Again, the descent property yields

γ4
∞∑
k=0

1

‖dk‖2
≤

∞∑
k=0

‖gk‖4

‖dk‖2
≤ 64

49

∞∑
k=0

(gT
kdk)

2

‖dk‖2
< ∞.(3.1)

Define the quantities

β+
k = max{β̄N

k , 0}, β−
k = min{β̄N

k , 0}, rk =
−gk + β−

k−1dk−1

‖dk‖
, δk = β+

k−1

‖dk−1‖
‖dk‖

.

By (1.5)–(1.6), we have

uk =
dk

‖dk‖
=

−gk + (β+
k−1 + β−

k−1)dk−1

‖dk‖
= rk + δkuk−1.

Since the uk are unit vectors,

‖rk‖ = ‖uk − δkuk−1‖ = ‖δkuk − uk−1‖.

Since δk > 0, it follows that

‖uk − uk−1‖ ≤ ‖(1 + δk)(uk − uk−1)‖
≤ ‖uk − δkuk−1‖ + ‖δkuk − uk−1‖
= 2‖rk‖.(3.2)

By the definition of β−
k and the fact that ηk < 0 and β̄N

k ≥ ηk in (1.6), we have the
following bound for the numerator of rk:
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‖ − gk + β−
k−1dk−1‖ ≤ ‖gk‖ − min{β̄N

k−1, 0}‖dk−1‖
≤ ‖gk‖ − ηk−1‖dk−1‖

≤ ‖gk‖ +
1

‖dk−1‖min{η, γ}‖dk−1‖

≤ Γ +
1

min{η, γ} ,(3.3)

where

Γ = max
x∈L

‖∇f(x)‖.(3.4)

Let c denote the expression Γ + 1/min{η, γ} in (3.3). This bound for the numerator
of rk coupled with (3.2) gives

‖uk − uk−1‖ ≤ 2‖rk‖ ≤ 2c

‖dk‖
.(3.5)

Finally, by squaring (3.5), summing over k, and utilizing (3.1), we complete the
proof.

Theorem 3.2. If the level set (2.6) is bounded and the Lipschitz condition (2.7)
holds, then for the scheme (1.5)–(1.6) and a line search that satisfies the Wolfe con-
ditions (2.2)–(2.3), either gk = 0 for some k, or

lim inf
k→∞

‖gk‖ = 0.(3.6)

Proof. We suppose that both gk 	= 0 for all k and lim infk→∞ ‖gk‖ > 0. In the
following, we obtain a contradiction. Defining γ = inf {‖gk‖ : k ≥ 0}, we have γ > 0
due to (3.6) and the fact that gk 	= 0 for all k. The proof is divided into the following
three steps:

I. A bound for β̄N
k . By the Wolfe condition gT

k+1dk ≥ σgT
kdk, we have

yT
kdk = (gk+1 − gk)

Tdk ≥ (σ − 1)gT
kdk = −(1 − σ)gT

kdk.(3.7)

By Theorem 1.1,

−gT
kdk ≥ 7

8
‖gk‖2 ≥ 7

8
γ2.

Combining this with (3.7) gives

yT
kdk ≥ (1 − σ)

7

8
γ2.(3.8)

Also, observe that

gT
k+1dk = yT

kdk + gT
kdk < yT

kdk.(3.9)

Again, the Wolfe condition gives

gT
k+1dk ≥ σgT

kdk = −σyT
kdk + σgT

k+1dk.(3.10)

Since σ < 1, we can rearrange (3.10) to obtain

gT
k+1dk ≥ −σ

1 − σ
yT
kdk.
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Combining this lower bound for gT
k+1dk with the upper bound (3.9) yields

∣∣∣∣∣g
T
k+1dk

yT
kdk

∣∣∣∣∣ ≤ max

{
σ

1 − σ
, 1

}
.(3.11)

By the definition of β̄N
k in (1.6), we have

β̄N
k = βN

k if βN
k ≥ 0 and 0 ≥ β̄N

k ≥ βN
k if βN

k < 0.

Hence, |β̄N
k | ≤ |βN

k | for each k. We now insert the upper bound (3.11) for |gT
k+1dk|/|yT

kdk|,
the lower bound (3.8) for yT

kdk, and the Lipschitz estimate (2.11) for yk into the
expression (1.3) to obtain

|β̄N
k | ≤ |βN

k |

≤ 1

|dT
kyk|

(
|yT

kgk+1| + 2‖yk‖2 |gT
k+1dk|
|yT

kdk|

)

≤ 8

7

1

(1 − σ)γ2

(
LΓ‖sk‖ + 2L2‖sk‖2 max

{
σ

1 − σ
, 1

})
≤ C‖sk‖,(3.12)

where Γ is defined in (3.4), and where C is defined as follows:

C =
8

7

1

(1 − σ)γ2

(
LΓ + 2L2Dmax

{
σ

1 − σ
, 1

})
,(3.13)

D = max{‖y − z‖ : y, z ∈ L}.(3.14)

Here D is the diameter of L.

II. A bound on the steps sk. This is a modified version of [13, Thm. 4.3]. Observe
that for any l ≥ k,

xl − xk =

l−1∑
j=k

xj+1 − xj =

l−1∑
j=k

‖sj‖uj =

l−1∑
j=k

‖sj‖uk +

l−1∑
j=k

‖sj‖(uj − uk).

By the triangle inequality,

l−1∑
j=k

‖sj‖ ≤ ‖xl − xk‖ +

l−1∑
j=k

‖sj‖‖uj − uk‖ ≤ D +

l−1∑
j=k

‖sj‖‖uj − uk‖.(3.15)

Let Δ be a positive integer, chosen large enough that

Δ ≥ 4CD,(3.16)

where C and D appear in (3.13) and (3.14). Choose k0 large enough that

∑
i≥k0

‖ui+1 − ui‖2 ≤ 1

4Δ
.(3.17)
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By Lemma 3.1, k0 can be chosen in this way. If j > k ≥ k0 and j − k ≤ Δ, then by
(3.17) and the Cauchy–Schwarz inequality, we have

‖uj − uk‖ ≤
j−1∑
i=k

‖ui+1 − ui‖

≤
√
j − k

(
j−1∑
i=k

‖ui+1 − ui‖2

)1/2

≤
√

Δ

(
1

4Δ

)1/2

=
1

2
.

Combining this with (3.15) yields

l−1∑
j=k

‖sj‖ ≤ 2D,(3.18)

when l > k ≥ k0 and l − k ≤ Δ.
III. A bound on the directions dl. By (1.5) and the bound on β̄N

k given in step I,
we have

‖dl‖2 ≤ (‖gl‖ + |β̄N
l−1|‖dl−1‖)2 ≤ 2Γ2 + 2C2‖sl−1‖2‖dl−1‖2,

where Γ is the bound on the gradient given in (3.4). Defining Si = 2C2‖si‖2, we
conclude that for l > k0,

‖dl‖2 ≤ 2Γ2

⎛
⎝ l∑

i=k0+1

l−1∏
j=i

Sj

⎞
⎠ + ‖dk0‖2

l−1∏
j=k0

Sj .(3.19)

Above, the product is defined to be 1 whenever the index range is vacuous. Let us
consider as follows a product of Δ consecutive Sj , where k ≥ k0:

k+Δ−1∏
j=k

Sj =

k+Δ−1∏
j=k

2C2‖sj‖2 =

⎛
⎝k+Δ−1∏

j=k

√
2C‖sj‖

⎞
⎠

2

≤
(∑k+Δ−1

j=k

√
2C‖sj‖

Δ

)2Δ

≤
(

2
√

2CD

Δ

)2Δ

≤ 1

2Δ
.

The first inequality above is the arithmetic-geometric mean inequality, the second is
due to (3.18), and the third comes from (3.16). Since the product of Δ consecutive
Sj is bounded by 1/2Δ, it follows that the sum in (3.19) is bounded, and the bound
is independent of l. This bound for ‖dl‖, independent of l > k0, contradicts (3.1).
Hence, γ = lim infk→∞ ‖gk‖ = 0.

4. Line search. The line search is an important factor in the overall efficiency
of any optimization algorithm. Papers focusing on the development of efficient line
search algorithms include [1, 2, 16, 24, 26, 27]. The algorithm [27] of Moré and Thuente
is used widely; it is incorporated in the L-BFGS limited memory quasi-Newton code
of Nocedal and in the PRP+ conjugate gradient code of Liu, Nocedal, and Waltz.
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Fig. 4.1. Numerical and exact graphs of F (x) = 1 − 2x + x2 near x = 1.

The approach we use to find a point satisfying the Wolfe conditions (2.2)–(2.3)
is somewhat different from the earlier work cited. To begin, we note that there is a
fundamental numerical issue connected with the first Wolfe condition, (2.2). In Figure
4.1 we plot F (x) = 1 − 2x + x2 in a neighborhood of x = 1.

The graph, generated by a MATLAB program using a Sun workstation, is ob-
tained by evaluating F at 10,000 values of x between 1−2.5×10−8 and 1+2.5×10−8

and by connecting the computed points on the graph by straight line segments. The
true graph is the parabola in Figure 4.1, while the computed graph is piecewise con-
stant.

When devising an algorithm to minimize a smooth function, we often visualize the
graph as smooth. But, in actuality, the computer’s representation of the function is
piecewise constant. Observe that there is an interval of width 1.8× 10−8 surrounding
x = 1, where F vanishes. Each point in this interval is a minimizer of the computer’s
F . In contrast, the true F has a unique minimum at x = 1. The interval around
x = 1, where F is flat, is much wider than the machine epsilon 2.2 × 10−16. This
relatively large flat region is a result of subtracting nearly equal numbers when F
is evaluated. In particular, near x = 1, 1 − 2x is near −1, while x2 is near +1.
Hence, when the computer adds 1 − 2x to x2, it is, in essence, subtracting nearly
equal numbers. It is well known that there is a large relative error when nearly equal
numbers are subtracted; the width of the flat interval near x = 1 is on the order of
the square root of the machine epsilon (see [15]).

Now consider the function φ(α) = f(xk +αdk). If φ(0) corresponds to a point in
the flat part of Figure 4.1 near x = 1, then the first Wolfe condition, (2.2), is never
satisfied, assuming dk is a descent direction, since the right side of (2.2) is always
negative and the left side can be only nonnegative. On the other hand, when we
compute with 16 significant digits, we would like to be able to compute a solution
to the optimization problem with 16-digit accuracy. We can achieve this accuracy
by looking for a zero of the derivative. In Figure 4.2 we plot the derivative F ′(x) =
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Fig. 4.2. The numerical graph of the derivative F ′(x) = 2(x− 1) near x = 1.

2(x−1) of the function in Figure 4.1 near x = 1. Since the interval where F ′ vanishes
has width 1.6 × 10−16, we can locate the zero of F ′ (Figure 4.2) with accuracy on
the order of the machine epsilon 2.2 × 10−16, while the minimum of F in Figure 4.1
is determined with accuracy on the order of the square root of the machine epsilon.
Figures 4.1 and 4.2 are extracted from [17].

This leads us to introduce the approximate Wolfe conditions,

(2δ − 1)φ′(0) ≥ φ′(αk) ≥ σφ′(0),(4.1)

where δ < min{.5, σ}. The second inequality in (4.1) is identical to the second Wolfe
condition, (2.3). The first inequality in (4.1) is identical to the first Wolfe condition,
(2.2), when f is quadratic. For general f , we now show that the first inequality in (4.1)
and the first Wolfe condition agree to the order of α2

k. The interpolating (quadratic)
polynomial q that matches φ(α) at α = 0, and φ′(α) at α = 0 and α = αk, is

q(α) =
φ′(αk) − φ′(0)

2αk
α2 + φ′(0)α + φ(0).

For such an interpolating polynomial, |q(α)−φ(α)| = O(α3). After replacing φ with q
in the first Wolfe condition, we obtain the first inequality in (4.1) (with an error term
of order α2

k). We emphasize that this first inequality is an approximation to the first
Wolfe condition. On the other hand, this approximation can be evaluated with greater
precision than the original condition when the iterates are near a local minimizer,
since the approximate Wolfe conditions are expressed in terms of a derivative, not the
difference of function values.

With these insights, we terminate the line search when either of the following
conditions holds:

T1. The original Wolfe conditions (2.2)–(2.3) are satisfied.
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T2. The approximate Wolfe conditions (4.1) are satisfied and

φ(αk) ≤ φ(0) + εk,(4.2)

where εk ≥ 0 is an estimate for the error in the value of f at iteration k.
For the experiments in section 5, we took

εk = ε|f(xk)|,(4.3)

where ε is a (small) fixed parameter. We would like to satisfy the original Wolfe
conditions, so we terminate the line search whenever they are satisfied. On the other
hand, when xk+1 and xk are close together, numerical errors may make it impossible
to satisfy (2.2). If the function value at α = αk is not much larger than the function
value at α = 0, then we view the iterates as close together, and we terminate when
the approximate Wolfe conditions are satisfied.

We satisfy the termination criterion by constructing a nested sequence of (brack-
eting) intervals, which converge to a point satisfying either T1 or T2. A typical
interval [a, b] in the nested sequence satisfies the following opposite slope condition:

φ(a) ≤ φ(0) + εk, φ′(a) < 0, φ′(b) ≥ 0.(4.4)

Given a parameter θ ∈ (0, 1), the interval update rules are specified in the following
procedure “interval update.” The input of this procedure is the current bracketing
interval [a, b] and a point c generated by either a secant step or a bisection step, as will
be explained shortly. The output of the procedure is the updated bracketing interval
[ā, b̄].

Interval update. [ā, b̄] = update (a, b, c).
U0. If c 	∈ (a, b), then ā = a, b̄ = b, and return.
U1. If φ′(c) ≥ 0, then ā = a, b̄ = c, and return.
U2. If φ′(c) < 0 and φ(c) ≤ φ(0) + εk, then ā = c, b̄ = b, and return.

U3. If φ′(c) < 0 and φ(c) > φ(0) + εk, then set â = a, b̂ = c, and do the following:

a. Set d = (1 − θ)â + θb̂; if φ′(d) ≥ 0, then set b̄ = d, ā = â, and return.
b. If φ′(d) < 0 and φ(d) ≤ φ(0) + εk, then set â = d and go to step a.

c. If φ′(d) < 0 and φ(d) > φ(0) + εk, then set b̂ = d and go to step a.
After completing U1–U3, we obtain a new interval [ā, b̄] ⊂ [a, b] whose endpoints

satisfy (4.4). The loop embedded in U3a–c should terminate since the interval width

b̂− â tends to zero and, at â and b̂, the following conditions hold:

φ′(â) < 0, φ(â) ≤ φ(0) + εk,

φ′(b̂) < 0, φ(b̂) > φ(0) + εk.

The input c for the update routine is generated by polynomial interpolation. The
interpolation is done in a special way to ensure that the line search interval shrinks
quickly. In Figure 4.3, where φ′ is concave, an initial secant step using function values
at a and b yields a point b̄ to the right of the zero. A second secant step using function
values at b̄ and b yields a point ā to the left of the zero. On the other hand, if φ′

is convex as shown in Figure 4.4, then an initial secant step using function values at
a and b yields a point ā to the left of the zero. A second secant step using function
values at a and ā yields a point b̄ to the right of the zero. Hence, whether φ′ is convex
or concave, a pair of secant steps, implemented in this way, will update one side of
the interval, bracketing the zero, and then the other side.
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Fig. 4.3. A pair of secant steps applied to a concave φ′.

α

a

’φ

a b
b

Fig. 4.4. A pair of secant steps applied to a convex φ′.

If c is obtained from a secant step based on function values at a and b, then we
write

c = secant (a, b) =
aφ′(b) − bφ′(a)

φ′(b) − φ′(a)
.

In general, we do not know whether φ′ is convex or concave. Consequently, the pair
of secant steps is generated by a routine denoted secant2 defined in the following way.
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Double secant step. [ā, b̄] = secant2 (a, b).
S1. c = secant (a, b) and [A,B] = update (a, b, c).
S2. If c = B, then c̄ = secant (b,B).
S3. If c = A, then c̄ = secant (a,A).
S4. If c = A or c = B, then [ā, b̄] = update (A,B, c̄). Otherwise, [ā, b̄] = [A,B].
If we assume the initial interval [a, b] in the secant step satisfies (4.4), then c lies

between a and b. If c = B, then U1 is satisfied and φ′ is nonnegative at both b and
B. In this case, corresponding to Figure 4.3, we attempt a secant step based on the
values of φ′ at b and B. The attempted secant step fails if c̄ lies out the interval [a, b],
in which case the update simply returns the initial interval [A,B]. If c = A in S3,
then U2 is satisfied and φ′ is negative at both a and A. In this case, corresponding
to Figure 4.4, we attempt a secant step based on the values of φ′ at a and A.

Assuming φ is not monotone, an initial interval [a, b] = [a0, b0] satisfying (4.4) can
be generated by sampling φ(α) for various choices of α. Starting from this interval,
and initializing k = 0, we now give a complete statement of the line search used for
the numerical experiments in section 5, beginning with a list of the parameters.

Line search/CG DESCENT parameters.
δ - range (0, .5), used in the Wolfe conditions (2.2) and (4.1)
σ - range [δ, 1), used in the Wolfe conditions (2.3) and (4.1)
ε - range [0,∞), used in the approximate Wolfe termination (T2)
θ - range (0, 1), used in the update rules when the potential intervals [a, c] or

[c, b] violate the opposite slope condition contained in (4.4)
γ - range (0, 1), determines when a bisection step is performed (L2 below)
η - range (0,∞), used in the lower bound for βN

k in (1.6).
Algorithm. Line search.
L0. Terminate the line search if either (T1) or (T2) is satisfied.
L1. [a, b] = secant2(ak, bk).
L2. If b− a > γ(bk − ak), then c = (a + b)/2 and [a, b] = update (a, b, c).
L3. Increment k, set [ak, bk] = [a, b], and go to L0.

The line search is terminated whenever a point is generated for which either T1 or
T2 holds.

Theorem 4.1. Suppose that φ is continuously differentiable on an interval
[a0, b0], where (4.4) holds. If δ < 1/2, then the line search algorithm terminates
at a point satisfying either T1 or T2.

Proof. Due to the bisection step L2, the interval width bk − ak tends to zero.
Since each interval [ak, bk] satisfies the opposite slope condition (4.4), we conclude
that φ′(ak) approaches 0. Hence, T2 holds for k sufficiently large.

We now analyze the convergence rate of the secant2 iteration. Since the root
convergence order [29] of the secant method is (1 +

√
5)/2, the order of convergence

for a double secant step is (1 +
√

5)2/4. However, the iteration secant2 is not a
conventional double secant step since the most recent iterates are not always used
to compute the next iterate; our special secant iteration was devised to first update
one side of the bracketing interval and then the other side. This behavior is more
attractive than a high convergence order. We now show that the convergence order
of secant2 is 1 +

√
2 ≈ 2.4, slightly less than (1 +

√
5)2/4 ≈ 2.6.

Theorem 4.2. Suppose that φ is three times continuously differentiable near a
local minimizer α∗, with φ′′(α∗) > 0 and φ′′′(α∗) 	= 0. Then for a0 and b0 sufficiently
close to α∗ with a0 ≤ α∗ ≤ b0, the iteration

[ak+1, bk+1] = secant2(ak, bk)
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converges to α∗. Moreover, the interval width |bk − ak| tends to zero with root con-
vergence order 1 +

√
2.

Proof. Suppose that φ′′′(α∗) > 0. The case φ′′′(α∗) < 0 is treated in a similar
way. Our double secant step, as seen in Figure 4.4, is

ak+1 = secant (ak, bk) and bk+1 = secant (ak, ak+1).(4.5)

It is well known (e.g., see [3, p. 49]) that the error in the secant step c = secant (a, b)
can be expressed as

c− α∗ = (a− α∗)(b− α∗)
φ′′′(ξ)

2φ′′(ξ̄)
,

where ξ, ξ̄ ∈ [a, b]. Hence, for our double secant step, we have[
α∗ − ak+1

bk+1 − α∗

]
=

[
Ck(α

∗ − ak)(bk − α∗)
Dk(α

∗ − ak)
2(bk − α∗)

]
,(4.6)

where Ck and Dk are constants depending on the second and third derivatives of φ near
α∗; Ck approaches φ′′′(α∗)/2φ′′(α∗) as ak and bk approach α∗, while Dk approaches
C2

k .
Let Ek denote the error vector

Ek =

[
ak − α∗

bk − α∗

]
.

Given any λ ∈ (0, 1), it follows from (4.6) that there exists a neighborhood N of α∗

with the property that whenever ak < α∗ < bk with ak and bk ∈ N , Ck and Dk

are bounded and ‖Ek+1‖ ≤ λ‖Ek‖. Consequently, the iteration (4.5) is convergent
whenever a0 < α∗ < b0 with a0 and b0 ∈ N .

Let C̄ and D̄ denote the maximum values for Ck and Dk, respectively, when ak
and bk ∈ N , and consider the following recurrence:[

Ak+1

Bk+1

]
=

[
C̄AkBk

D̄A2
kBk

]
, where

[
A0

B0

]
=

[
α∗ − a0

b0 − α∗

]
.(4.7)

Since Ck ≤ C̄ and Dk ≤ D̄, it follows that α∗ − ak ≤ Ak and bk − α∗ ≤ Bk for
each k. In other words, Ak and Bk generated by (4.7) bound the error in ak and bk,
respectively.

Defining the variables

vk = log(Ak

√
D̄) and wk = log(C̄Bk),

we have [
vk+1

wk+1

]
=

[
1 1
2 1

] [
vk
wk

]
.(4.8)

The solution is[
vk
wk

]
=

2v0 +
√

2w0

4
(1 +

√
2)k

[
1√
2

]
+

−2v0 +
√

2w0

4
(1 −

√
2)k

[
−1√

2

]
.
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Observe that both v0 and w0 are negative when a0 and b0 are near α. Since 1+
√

2 >
|1 −

√
2|, we conclude that for k large enough,[

vk
wk

]
≤ 2v0 +

√
2w0

8
(1 +

√
2)k

[
1√
2

]
.

Hence, the root convergence order is 1 +
√

2. Since

bk − ak ≤ |bk − α∗| + |ak − α∗|,

bk − ak converges to zero with root convergence order 1 +
√

2.

5. Numerical comparisons. In this section we compare the CPU time perfor-
mance of the new conjugate gradient method, denoted CG DESCENT, to the L-BFGS
limited memory quasi-Newton method of Nocedal [28] and Liu and Nocedal [25], and
to other conjugate gradient methods as well. Comparisons based on other metrics,
such as number of iterations or number of function/gradient evaluations, are given in
[18], where extensive numerical testing of the methods is done. We considered both
the PRP+ version of the conjugate gradient method, developed by Gilbert and No-
cedal [13], where the βk associated with the Polak–Ribière–Polyak conjugate gradient
method [31, 32] is kept nonnegative, and versions of the conjugate gradient method
developed by Dai and Yuan in [8, 10], denoted CGDY and DYHS, which achieve de-
scent for any line search that satisfies the Wolfe conditions (2.2)–(2.3). The hybrid
conjugate gradient method DYHS uses

βk = max{0,min{βHS
k , βDY

k }},

where βHS
k is the choice of Hestenes and Stiefel [22] and βDY

k appears in [8]. The test
problems are the unconstrained problems in the CUTE [4] test problem library.

The L-BFGS and PRP+ codes were obtained from Jorge Nocedal’s Web page
at http://www.ece.northwestern.edu/∼nocedal/software.html. The L-BFGS code is
authored by Jorge Nocedal, while the PRP+ code is coauthored by Guanghui Liu,
Jorge Nocedal, and Richard Waltz. In the documentation for the L-BFGS code,
it is recommended that between 3 and 7 pairs of vectors be used for the memory.
Hence, we chose 5 pairs of vectors for the memory. The line search in both codes is a
modification of subroutine CSRCH of Moré and Thuente [27], which employs various
polynomial interpolation schemes and safeguards in satisfying the strong Wolfe line
search conditions.

We also manufactured a new L-BFGS code by replacing the Moré–Thuente line
search with the new line search presented in our paper. We call this new code L-
BFGS∗. The new line search would need to be modified for use in the PRP+ code to
ensure descent. Hence, we retained the Moré–Thuente line search in the PRP+ code.
Since the conjugate gradient algorithms of Dai and Yuan achieve descent for any line
search that satisfies the Wolfe conditions, we are able to use the new line search in
our experiments with CGDY and with DYHS. All codes were written in Fortran and
compiled with f77 (default compiler settings) on a Sun workstation.

For our line search algorithm, we used the following values for the parameters:

δ = .1, σ = .9, ε = 10−6, θ = .5, γ = .66, η = .01.

Our rationale for these choices was the following: The constraints on δ and σ are
0 < δ ≤ σ < 1 and δ < .5. As δ approaches 0 and σ approaches 1, the line search
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terminates more quickly. The chosen values δ = .1 and σ = .9 represent a compromise
between our desire for rapid termination and our desire to improve the function value.
When using the approximate Wolfe conditions, we would like to achieve decay in the
function value, if numerically possible. Hence, we made the small choice ε = 10−6

for the error tolerance in (4.3). When restricting βk in (1.6), we would like to avoid
truncation if possible, since the fastest convergence for a quadratic function is obtained
when there is no truncation at all. The choice η = .01 leads to infrequent truncation
of βk. The choice γ = .66 ensures that the length of the interval [a, b] decreases by a
factor of 2/3 in each iteration of the line search algorithm. The choice θ = .5 in the
update procedure corresponds to the use of bisection. Our starting guess for step αk

in the line search was obtained by minimizing a quadratic interpolant.
In the first set of experiments, we stopped whenever

(a) ‖∇f(xk)‖∞ ≤ 10−6 or (b) αkg
T
kdk ≤ 10−20|f(xk+1)|,(5.1)

where ‖ · ‖∞ denotes the maximum absolute component of a vector. In all but three
cases, the iterations stopped when (a) was satisfied—the second criterion essentially
says that the estimated change in the function value is insignificant compared to the
function value itself.

The CPU time in seconds and the number of iterations, function evaluations, and
gradient evaluations for each of the methods are posted on the following Web site:
http://www.math.ufl.edu/∼hager/papers/CG. In running the numerical experiments,
we checked whether different codes converged to different local minimizers; we only
provide data for problems in which all six codes converged to the same local minimizer.
The numerical results are now analyzed.

The performance of the six algorithms, relative to CPU time, was evaluated using
the profiles of Dolan and Moré [11]. That is, for each method, we plot the fraction P
of problems for which the method is within a factor τ of the best time. In Figure 5.1,
we compare the performance of the four codes CG DESCENT, L-BFGS∗, L-BFGS,
and PRP+. The left side of the figure gives the percentage of the test problems for
which a method is the fastest; the right side gives the percentage of the test problems
that were successfully solved by each of the methods. The top curve is the method
that solved the most problems in a time that was within a factor τ of the best time.
Since the top curve in Figure 5.1 corresponds to CG DESCENT, this algorithm is
clearly the fastest for this set of 113 test problems with dimensions ranging from 50
to 10,000. In particular, CG DESCENT is fastest for about 60% (68 out of 113) of
the test problems, and it ultimately solves 100% of the test problems. Since L-BFGS∗

(fastest for 29 problems) performed better than L-BFGS (fastest for 17 problems),
the new line search led to improved performance. Nonetheless, L-BFGS∗ was still
dominated by CG DESCENT.

In Figure 5.2 we compare the performance of the four conjugate gradient algo-
rithms. Observe that CG DESCENT is the fastest of the four algorithms. Since
CGDY, DYHS, and CG DESCENT use the same line search, Figure 5.2 indicates
that the search direction of CG DESCENT yields quicker descent than the search
directions of CGDY and DYHS. Also, DYHS is more efficient than CGDY. Since each
of these six codes differs in the amount of linear algebra required in each iteration
and in the relative number of function and gradient evaluations, different codes will
be superior in different problem sets. In particular, the fourth ranked PRP+ code in
Figure 5.1 still achieved the fastest time in 6 of the 113 test problems.

In our next series of experiments, shown in Table 5.1, we explore the ability of
the algorithms and line search to accurately solve the test problems.
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Fig. 5.2. Performance profiles of conjugate gradient methods.

In this series of experiments, we repeatedly solve six test problems, increasing
the specified accuracy in each run. For the initial run, the stopping condition was
‖gk‖∞ ≤ 10−2, and in the last run, the stopping condition was ‖gk‖∞ ≤ 10−12. The
test problems used in these experiments, and their dimensions, were the following:
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Table 5.1

Solution time versus tolerance.

Tolerance Algorithm Problem

‖gk‖∞ #1 #2 #3 #4 #5 #6

CG DESCENT 5.22 2.32 0.86 0.00 1.57 10.04
10−2 L-BFGS∗ 4.19 1.57 0.75 0.01 1.81 14.80

L-BFGS 4.24 2.01 0.99 0.00 2.46 16.48
PRP+ 6.77 3.55 1.43 0.00 3.04 17.80

CG DESCENT 9.20 5.27 2.09 0.00 2.26 17.13
10−3 L-BFGS∗ 6.72 6.18 2.42 0.01 2.65 19.46

L-BFGS 6.88 7.46 2.65 0.00 3.30 22.63
PRP+ 12.79 7.16 3.61 0.00 4.26 24.13

CG DESCENT 10.79 5.76 5.04 0.00 3.23 25.26
10−4 L-BFGS∗ 11.56 10.87 6.33 0.01 3.49 31.12

L-BFGS 12.24 10.92 6.77 0.00 4.11 33.36
PRP+ 15.97 11.40 8.13 0.00 5.01 F

CG DESCENT 14.26 7.94 7.97 0.00 4.27 27.49
10−5 L-BFGS∗ 17.14 16.05 10.21 0.01 4.33 36.30

L-BFGS 16.60 16.99 10.97 0.00 4.90 F
PRP+ 21.54 12.09 12.31 0.00 6.22 F

CG DESCENT 16.68 8.49 9.80 5.71 5.42 32.03
10−6 L-BFGS∗ 21.43 19.07 14.58 9.01 5.08 46.86

L-BFGS 21.81 21.08 13.97 7.78 5.83 F
PRP+ 24.58 12.81 15.33 8.07 7.95 F

CG DESCENT 20.31 11.47 11.93 5.81 5.93 39.79
10−7 L-BFGS∗ 26.69 25.74 17.30 12.00 6.10 54.43

L-BFGS 26.47 F 17.37 9.98 6.39 F
PRP+ 31.17 F 17.34 8.50 9.50 F

CG DESCENT 23.22 12.88 14.09 9.68 6.49 47.50
10−8 L-BFGS∗ 28.18 33.19 20.16 16.58 6.73 63.42

L-BFGS 32.23 F 20.48 14.85 7.67 F
PRP+ 33.75 F 19.83 F 10.86 F

CG DESCENT 27.92 13.32 16.80 12.34 7.46 56.68
10−9 L-BFGS∗ 32.19 38.51 26.50 26.08 7.67 72.39

L-BFGS 33.64 F F F 8.50 F
PRP+ F F F F 11.74 F

CG DESCENT 33.25 13.89 21.18 13.21 8.11 65.47
10−10 L-BFGS∗ 34.16 50.60 29.79 33.60 8.22 79.08

L-BFGS 39.12 F F F 9.53 F
PRP+ F F F F 13.56 F

CG DESCENT 38.80 14.38 25.58 13.39 9.12 77.03
10−11 L-BFGS∗ 36.78 55.70 34.81 39.02 9.14 88.86

L-BFGS F F F F 9.99 F
PRP+ F F F F 14.44 F

CG DESCENT 42.51 15.62 27.54 13.38 9.77 78.31
10−12 L-BFGS∗ 41.73 60.89 39.29 43.95 9.97 101.36

L-BFGS F F F F 10.54 F
PRP+ F F F F 15.96 F

1. FMINSURF (5625)
2. NONCVXU2 (1000)
3. DIXMAANE (6000)
4. FLETCBV2 (1000)
5. SCHMVETT (10000)
6. CURLY10 (1000)

These problems were chosen somewhat randomly; however, we did not include
any problem for which the optimal cost was zero. When the optimal cost is zero



190 WILLIAM W. HAGER AND HONGCHAO ZHANG

while the minimizer x is not zero, the estimate ε|f(xk)| for the error in function value
(which we used in the previous experiments) can be very poor as the iterates approach
the minimizer (where f vanishes). These six problems all have nonzero optimal cost.
The times reported in Table 5.1 differ slightly from the times reported at the Web site
http://www.math.ufl.edu/∼hager/papers/CG due to timer errors and the fact that
the computer runs were done at different times. In Table 5.1, F means that the line
search terminated before the convergence tolerance for ‖gk‖ was satisfied. According
to the documentation for the line search in the L-BFGS and PRP+ codes, “Rounding
errors prevent further progress. There may not be a step which satisfies the sufficient
decrease and curvature conditions. Tolerances may be too small.”

As can be seen in Table 5.1, the line search based on the Wolfe conditions (used in
the L-BFGS and PRP+ codes) fails much sooner than the line search based on both
the Wolfe and the approximate Wolfe conditions (used in CG DESCENT and L-
BFGS∗). Roughly speaking, a line search based on the Wolfe conditions can compute
a solution with accuracy on the order of the square root of the machine epsilon,
while a line search that also includes the approximate Wolfe conditions can compute
a solution with accuracy on the order of the machine epsilon.

6. Conclusions. We have presented a new conjugate gradient algorithm for
solving unconstrained optimization problems. Although the update formulas (1.2)–
(1.3) and (1.5)–(1.6) are more complicated than previous formulas, the scheme is
relatively robust in numerical experiments. We prove that it satisfies the descent con-
dition gT

kdk ≤ − 7
8‖gk‖2, independent of the line search procedure, as long as dT

kyk 	=
0. For (1.5)–(1.6), we prove global convergence under the standard (not strong)
Wolfe conditions. A new line search was introduced that utilizes the “approximate
Wolfe” conditions; this approximation provides a more accurate way to check the
usual Wolfe conditions when the iterates are near a local minimizer. Our line search
algorithm exploits a double secant step, denoted secant2, shown in Figures 4.3 and
4.4, that is designed to achieve rapid decay in the width of the interval which brack-
ets an acceptable step. The convergence order of secant2, given in Theorem 4.2, is
1 +

√
2. The performance profile for our conjugate gradient algorithm (1.5)–(1.6),

implemented with our new line search algorithm, was higher than those of the well-
established L-BFGS and PRP+ methods for a test set consisting of 113 problems
from the CUTE library.
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Hirst [23], which is roughly the following: For a line search done with “quadratic ac-
curacy,” the conjugate gradient method retains its n-step local quadratic convergence
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