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1. Introduction

The Langlands program predicts motivic Galois representations are modular or auto-
morphic. For example, the Galois representation arising from any elliptic curve E defined 
over Q is modular. This modularity enables the analytic continuation of the L-function 
of E, and consequently the well-definedness of the central L-value of E—a vital compo-
nent of the influential Birch and Swinnerton-Dyer conjecture. Among the motivic Galois 
representations, there is a category consisting of hypergeometric Galois representations. 
These hypergeometric Galois representations cover a wide spectrum of cases and can be 
computed explicitly. Thus, they form a desirable testing ground for experimental results 
towards open conjectures as in [36], as well as for developing new theories. By their 
motivic nature, these representations can be realized across various arithmetic settings. 
Over C, classical hypergeometric functions can be used to evaluate L-values and pe-
riods of hypergeometric varieties [14,16,26]. Hypergeometric character sums over finite 
fields yield point-counting formulae [7,18,20,27]. Finally, p-adic hypergeometric functions 
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contain deep structural information via supercongruences and Dwork’s p-adic unit root 
theory [3,17,30,32–34,41]. We explore these connections throughout this series of papers. 
In this first paper we develop our general method for associating modular forms to hy-
pergeometric Galois representations. Further applications and examples are given in the 
second paper [4].

To continue, we first recall the basic notation. Let a ∈ C and n ∈ N. Define the 
rising factorial (a)n as (a)n = a(a + 1) · · · (a + n − 1) with (a)0 = 1. The classical 
(generalized) nFn−1 hypergeometric functions with complex parameters given by multi-
sets α := {r1, . . . , rn} and β := {q1 = 1, q2, . . . , qn} and argument z are defined as

nFn−1

[︃
r1 r2 · · · rn
1 q2 · · · qn

; z
]︃

:=
∞ ∑︂
k=0

(r1)k · · · (rn)k
(q2)k · · · (qn)k

zk

k! 

and converge when |z| < 1. We note that we take the nonstandard convention to include 
the extra parameter q1 = 1 in β. This parameter corresponds to the k! = (1)k term 
on the right-hand side, and so this notation will allow us to better keep track of the 
contribution of k! to the coefficients of our hypergeometric series.

Together, we call HD = {α,β} a hypergeometric datum of length n. Throughout 
we assume the parameters ri and qj are rational. We use the shorthand notations 

F (α,β; z), F
(︄
α

β
; z
)︄

, or simply F (HD; z) to denote the corresponding nFn−1 func-

tion and F (α,β; z)m−1 or F (HD; z)m−1 for its truncation after m terms. For a fixed 
datum HD, we use M(HD) to denote the least positive common denominator of the ri
and qj .

We illustrate the relationship between hypergeometric functions and modular forms 
using the example HD =

{︁{︁ 1
2 ,

1
2 ,

1
2 ,

1
2
}︁
, {1, 1, 1, 1}}︁. In [1], Ahlgren and Ono showed

Hp

[︃ 1
2

1
2

1
2

1
2

1 1 1 1
; 1
]︃

= ap(f8.4.a.a) + p, (1.1)

for all odd primes p, where the Hp function is a finite hypergeometric function defined 
in [31] and recalled in (4.1), ap(f) denotes the p-th Fourier coefficient of f , and the 
subscript 8.4.a.a is the L-functions and mdodular forms database (LMFDB) label of the 
modular form f . In [25] Kilbourn proved the following supercongruence for odd primes 
p:

4F3

[︃ 1
2

1
2

1
2

1
2

1 1 1 1
; 1
]︃
p−1

≡ ap(f8.4.a.a) (mod p3). (1.2)

Later, Zagier in [44] obtained the following special L-value of f8.4.a.a at 2:

L (f8.4.a.a, 2) = π2

16 4
F3

[︃ 1
2

1
2

1
2

1
2

1 1 1 1
; 1
]︃
. (1.3)
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In the literature, many such modularity results are predicted by modularity–lifting the-
orems. However, identifying the precise automorphic targets often results in other useful 
information. The main result of this paper is an explicit method by which to find the 
Hecke eigenform corresponding to a given hypergeometric Galois representation as in 
the previous example. Using the inductive integral definition for hypergeometric func-
tions (see eq. (2.1)), we derive a modular form fHD by specializing the parameter of the 
integrand to be a suitable modular function. For example,

4F3

[︃ 1
2

1
2

1
2

1
2

1 1 1 1
; 1
]︃

= 1 
π

1 ∫︂
0 

(︃
t 

1 − t

)︃1/2

3F2

[︃ 1
2

1
2

1
2

1 1 1
; t
]︃
dt

t 
. (1.4)

The modular form f8.4.a.a then arises from

f8.4.a.a(q1/2) = 1
8

(︄(︃
t 

t− 1

)︃ 1
2

3F2

[︃ 1
2

1
2

1
2

1 1 1
; t
]︃
q
dt 
tdq

)︄
t=−64

(︂
η(q2)
η(q) 

)︂24 , (1.5)

where η(q) = q1/24∏︁
n≥1(1 − qn) denotes the Dedekind-eta function. When q is special-

ized to e2πiτ we use η(τ) for η(q). Theorem 2.1 generalizes this approach to many more 
length 3 and 4 data. For the reader’s benefit, we state a specialization of Theorem 2.1
for an illustrative family of examples. Set HD(r, s) =

{︁{︁ 1
2 ,

1
2 , r
}︁
, {1, 1, s}}︁ for any of the 

167 pairs (r, s) in the set

S2 := {(r, s) | 0 < r < s <
3
2 , r ̸= 1, s ̸= 1

2 , 24s ∈ Z , 8(r + s) ∈ Z}. (1.6)

The Euler Integral formula (2.1) gives

F (HD(r, s); 1) = 1 
B(r, s− r)

1 ∫︂
0 

tr(1 − t)s−r−1
2F1

[︃ 1
2

1
2

1 1
; t
]︃
dt

t 
,

where B(r, s) is the beta function, see [5]. For these examples, we let t be the modular 
lambda function λ(τ) and normalize, which yields the modular form

K2(r, s)(τ) :=21−4rλr−1(1 − λ)s−r−1
2F1

[︃ 1
2

1
2

1 1
; λ
]︃
q
dλ

dq 

=
η
(︁
τ
2 
)︁16s−8r−12

η(2τ)8s+8r−12

η(τ)24s−30 .

Setting N(r) = 48/ gcd(24r, 24)—twice the denominator of r when written in lowest 
terms—each K2(r, s)(N(r)τ) is a weight-three cusp form of level 48 

N(r)
48 

N(s−r) , see §3.2. 
For a given (r, s) ∈ S2 and c ∈ Z>0, let (rc, sc) ≡ c(r, s) mod Z be the corresponding 



M. Allen et al. / Advances in Mathematics 478 (2025) 110411 5

conjugate pair in S2. That is, let rc, be the fractional part of cr, which we denote by 
{cr}, and let sc = {cs} if {cr} − {cs} ≤ 0 and sc = {cs} + 1 otherwise. For a number 
field K, let GK := Gal(Q/K) and in particular let G(M) denote GQ(ζM ). In this setting, 
our main result Theorem 2.1 specializes as follows:

Theorem 1.1. Given (r, s) ∈ S2, let HD(r, s) := {{1
2 ,

1
2 , r}, {1, 1, s}}, M = M(HD(r, s)), 

and ρ{HD(r,s);1} : G(M) → GL2(Qℓ) be the associated Katz representation (cf Theo-
rem 4.1). If for all c ∈ (Z/MZ)×, (rc, sc) ∈ S2 and K2(rc, sc)(N(r)τ) lie in the same 
Hecke orbit, then there is an explicit finite character χr of G(M) depending on r such 
that

(︁
χr ⊗ ρ{HD(r,s);1}

)︁ |G(2M) ≃ ρf♯
HD(r,s)

|G(2M), (1.7)

where ρf♯
HD(r,s)

denotes the Deligne representation of GQ associated with a Hecke eigen-

form f ♯
HD(r,s) which can be expressed as

f ♯
HD(r,s)(τ) =

∑︂
c∈(Z/MZ)×

tc ·K2(rc, sc)(N(r)τ) (1.8)

where tc ∈ Q are determined by the first few coefficients of K2(r, s)(N(r)τ).

For example, when (r, s) = (1
2 , 1), we have M(HD) = 2 and f ♯

HD( 1
2 ,1)

(τ) =
f16.3.c.a(τ) = K2(1

2 , 1)(4τ). In this case, as representations of GQ, ρ{HD( 1
2 ,1);1} ≃

ρf♯

HD( 1
2 ,1)

. This recovers work of Ahlgren, Ono, and Penniston [2]. An example for a 

Hecke orbit of size two is (r, s) = (1
4 ,

3
4 ), for which

f ♯

HD( 1
4 ,

3
4 )(τ) = f32.3.c.a(τ) = K2

(︃
1
4 ,

3
4

)︃
(8τ) + 4

√−1K2

(︃
3
4 ,

5
4

)︃
(8τ). (1.9)

The explicit construction of the K2 functions implies that the L-value corresponding to 
(1.9) is

L(f32.3.c.a, 1)

= 1
8

(︄
B

(︃
1
4 ,

1
2

)︃
· 3F2

[︄
1
2

1
2

1
4

1 3
4

; 1
]︄

+
√−1B

(︃
3
4 ,

1
2

)︃
· 3F2

[︄
1
2

1
2

3
4

1 5
4

; 1
]︄)︄

.

Remark 1. Theorem 1.1 can be alternatively stated in terms of finite hypergeometric 
sums and Fourier coefficients, see Theorem 2.1 for this formulation. Further, we note 
that the restriction of the representations in (1.7) to G(2M) instead of G(M) is not 
necessary, but yields a clearer result by removing a sign that appears in Theorem 2.1.
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A complete list of (r, s) ∈ S2 satisfying the hypotheses of Theorem 1.1 can be found in 
[37, Table 1] by Rosen.

Our main Theorem 2.1 is more general than Theorem 1.1 and yields many applica-
tions, see [4,22,38]. Our method is based on Ramanujan’s theories of elliptic functions to 
alternative bases (REAB) §3.1, the theory of commutative formal group laws (CFGL) 
§3.3, hypergeometric character sums and Galois representations §4, and the residue-sum 
technique for proving supercongruences §5, as in [3,30].
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2. Statement of results

2.1. Notation and hypergeometric functions

Consider the hypergeometric datum

HD = {α = {r1, . . . , rn},β = {q1, . . . , qn}}.

Throughout the paper we will assume that all ri, qj ∈ Q and at least two of the qj
are equal to 1. We refer to n as the length of the datum. We say the pair (α,β) is 
primitive if ri − qj / ∈ Z for all 1 ≤ i, j ≤ n. The primitive assumption is to make sure 
the corresponding local system is irreducible, as described in [8] by Beukers–Heckman.

2.1.1. Euler’s integral representation
The discussion of classical hypergeometric functions so far has involved formal power 

series in z which satisfy a certain Fuchsian differential equation. An alternate perspective 
on classical hypergeometric functions is from the integral representation of Euler. When 
Re(qi) > Re(ri) > 0, there is an inductive formula to construct hypergeometric functions, 
see [5, (2.2.2)]. Define 1F0[r1; z] := (1 − z)−r1 . Then for n ≥ 2
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nFn−1

[︃
r1 r2 · · · rn
1 q2 · · · qn

; z
]︃

=

Γ(qn) 
Γ(rn)Γ(qn − rn)

1 ∫︂
0 

trn(1 − t)qn−rn−1
n−1Fn−2

[︃
r1 r2 · · · rn−1

1 q2 · · · qn−1
; tz
]︃
dt

t 
,

(2.1)

where Γ(x) is the usual gamma function. As we demonstrated in the introduction, this 
integral representation plays a key role in our method for associating a modular form to 
a hypergeometric datum.

2.1.2. Hypergeometric character sums
In [18], a character sum nPn−1 is defined inductively, parallel to (2.1). Passing from 

the ring of cyclotomic integers Z[ζM ]—where ζM is a primitive M th root of unity—to 
the finite field setting is done as follows. For each nonzero prime ideal 𝔭 coprime to M
and integer i we can associate to the residue field κ𝔭 := Z[ζM ]/𝔭 of size q a character 
using the M th residue symbol. We set

ι𝔭

(︃
i 
M

)︃
(x) :=

(︃
x

𝔭 

)︃i

M

≡ x(q−1) i 
M (mod 𝔭), ∀x ∈ Z[ζM ]. (2.2)

For example, if 𝔭 is coprime to 2, ι𝔭(1/2) = φ𝔭 or simply φ, the quadratic character of 
the residue field. Likewise, ι𝔭(1) is the trivial character, which we denote by ε𝔭 or simply 
ε. At times we will want to place the values of this character in Cp, in which case we 

take ι𝔭
(︂

1 
q−1

)︂
to be ω̄q, where ωq is the Teichmüller character. For simplicity, we write 

Ri for ι𝔭(ri), Ri for ι𝔭(−ri), and define Qi and Qi analogously. A finite character sum 
is obtained by replacing tri in the complex setting with the character value Ri(t) for 
t ∈ Fq, and replacing gamma functions with Gauss sums. To be more explicit, for a fixed 
λ ∈ κ×

𝔭 , define

1P0[R1;λ; q] := R1(1 − λ).

Then for n ≥ 2,

P (HD;λ; 𝔭) = nPn−1

[︃
R1 R2 · · · Rn

ε Q2 · · · Qn
; λ; q

]︃
:=
∑︂
x∈κ𝔭

Rn(x)RnQn(1 − x) · n−1Pn−2

[︃
R1 R2 · · · Rn−1

ε Q2 · · · Qn−1
; λx; q

]︃

= (−1)n

q − 1 

(︄
n ∏︂

i=2
RiQi(−1)

)︄ ∑︂
χ∈ˆ︃κ×

𝔭

(︃
R1χ

χ 

)︃(︃
R2χ 
Q2χ

)︃
· · ·
(︃
Rnχ 
Qnχ

)︃
χ(λ), (2.3)
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where ˆ︂κ×
𝔭 is the character group for κ×

𝔭 , χ(0) is set to be 0 for any χ ∈ ˆ︂κ×
𝔭 , and(︃

A 
B

)︃
:= −B(−1)J(A,B) = −B(−1)

∑︂
x∈κ𝔭

A(x)B(1 − x),

for any characters A,B and J(A,B) is a Jacobi sum. When the length n pair (α,β) is 
primitive, let

Hq(α,β;λ; 𝔭) := (−1)n−1𝒥 (HD; 𝔭)−1P (α,β;λ; 𝔭), (2.4)

where

𝒥 (HD; 𝔭) :=
n ∏︂

i=2
−J(ι𝔭(ri), ι𝔭(qi − ri)). (2.5)

If β = {1, · · · , 1}, then

𝒥 (HD; 𝔭) =
n ∏︂

i=2
ι𝔭(ri)(−1). (2.6)

If the value Hq(α,β;λ; 𝔭) is an integer, then it is independent of the choice of generator 
and so we omit ωp from the notation. Note the Hq(α,β;λ; 𝔭) function is written as 

Hq

[︄
α

β
;λ
]︄

in §1. We note that Hq does not depend on the order of the parameters in α

and β whereas the P -function does, see [18]. In spite of this advantage to using the Hq

function, the P -notation more closely relates to periods in the classical setting, and so 
yields cleaner results in our method.

Another important condition on hypergeometric data is the property of being defined 
over Q. We say that a multi-set α = {r1, . . . , rn} is defined over Q if

n ∏︂
j=1

(X − e2πirj ) ∈ Z[X].

A hypergeometric datum {α,β} is defined over Q if both α and β are. In this case, the 
value of Hq(α,β;λ; 𝔭) is in Q for λ ∈ Q. Important work of Beukers, Cohen, and Mellit 
[7] extends the Hq function to almost all prime ideals of Z for HD defined over Q.

For convenience throughout the paper, we adopt the notation

f

(︃
ar11 , · · · , armm
bs11 , · · · , bsnn

)︃
:= f(a1)r1 · · · f(am)rm

f(b1)s1 · · · f(bn)sn (2.7)

where f could be the gamma function Γ, the Pochhammer symbol (·)n, the p-adic 
gamma function Γp, or the Gauss sum 𝔤. Similarly, we use f (ar11 , · · · , armm ) to denote 
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f(a1)r1 · · · f(am)rm . Moreover, for a fixed multiset α = {r1, . . . , rn}, we will use f(α) to 
denote f(r1, r2, . . . , rn). Further, we use the notation

PM = {p | p prime, p ≡ 1 (mod M)}

throughout this section.

2.2. Main results

The next statement is motivated by the inductive formula (2.1) with z = 1 and qi = 1
for 2 ≤ i ≤ n. We first define

γ(HD) := −1 +
n ∑︂

i=1 
(qi − ri). (2.8)

Theorem 2.1. Let n = 3 or 4. Assume α♭ = {r1, · · · , rn−1}, where 0 < r1 ≤ · · · ≤ rn−1 <

1, and β♭ = {1, · · · , 1} (with multiplicity n − 1), with rn, qn such that 0 < rn < qn ≤ 1
and r2 < qn. Let HD = {{rn} ∪ α♭, {qn} ∪ β♭} and M = M(HD). Further assume that 
γ(HD) ≤ 1, and

1. there exists a modular function t = C1q + O(q2) ∈ Z[[q]] such that

fHD(q) := C−rn
1 · t(q)rn(1 − t(q))qn−rn−1F (α♭,β♭; t(q))q dt(q) 

t(q)dq (2.9)

is a congruence weight-n holomorphic cusp form satisfying that, for each prime 
p ∈ PM , TpfHD = b̃pfHD for some b̃p in Z where Tp is the pth Hecke operator;

2. for any prime ideal 𝔭 in Z[ζM ] above p ∈ PM ,

n−1∏︂
i=2 

ι𝔭(ri)(−1)ι𝔭(rn)(C1)−1 · P (HD; 1; 𝔭) ∈ Z.

Then there exists a normalized Hecke eigenform f ♯
HD built from fHD, not necessarily 

unique, such that for each p > 29 in PM , b̃p = ap(f ♯
HD). More explicitly,

ap(f ♯
HD) =(−1)n−1ι𝔭(rn)(C1)−1 ·

n−1∏︂
i=2 

ι𝔭(ri)(−1) · P (HD; 1; 𝔭) − δγ(HD)=1 · ψHD(p) · p

= − ι𝔭(rn)(C1)−1J(ι𝔭(rn), ι𝔭(qn − rn)) ·Hp(HD; 1; 𝔭) − δγ(HD)=1 · ψHD(p) · p.
(2.10)

Here δγ(HD)=1 is equal to 1 when γ(HD) = 1 and is 0 otherwise and
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HD♭
, (rn = m/e, qn)

ω(t)dt/t

fHD(q)dq ω(ue)due/ue

Truncated HGS

b̃p χHDP(HD; 1)

(2.9)

t=t(q) by REAB t=ue

Tp

pth u−coeff (3.15)

CFGL Proposition 3.4

Agree modulo p2 by residue sum

Gross–Koblitz Theorem 2.5

Fig. 1. A visual outline of the proof of Theorem 2.1. 

ψHD(p) ≡ (−1)n−1 · C(p−1)rn
1 Γp

(︃
qn − rn

α♭

)︃
(mod p). (2.11)

In terms of Galois representations, this is equivalent to

ρf♯
HD
|G(M) ≃ χHD ⊗ ρ{HD;1} − δγ(HD)=1 · ψHDϵℓ|G(M), (2.12)

where ϵℓ denotes the cyclotomic character and

χHD(𝔭) = ι𝔭(rn)(C1)−1 ·
n−1∏︂
i=1 

ι𝔭(ri)(−1).

The key idea is that the right-hand side f(t) = ω(t)dt/t of (2.9) is of the form of the 
integrand in Euler’s integral formula (2.1). We specialize this function two ways. First, 
using Ramanujan’s theory of elliptic functions to alternative bases and letting t be the 
modular function t(q) in Theorem 2.1 yields a modular form fHD. Then, with e denoting 
the denominator of rn in lowest terms, we write f(t) as an expansion in u = te. By 
the Euler integral formula, the coefficients of this expansion will be terminating hyper-
geometric functions, see §3.4. The commutative formal group law yields a congruence 
modulo p. The mod p2 supercongruences given below in Theorem 2.3, the Weil–Deligne 
bounds, and the integrality of the Fourier coefficients then allow us to strengthen this 
congruence to our desired equality.

Example 1. For HD♭ = {{1
2 ,

1
2 ,

1
2}, {1, 1, 1}} and (r4, q4) = (1

2 , 1), we set t = −64η(q2)24
η(q)24 . 

Then fHD(q) = f8.4.a.a(q1/2) as in (1.5). As this is already a Hecke eigenform after 
τ ↦→ 2τ , we have f ♯

HD = f8.4.a.a. In this case γ(HD) = 1, and the normalizing factor in 
(2.10) in front of Hp is

−ι𝔭(1/2)(−64)−1J(ι𝔭(1/2), ι𝔭(1/2)) = −φ(−64)J(φ, φ) = 1,

and
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ψHD(p) = φ(−1)(−1)3 · Γp

(︃ 1
2

1
2 ,

1
2 ,

1
2

)︃
(2.20)= −φ(−1)(−1)(p+1)/2 = 1.

Thus, (2.10) says for any odd prime p

ap(f8.4.a.a) = Hp(HD; 1) − p,

recovering (1.1).

We now use Theorem 2.1 and the same modular function as the previous example, to 
obtain the following new modularity result for a datum of length four.

Proposition 2.2. For each prime p ≡ 1 (mod 4)

ap(f32.4.a.a) = −P

(︃{︃
1
2 ,

1
2 ,

1
2 ,

1
4

}︃
,

{︃
1, 1, 1, 3

4

}︃
; 1; 𝔭

)︃
− p.

Proof. Let HD♭ = {{1
2 ,

1
2 ,

1
2}, {1, 1, 1}}, (r4, q4) = (1

4 ,
3
4) and t = −64η(q2)24

η(q)24 . In this case, 

fHD(q) = η(q)10
η(q2)2 satisfies condition (1) of Theorem 2.1 and f ♯

HD can be taken as

f ♯
HD(q) = f32.4.a.a(q) = η(q4)10

η(q8)2 − 8η(q
8)10

η(q4)2 .

Note that P (HD; 1; 𝔭) ∈ Z[i] and its complex conjugate is P (HD; 1; 𝔭), where HD =
{{1

2 ,
1
2 ,

1
2 ,

3
4}, {1, 1, 1, 1

4}}. Using Proposition 1 of [27], we have P (HD; 1; 𝔭) = P (HD; 1; 𝔭). 
Thus condition (2) of Theorem 2.1 is also satisfied. Here ψHD(p) = 1, similar to the 
previous example. □

We remark that the form η(q8)10
η(q4)2 arises from the datum HD. The combinations of fHD

and fHD give Hecke eigenforms f32.4.a.a and f32.4.a.c which differ by a quadratic character 
of conductor 4. One important difference between Example 1 and Proposition 2.2 is 
that the hypergeometric datum in Proposition 2.2 is not defined over Q. Condition 
(1) of Theorem 2.1 is satisfied for both cases by construction. Now Condition (2) of 
Theorem 2.1 is automatically satisfied in Example 1, as the datum is defined over Q. 
However, in Proposition 2.2 a character sum identity, such as Proposition 1 of [27], 
implies Condition (2) of Theorem 2.1, when p ≡ 1 (mod 4).

In the proof of Theorem 2.1, we rely on a more general p-adic supercongruence result. 
To apply p-adic techniques, we embed P (HD; 1; 𝔭) into Cp through the Teichmüller 
character ωq, and as we are considering prime ideals above splitting primes we may take 
q = p. Further, under the assumption of 𝔭 being above p ∈ PM , all values of the characters 
of ι𝔭(ri) and ι𝔭(qi) can be embedded into Zp. In this case we write the embedding of 
Hp(HD; 1; 𝔭) into Zp as Hp(HD; 1; ω̄p), namely
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Hp(HD; 1; ω̄p) = Hp(HD; 1; 𝔭), where ι𝔭

(︃
1 

p− 1

)︃
= ω̄p. (2.13)

Likewise, we use Jω̄p
(a, b) for the embedding of J(ι𝔭(a), ι𝔭(b)).

2.3. Supercongruences

2.3.1. Supercongruence background
A key step in the proof of Theorem 2.1 involves proving supercongruences to 

strengthen the relationship between the Fourier coefficients ap(f ♯
HD), truncated hyper-

geometric functions, and hypergeometric character sums arising from the commutative 
formal group law. We do this by proving two constituent congruences. The first, which 
we say is of ‘Gross–Koblitz type’, gives a congruence modulo p between the charac-
ter sum Hp and the corresponding hypergeometric series truncated at p− 1. The main 
tool used to establish this congruence is the Gross–Koblitz formula, which we recall be-
low in Theorem 2.5. Next, the bridge from the truncated hypergeometric sum to the 
Fourier coefficients ap(f ♯

HD) is attained through a formal group isomorphism from fHD

to the truncated hypergeometric series as in Proposition 3.4 and then by a ‘Dwork type’ 
supercongruence, wherein we relate our truncated hypergeometric function to the corre-
sponding Dwork unit root introduced in [17]. We discuss this Dwork unit root and its 
relationship to Katz’s Galois representations briefly in §5.2. In particular, this root can 
be realized as the p-adic embedding of a particular root of the characteristic polynomial 
of Frobenius of ρ{HD;1} over p, see for example Remark 5. For both congruences, we 
explicitly compute the error to a supercongruence modulo p2, and give criteria under 
which this error is guaranteed to vanish modulo p2 in terms of the invariant γ(HD) de-
fined in (2.8). Although Theorem 2.1 only considers HD of length 3 or 4, the methods to 
establish supercongruences for these cases can be quickly generalized, and so we prove 
corresponding supercongruences for a much larger collection of hypergeometric data.

Theorem 2.3. Let HD = {α,β} where α = {r1, . . . , rn},β = {q1, . . . , qn} with ri, qi ∈
Q ∩ (0, 1] satisfying

0 < r1 ≤ r2 ≤ · · · ≤ rn < 1, 0 < q1 ≤ · · · ≤ qn−2 ≤ qn−1 = qn = 1, qi > ri+2.

(2.14)
Let ωp be the Teichmüller character of the finite field Fp. When γ(HD) ≤ 1 and λ = 1, 
for each prime p ≡ 1 (mod M(HD)) greater than n+1 which is ordinary—meaning that 
the truncation F (α,β; 1)p−1 of F (α,β; 1) after p terms is not divisible by p—we have

Hp(α,β; 1; ω̄p) − δγ(HD)=1Γp

(︃
β

α

)︃
p ≡ F (α,β; 1)p−1 ≡ μα,β,1,p (mod p2), (2.15)

where μα,β,1,p is the Dwork unit root defined below in (5.13).
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Remark 2. In the proof of this Theorem in §5, we will in fact show that the assumption 
p > n + 1 can be reduced further to p > n̂ + 1, where n̂ is the total number of q ∈ β

which are not equal to 1. Computations suggest that no such hypothesis is necessary, 
and that the supercongruence holds for all p ≡ 1 (mod M(HD)) in most cases.

Remark 3. As we noted above, the supercongruence (2.15) arises from two supercongru-
ences, the Gross–Koblitz type supercongruence

Hp(α,β;λ; ω̄p) − EGK(α,β;λp)p ≡ F (α,β;λp)p−1 (mod p2),

and, using Fs(α,β;λ) to denote the truncation of F (α,β;λ) at ps − 1, the Dwork-type 
congruence

Fs+1(α,β;λ) − pλpF ′
s(α,β;λp)EDwork(α,β;λ) ≡ Fs(α,β;λp)F1(α,β;λ) (mod p2),

both valid at primes p ≡ 1 (mod M). The p-linear error terms EGK and EDwork are 
defined explicitly in (5.26) and (5.14), respectively. We obtain these congruences in 
Lemma 5.9 and Lemma 5.4, respectively, and in Proposition 5.10 and Proposition 5.7
compute them explicitly in the case γ(HD) ≤ 1 to obtain (2.15).

Our method can be applied for different choices of HD♭. In a private communication, 
Frits Beukers and Henri Cohen determined appropriate triangle groups, Hauptmoduln, 
and special values of classical hypergeometric functions for many more cases of HD♭, 
vastly generalizing our discussions in §A. Below we apply our method to one case in 
which HD has length three in which q3 ̸= 1.

Theorem 2.4. Let α♭ = {1
2 ,

1
2},β♭ = {1, 1}, and (r3, q3) = (1

4 ,
3
4 ) so that HD =

{{1
2 ,

1
2 ,

1
4}, {1, 1, 3

4}}. For any prime ideal 𝔭 above p ≡ 1 (mod 4),

P

(︃{︃
1
2 ,

1
2 ,

1
4

}︃
,

{︃
1, 1, 3

4

}︃
; 1; 𝔭

)︃
= ap(f32.3.c.a), (2.16)

where f32.3.c.a is as given by (1.9). Moreover, for each prime p ≡ 1 (mod 4) we have the 
corresponding supercongruence

Γp(1
4 )Γp(1

2 )
Γp(3

4) 3F2

[︄
1
2

1
2

1
4

1 1 3
4

; 1
]︄
p−1

≡ ap(f32.3.c.a) (mod p2). (2.17)

2.4. The p-adic gamma function and the Gross–Koblitz formula

To prove congruences in later sections, we use the p-adic perturbation technique intro-
duced in [28,29] and further developed in [3,30]. We will make extensive use of Morita’s 
p-adic gamma function, which is defined on positive integers n by
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Γp(n) = (−1)n
∏︂

1≤i≤n−1
p∤i

i (2.18)

and then extended continuously to Zp. Like the classical gamma function, this satisfies 
a shifting property

Γp(x + 1)
Γp(x) =

{︄
−x if x ∈ Z×

p

−1 if x ∈ pZp

(2.19)

and a reflection property

Γp(x)Γp(1 − x) = (−1)x0 (2.20)

where x0 ∈ {1, 2, . . . , p} satisfies x ≡ x0 (mod p).
For any multiplicative character A of a finite field Fq of characteristic p, we use

𝔤(A) :=
∑︂
x∈F×

q

A(x)ζ
TrFq

Fp
(x)

p (2.21)

to denote the Gauss sum of A, where TrFq

Fp
is the standard trace map from Fq to Fp. 

We will also use the Gross–Koblitz formula which relates Gauss sums to p-adic gamma 
functions.

Theorem 2.5 (Gross–Koblitz, [21]). Let p be a prime and 0 ≤ r ≤ p − 2 be an integer. 
Then

𝔤(ω̄r
p) = −πr

p · Γp

(︃
r

p− 1

)︃
,

where ωp is the Teichmüller character of F×
p , and πp is a fixed root of xp−1 + p = 0 in 

Cp.

This is instrumental in the proof of the first supercongruence in Remark 3, as it allows 
us to translate from the Gauss sums defining Hp to the gamma functions defining nFn−1. 
Additionally we recall that, for multiplicative characters A and B of F×

q , their Jacobi 
sum satisfies

J(A,B) = 𝔤(A)𝔤(B)
𝔤(AB) , if A ̸= B. (2.22)

Combining this with Theorem 2.5 gives the following useful corollary.
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Corollary 2.6. For r, s ∈ Q ∩ (0, 1), p ≡ 1 (mod lcd(r, s)) such that r + s < 1. Then

−Jω̄p
(r, s) = Γp

(︃
r, s 
r + s

)︃
. (2.23)

The shorthand notation for Jacobi sums from §2.2 is used above.

3. Modular forms and commutative formal group laws

In this section, we recall some classic results in hypergeometric functions and modular 
forms that will be used to explain when the function fHD of Theorem 2.1 is a modular 
form. We then provide a p-adic relation between these topics by commutative formal 
group laws. For definitions and basic properties of modular forms, η-products, and Hecke 
operators, see [12,15].

3.1. Ramanujan’s theory of elliptic functions to alternative bases (REAB)

For d ∈ {2, 3, 4, 6}, let

HDd := {{1/d, 1 − 1/d} , {1, 1}} ,

which is a length two hypergeometric datum defined over Q that corresponds to a second-
order hypergeometric differential equation. The corresponding monodromy group Γd is 
isomorphic to the genus zero congruence subgroup Γ(2) (which is isomorphic to Γ0(4)), 
Γ0(3), and Γ0(2), when d = 2, 3, and 4, respectively. The Schwarz map (see [18, Theorem 
3.2])

f(z) := τ = i 
κd

· F (HDd; 1 − z)
F (HDd; z) 

, (3.1)

where κd = 1,
√

3,
√

2 when d = 2, 3, 4 respectively, sends the complex upper half plane 
to a hyperbolic triangle with inner angles 0, 0, and (1 − 2 

d)π. Both F (HDd; 1 − z) and 
F (HDd; z) satisfy the same hypergeometric differential equation.

Let td be the Hauptmodul of Γd which takes values 0 and 1 at the two cusps corresponding 
to f(0) and f(1) and has a simple pole at the elliptic point when d = 3 and 4 or at the 
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other cusp when d = 2. The map td ↦→ 1− td, arising from a normalizer of Γd in GL2(Q), 
is the involution swapping the two cusps. This fact can be used to relate L-values of 
weight three cusp forms at 1 and 2, details are given in part II [4] of this series. The 
Hauptmodul td can also be taken as the inverse of the Schwarz map (3.1). In many cases, 
td can be expressed as a quotient of Dedekind eta functions. As an example,

t2 := λ(τ) = 16
η( τ2 )

8η(2τ)16

η(τ)24 , (3.2)

the expressions of other td are available in Table 1 in §A. Another important fact is that 

2F1

[︃ 1 
d

d−1
d 

1 1
; td(τ)

]︃
is a weight one modular form for the group Γd. In the classical 

theory, the d = 2 case is well understood. When λ(τ) is the modular lambda function, 
as in (3.2), one has the following whenever both sides make sense:

2F1

[︃ 1
2

1
2

1 1
; λ(τ)

]︃
=
∑︂

n,m∈Z
q(n2+m2)/2 = θ3(τ)2. (3.3)

Here θ3(τ) is one of the weight-1/2 Jacobi theta functions, see [26]. There are similar 
expressions for HD3 and HD4. For d = 6, by a hypergeometric quadratic formula,

2F1(HD6; t6) = 2F1

[︃ 1 
12

5 
12

1 1
; 4t6(1 − t6)

]︃
= 2F1

[︃ 1 
12

5 
12

1 1
; 1728

j

]︃
= E

1/4
4 ,

where E4 is the weight four normalized Eisenstein series on SL2(Z) and t6 is a function 
satisfying 4t6(1 − t6) = 1728

j . For other cases, please see the Appendix §A.

Example 2. For HD2, we consider the Legendre family of elliptic curves

Ez : y2 = x(1 − x)(1 − zx). (3.4)

Note that ωz := dx √︁
x(1−x)(1−zx) is the unique up to scalar holomorphic differential 1-form 

on Ez. Using (2.1),

1 ∫︂
0 

ωz = π · F (HD2; z). (3.5)

3.2. K2(r, s)-functions

We now investigate when the differential of the Euler integral formula evaluated at 
the appropriate Hauptmodul is the modular form f(q) in Theorem 2.1. We consider the 
case when HD♭ = HD2.
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Definition 3.1. Given r, s ∈ Q, define

K2(r, s)(τ) :=
η
(︁
τ
2 
)︁16s−8r−12

η(2τ)8s+8r−12

η(τ)24s−30 . (3.6)

Using (3.3) and λ as in (3.2), we have

λ(τ)r(1 − λ(τ))s−r−1
2F1

[︃ 1
2

1
2

1 1
; λ(τ)

]︃
q
dλ(τ) 
λ(τ)dq = 24r−1K2(r, s)(τ), (3.7)

as stated in §1. In the following, we will focus on those (r, s) pairs which give rise to 
congruence modular forms.

Lemma 3.1. For each (r, s) ∈ S2 in (1.6), K2(r, s)(N(r)τ) is a congruence weight three 

holomorphic cusp form of level N(r)N(s−r) with Dirichlet character induced by 
(︂

−224s

· 
)︂
, 

where

N(r) := 48 
gcd(24r, 24) . (3.8)

Proof. We first recall from [26] that

q
dλ(τ) 
λ(τ)dq = 1

2θ
4
4(τ),

where

θ4(τ) =
∑︂
n∈Z

(−1)nq n2
2 , and θ4

4(τ) = (1 − λ(τ))θ4
3(τ). (3.9)

Thus

24r−1K2(r, s)(τ) =
(︃

λ 
1 − λ

)︃r

(1 − λ)sθ6
3(τ) = qr/2 + · · · ,

which is holomorphic on the upper half-plane. The poles and zeros occur at points on 
Q ∪ {∞}. Since Γ(2) is torsion-free, K2(r, s)(τ) is a weakly holomorphic modular form 
on a subgroup Γ of Γ(2) determined by the rational numbers r and s, and the orders 
of poles or zeroes at rational numbers are determined by the branch cover between the 
modular curves X(Γ) → X(Γ(2)). The orders at 0, 1, and i∞ are

pt i∞ 0 1
Ordpt (K2(r, s)(τ)) r 1

4(s− r) 3/2 − s

The necessary conditions for being congruence are 24s ∈ Z, 8(r+s) ∈ Z, and 16s−8r ∈ Z. 
For these r and s, K2(r, s)(48τ) is a cusp form, not necessarily new, of level 482 with 

Dirichlet character 
(︂

−224s

· 
)︂
. □
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We now consider conjugate pairs of (r, s) ∈ S2.

Lemma 3.2. For a given (r, s) ∈ S2, let M = lcd(1
2 , r, s). For any c ∈ (Z/MZ)×, let 

rc = {cr} and sc = {cs} if {cr} ≤ {cs}; and sc = {cs}+1 otherwise. Then (rc, sc) ∈ S2.

Proof. From the choices of (rc, sc) we can check that 0 < rc < sc ≤ 3
2 . Other conditions 

can be verified directly. □
For example, the conjugates of (1/8, 1) in S2 are (j/8, 1) where j = 1, 3, 5, 7. We use 

these pairs to illustrate our method. By equation (3.7),

(︃(︃
t 

1 − t

)︃ 1
8

(1 − t) · 2F1

[︃ 1
2

1
2

1 1
; t
]︃
· dt
t 

)︃
t=λ

=
√

2 · η(τ)6η
(︁ 1

2τ
)︁3

η(2τ)3
dq1/2

q1/2 . (3.10)

The constant on the right hand side is C1/8
1 = 21/2, where C1 = 16 is the leading 

coefficient of λ. In this case, N(1
8 ) = 48

3 = 16. Letting τ ↦→ 16τ in the above eta quotient 
gives

K2

(︃
1
8 , 1
)︃

(16τ) := η(16τ)6η(8τ)3

η(32τ)3 = q − 3q9 − 6q17 + 23q25 + 12q33 − 66q41 + · · ·

=
∑︂

n≡1 (mod 8)

bnq
n ∈ S3

(︃
Γ0(256),

(︃−1
· 
)︃)︃

.

Note that for all j = 1, 3, 5, and 7, the forms K2
(︁
j
8 , 1
)︁

live on the same subgroup of 
Γ0(4) as newforms. Hence, we consider the subspace V of S3

(︁
Γ0(256),

(︁−1
· 
)︁)︁

spanned by 
fj(τ) := K2

(︁
j
8 , 1
)︁
(16τ) ∈ qj(1 + Z[[q8]]), j = 1, 3, 5, 7. One can check that T2(fj) = 0

for all j, and the actions of the operators T3, T5, and T7 are as follows:

f1 f3 f5 f7

T3 −12f3 f1 −4f7 3f5

T5 48f5 16f7 f1 3f3

T7 −64f7 16f5 −4f3 f1

From the hypergeometric arithmetic perspective (for detailed discussion, see [37]), the 
space V is invariant under the Hecke operators restricted on V and hence give the Hecke 
eigenforms for this space. These computations lead to the following conclusion.

Corollary 3.3. The space V is an invariant subspace of S3(Γ0(256), χ−1) for all Hecke 
operators. The Hecke algebra for the subspace V is generated by T3 and T5, with

T 2
3 = −12, T 2

5 = 48, T3T5 = 3T7.

Moreover,
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1. The minimal polynomials of the Hecke operators have degree at most two.
2. The corresponding newform orbit is 256.3.c.g of LMFDB. Namely,

f256.3.c.g =
(︃
K2

(︃
1
8 , 1
)︃

+ a3K2

(︃
3
8 , 1
)︃

+ a5K2

(︃
5
8 , 1
)︃

+ a3a5

3 
K2

(︃
7
8 , 1
)︃)︃

(16τ)

= η(16τ)6
(︃

η(8τ)3

η(32τ)3 + a3
η(8τ) 
η(32τ) + a5

η(32τ)
η(8τ) + 1

3a3a5
η(32τ)3

η(8τ)3

)︃
where a2

3 = −12, and a2
5 = 48.

3. The q-coefficients of K2
(︁ 1

8 , 1
)︁
(16τ) are multiplicative. In particular, for p ≡ 1 

(mod 8), they satisfy three-term Hecke recursions.

The above discussion says that for each j ∈ {1, 3, 5, 7}, the K2( j
8 , 1) functions are in 

the same Hecke orbit. We refer to this situation as the Galois case.

Definition 3.2. A pair (r, s) ∈ S2 is said to be in a Galois orbit for the K2-family if for any 
c ∈ (Z/NZ)× where N = lcd(r, s), there exists (rc, sc) ∈ S2 such that cr−rc, cs−sc ∈ Z, 
such that K2(r, s) and K2(rc, sc) are in the same Hecke orbit.

See the second paper of this series [4] and [37] by Rosen for further discussions of the 
Galois cases and the general construction of the Hecke eigenforms.

Remark 4. The Hecke eigenform f256.3.c.g above depends on a choice of a3 and a5. This 
demonstrates the non-uniqueness of f ♯

HD in Theorem 2.1. When we specialize Theo-
rem 2.1 to Theorem 1.1 by setting HD♭ = HD2, condition (1) is equivalent to (r, s) ∈ S2
and (2) is equivalent to (r, s) being in a Galois case. See [4, Theorem 3.4].

3.3. Commutative Formal Group Law (CFGL)

The goal of the next few subsections is to show (2.10) agrees modulo p through the 
Commutative Formal Group Law (CFGL) isomorphism.

We start with notation. Let p be a prime and R be a Zp-algebra equipped with an 
endomorphism σ : R → R satisfying that σ(a)−ap ∈ pR for all a ∈ R. For example, let p
be a prime which is congruent to 3 or 5 modulo 8 and R = Zp[

√
2], then for x+y

√
2 ∈ R

with x, y ∈ Zp the map σ defined by σ(x + y
√

2) = x− y
√

2 is such an endomorphism. 
The basic background is as follows. Assume bn ∈ R for all n ≥ 1 and consider

ω(x) =
∞ ∑︂

n=1
bnx

n−1dx, ℓ(x) =
∫︂

ω(x) =
∞ ∑︂

n=1

bn
n 
xn.

If there is another local uniformizer u such that x(u) =
∑︁∞

n=1 anu
n ∈ R[[u]] and a1 ∈ R×, 

let ℓ̃(u) =
∫︁
ω(x(u)) be a power series in u. Then the formal groups G(s, t) = ℓ−1(ℓ(s) +

ℓ(t)) and G̃(s, t) = ℓ̃−1(ℓ̃(s) + ℓ̃(t)) are isomorphic, cf. [39, A.3]. See [39, Appendix] for 
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basic examples and more details. Due to the modular form background of our setting, 
we will use the following version of the CFGL property, which gives p-adic analogues of 
the Hecke recursions satisfied by Hecke eigenforms.

Proposition 3.4 ([6],   [39]). Let p, R and σ be as above. Let ω(x) =
∑︁∞

n=1 bnx
n−1dx

with bn ∈ R for all n ≥ 1. Let x(u) =
∑︁∞

n=1 anu
n ∈ R[[u]] and suppose ω(x(u)) =∑︁∞

n=1 cnu
n−1du with cn ∈ R.

If there exists αp, βp ∈ R with βp ∈ pR such that for all m, r ∈ N,

bmpr − σ(αp)bmpr−1 + σ2(βp)bmpr−2 ≡ 0 (mod pr); (3.11)

then for all m, r ∈ N

cmpr − σ(αp)cmpr−1 + σ2(βp)cmpr−2 ≡ 0 (mod pr). (3.12)

If a1 is invertible in R then (3.12) implies (3.11). Moreover, if bp/b1 ∈ R×, then there 
exists μp ∈ R× such that for m, r ≥ 1

bmpr ≡ μpσ(bmpr−1) (mod pr), and cmpr ≡ μpσ(cmpr−1) (mod pr). (3.13)

Note that if bp/b1 ∈ R×, which is referred to as the ordinary case, then by Hensel’s 
lifting lemma, one root of the left-hand side of (3.11) is μp which also satisfies that 
μp ≡ bp/b1 ≡ σ(αp) modulo pR. Also μp is referred to as the unit root of ω(t).

Below this proposition will be applied to the differential (2.9) using two distinct but 
related local parameters to represent the function t.

3.4. The u-coefficients

We first express the t-expansion of (2.9) in terms of terminating hypergeometric series. 
Throughout, the datum {α♭,β♭} and rn, qn are given as in Theorem 2.1. For α =
{r1, · · · , rn}, we use (α)k to denote 

∏︁n
i=1(ri)k, as in (2.7), where (r)k is the Pochhammer 

symbol. To ease notation, let

γn := −1 + qn − rn.

Lemma 3.5. Let {α♭,β♭} be as in Theorem 2.1, and γn as above. Then

(1 − t)γnF

(︄
α♭

β♭ ; t
)︄

=
∑︂
k≥0

Aγn
(k) · F

(︄
{−k} ∪α♭

{qn − rn − k} ∪ β♭ ; 1
)︄
tk,

where F

(︄
{−k} ∪α♭

{qn − rn − k} ∪ β♭ ; 1
)︄

is a terminating series as −k ∈ Z<0 and
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Aγn
(k) := (−γn)k

k! = (−1)k
(︃
γn
k

)︃
. (3.14)

Proof. By the binomial theorem, (1 − t)γn =
∑︂
k1≥0

(−γn)k1

k1! 
tk1 =

∑︂
k1≥0

Aγn
(k1)tk1 . Thus

(1 − t)γnF

(︄
α♭

β♭ ; t
)︄

=
∞ ∑︂

k1,k2=0

(−γn)k1

k1! 
(α♭)k2

(β♭)k2

tk1+k2

k=k1+k2= 
∞ ∑︂
k=0

k∑︂
k2=0

(−γn)k−k2

(k − k2)! 
(α♭)k2

(β♭)k2

tk

=
∑︂
k≥0

Aγn
(k) F

(︄
{−k} ∪α♭

{qn − rn − k} ∪ β♭ ; 1
)︄
tk.

In the last step, we use the identity (a)k−i = (−1)i (a)k
(1−a−k)i from [18]. □

Assume rn = m
e is in lowest terms with e ≥ 1 and let u = t1/e. We now multiply the 

expression in Lemma 3.5 by trndt/t to match with (2.9), up to a constant. This yields 
the u-expansion from the right-hand side of Fig. 1

trn(1− t)γnF (α♭,β♭; t)dt
t 

= e ·
∞ ∑︂
k=0

Aγn
(k) F

(︄
{−k} ∪α♭

{qn − rn − k} ∪ β♭ ; 1
)︄
uke+m du

u 
. (3.15)

We now take a closer look at the coefficients of the formal power series

∞ ∑︂
k=0

Aγn
(k) F

(︄
{−k} ∪α♭

{qn − rn − k} ∪ β♭ ; 1
)︄
uke+m = um +

∑︂
n>m

cnu
m, cn ∈ Q

appearing on the right hand side of (3.15). From the above expression, cm = 1. In light 
of (3.13), we look at cmp where p ≡ 1 (mod M(HD)) and particularly m being the 
numerator of rn. From equating ke + m = pm, we get

k = k0 := (p− 1)m
e 

= (p− 1)rn ∈ Z.

First, we relate the additional rescaling term Aγn
(k0) = Aγn

((p − 1)rn) to the value 
of a Jacobi sum modulo p via the Gross–Koblitz formula recalled in Theorem 2.5.

Lemma 3.6. Assume the notations as before and that p ≡ 1 (mod M). Then

Aγn
((p− 1)rn) ≡ Γp

(︃
rn, qn − rn

qn

)︃
≡ −Jω̄p

(rn, qn − rn) (mod p). (3.16)
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Proof. Since M = M(HD), p ≡ 1 (mod M), (p− 1)rn ∈ Z≥0. Thus

Aγn
((p− 1)rn) =

(1 + rn − qn)(p−1)rn
((p− 1)rn)! = Γ

(︃
1 + rn − qn + (p− 1)rn, 1
1 + rn − qn, (p− 1)rn + 1

)︃
(2.19)= Γp

(︃
1 + rn − qn + (p− 1)rn, 1
1 + rn − qn, (p− 1)rn + 1

)︃
≡ Γp

(︃
1 − qn, 1 

1 + rn − qn, 1 − rn

)︃
(2.20)≡ Γp

(︃
qn − rn, rn

qn

)︃
(mod p)

(2.23)≡ −Jω̄p
(rn, qn − rn) (mod p). □

Next we consider the terminating series F
(︄

{−k0} ∪α♭

{qn − rn − k0} ∪ β♭ ; 1
)︄

. For indices 0 ≤
i ≤ (p−1)rn+1, the assumption 1 ≥ qn > rn > 0 of Theorem 2.1 implies (qn−rn−k0)i =
(qn − rn + (1 − p)rn)i ∈ Zp. Further for i in this range,

((1 − p)rn)i ≡ (rn)i (mod p), (qn − rn + (1 − p)rn)i ≡ (qn)i (mod p).

Together with the additional assumption of qn being larger than at least two of the ri
(see Remark 7), one has

Lemma 3.7. Under the assumptions of Theorem 2.1, let p ≡ 1 (mod M(HD)) be a prime. 
Then

F

(︄
{(1 − p)rn} ∪α♭

{qn − rn + (1 − p)rn} ∪ β♭ ; 1
)︄

≡ F

(︄
{rn} ∪α♭

{qn} ∪ β♭ ; 1
)︄

p−1

= F (α,β; 1)p−1 (mod p). (3.17)

Altogether, we have the following description for cmp:

cmp ≡ −Jω̄p
(rn, qn − rn)F (α,β; 1)p−1 (mod p). (3.18)

3.5. The q-coefficients and Hecke recursions

In this section, we express the t-expansion of (2.9) in terms of Fourier q-series. From 
§3.1, we see that if we choose t as an appropriate modular function of the form

t = C1q + O(q2) ∈ Z[[q]], C1 ̸= 0

then the left-hand side of Equation (3.15) will become a holomorphic modular form with 
desired properties, see for example Lemma 3.1. We now turn our attention to the qe =
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q1/e-coefficients of this modular form, where e is the denominator of rn as before. Note 
that both (1 − t(q))γnF (α♭,β♭; t)dt(q)/(t(q)dq) and t(q)rn/(C1q)rn are locally formal 
power series in q. Thus as in (2.9)

fHDdq = C−rn
1 trn(1 − t)γnF (α♭,β♭; t)dt/t = e

∑︂
l≥1 

blq
(l−1)
e dqe, (3.19)

where bl ∈ Q. From the assumption TpfHD = b̃pfHD in Theorem 2.1, the Hecke recursions 
imply that for every prime p ≡ 1 (mod M) where M = M(HD) and integers l, r ≥ 1

blpr − b̃p · blpr−1 + ϕ(p)pk−1 · blpr−2 ≡ 0 (mod pr) (3.20)

where ϕ is the character of fHD. Note that k ≥ 3 is the weight of fHD. When r = 1, this 
reduces to

blp ≡ b̃pbl (mod p). (3.21)

Further in the ordinary case, the unit root as (3.13) can be computed by

ufHD,p ≡ blpr/blpr−1 (mod pr). (3.22)

3.6. CFGLs isomorphism in this setting

We now apply Proposition 3.4 to relate the u and q-coefficients in the previous sub-
sections. Namely

ω(t) = C−rn
1 trn−1(1 − t)−(rn+1−qn)F (α♭,β♭; t)dt/e (3.15)= C−rn

1

∑︂
l≥1 

clu
l−1du

(3.19)= 
∑︂
l≥1 

blq
(l−1)
e dqe

(3.23)

where u = t1/e, cl ∈ Q as given in Lemma 3.5 and in particular cm = 1. Note that M is 
a multiple of e by definition. Let p ≡ 1 (mod M) be a prime,

R = Zp[C−rn
1 ], σ(C−rn

1 ) = C−prn
1 .

Thus if C1 ∈ Z×
p , then

C−rn
1 /σ(C−rn

1 ) ≡ C
(p−1)rn
1 ≡ ιp(rn)(C1) (mod pR), (3.24)

where ιp(rn) :=
(︂

· 
p

)︂m
e

is the residue symbol defined in (2.2). By Proposition 3.4, for 
l, r ≥ 1,
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C−rn
1 clpr − b̃p · σ(C−rn

1 )clpr−1 + ϕ(p)pk−1 · σ2(C−rn
1 )clpr−2 ≡ 0 (mod prR).

When r = 1 this reduces to C−rn
1 clp ≡ b̃p · σ(C−rn

1 )cl (mod pR). If C1 ∈ Z×
p , using 

(3.24),

ιp(rn)(C1) · clp ≡ b̃pcl (mod pR). (3.25)

In particular, when l = m (the numerator of rn) then using (3.18) we reach the following 
conclusion from (3.25).

Proposition 3.8. Assume α and β are defined as in Theorem 2.1, 0 < rn < qn < 1 with 
rn = m/e, p ≡ 1 (mod M) is a prime, and C1 ∈ Z×

p . Then

−ιp(rn)(C1) · Jω̄p
(rn, qn − rn) · F (α,β; 1)p−1 ≡ b̃p (mod p). (3.26)

The result, when combined with Lemma 5.9 below, is equivalent to the mod p version 
of (2.15). See the computation below.

−ιp(rn)(C1)·Jω̄p
(rn, qn − rn) ·

(︃
Hp(α,β; 1; ω̄p) − δγ(HD)=1Γp

(︃
β

α

)︃
p

)︃
≡− ιp(rn)(C1) · Jω̄p

(rn, qn − rn) · F (α,β; 1)p−1

≡ b̃p = ap(f ♯
HD) (mod p).

An explicit application of the results for a datum of length three is given below.

Proposition 3.9. Let HD = HD2, r3 = j
8 , where j = 1, 3, 5 or 7, and q3 = 1. Then for 

each prime p ≡ 1 (mod 8),(︃
2 
p

)︃
(−1)(p−1)/8

3F2

[︃ j
8

1
2

1
2

1 1 1
; 1
]︃
p−1

≡ ap(f256.3.c.g) (mod p). (3.27)

Proof. Note that γ3 = − j
8 . Thus

t
j
8 (1 − t)−

j
8 2F1

[︃ 1
2

1
2

1 1
; t
]︃
dt

t 
= 8
∑︂
k≥1

( j
8 )k
k! 3F2

[︄
−k 1

2
1
2

1 8−j
8 − k 1

; 1
]︄
u8k+j du

u 
.

Letting t = λ and noting that C1 = 16, we get (3.10). From the discussion in §3.2, the 
q-expansion (after re-scaling) is a Hecke eigenform for each Tp when p ≡ 1 (mod 8). 

Thus b̃p = ap(f256.3.c.g). Further, ιp( j
8 )(C1) =

(︂
16
p 

)︂j
8

=
(︂

2 
p

)︂
and

Aγ3((p− 1)r3) ≡ (−1)(p−1)/8 (mod p).

The claim then follows from the Proposition 3.9. □
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In §5, the mod p2 supercongruence corresponding to Proposition 3.8 will be obtained, 
as stated in Theorem 2.3. Before that, we recall some basic information about hyperge-
ometric character sums and representations.

4. Hypergeometric Galois representations

4.1. Katz’s theorem

We now recall an alternative way from (2.4) to express the normalized character sum 
Hq(α,β;λ; 𝔭) following McCarthy [31], which will be used in the next section.

Hq(α,β;λ; 𝔭) := 1 
1 − q

∑︂
χ∈ˆ︃κ×

𝔭

χ((−1)nλ)
n ∏︂

j=1

𝔤(ι𝔭(rj)χ)
𝔤(ι𝔭(rj)) 

𝔤(ι𝔭(−qj)χ)
𝔤(ι𝔭(−qj)) 

, λ ∈ κ×
𝔭 . (4.1)

The condition of 𝔭 being a prime ideal of Z[ζM ] can be replaced by being a prime ideal of 
Z[1/M, 1/λ] when HD is defined over Q by work of Beukers, Cohen, and Mellit [7]. More 
specifically, the importance of HD being defined over Q is that at each fiber defined over 
Q the corresponding Galois representation, a priori for the Galois group Gal(Q/Q(ζM )), 
can be extended to a representation of the absolute Galois group GQ := Gal(Q/Q)
whose trace function is, up to a linear character, given by the Hp function.

In this paper, we relax the condition of HD being defined over Q. In the following, 
we will first recall Katz’s result on the hypergeometric Galois representations and then 
discuss extendable Galois representations.

Let G(M) := Gal(Q/Q(ζM )), ι𝔭 as in (2.2) and P (α,β; ·; 𝔭) (2.3) as before, so the 
order of entries in α,β matters.

Theorem 4.1 (Katz [23,24]). Let ℓ be a prime. Given a primitive pair of multi-sets α =
{r1, · · · , rn}, β = {q1 = 1, q2, · · · , qn} with M = M(HD), for any λ ∈ Z[ζM , 1/M ]∖ {0}
the following hold.

i). There exists an ℓ-adic Galois representation ρ{HD;λ} : G(M) → GL(Wλ) unramified 
almost everywhere such that at each nonzero prime ideal 𝔭 of Z[ζM , 1/(Mℓλ)] of 
norm N(𝔭) = |Z[ζM )]/𝔭|

Trρ{HD;λ}(Frob𝔭) = (−1)n−1ι𝔭(r1)(−1) · P (α,β; 1/λ; 𝔭), (4.2)

where Frob𝔭 denotes the geometric Frobenius conjugacy class of G(M) at 𝔭.
ii). When λ ̸= 1, the dimension d := dimQℓ

Wλ equals n and all roots of the characteris-
tic polynomial of ρ{HD;λ}(Frob𝔭) are algebraic numbers and have the same absolute 
value N(𝔭)(n−1)/2 under all archimedean embeddings. If ρ{HD;λ} is self-dual, namely 
isomorphic to any of its complex conjugates, then Wλ admits a non-degenerate al-
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ternating (resp. symmetric) bilinear pairing if n is even and γ(HD) ∈ Z (resp. 
otherwise).

iii). When λ = 1, in the self-dual case the dimension is n− 1. All roots of the Frobenius 
eigenvalues at 𝔭 have absolute value less or equal to N(𝔭)(n−1)/2. If ρ{HD;λ} is 
self-dual, it contains a subrepresentation that admits a non-degenerate alternating 
(resp. symmetric) bilinear pairing if n is even and γ(HD) ∈ Z (resp. otherwise). 
For this subrepresentation, the roots of the characteristic polynomial of Frob𝔭 have 
absolute value exactly N(𝔭)(n−1)/2.

Example 3. Let α = {1
2 ,

1
2},β = {1, 1}. Then for any λ ∈ Q, with λ ̸= 0, 1, the repre-

sentation ρ{HD;λ} associated to HD = {α,β} is isomorphic to the 2-dimensional ℓ-adic 
representation of GQ arising from the Legendre elliptic curve E1/λ given in (3.4) twisted 
by the Dirichlet Character 

(︁−1
· 
)︁
. Namely for each odd prime p of Z such that λ can be 

embedded in Z×
p ,

Trρ{HD2;λ}(Frobp) = −
(︃−1

p 

)︃
P (α,β; 1/λ; p)

= Hp(α,β; 1/λ; p)= p + 1 −
(︃−1

p 

)︃
#(E1/λ/Fp).

Remark 5. The above theorem implies (−1)n−1P (α,β;λ; 𝔭), or its normalization 
Hq(α,β;λ; 𝔭), can be thought of as the trace of a finite-dimensional representa-
tion of G(M) evaluated at Frob𝔭. Hence, each finite hypergeometric function is the 
sum of the roots of the corresponding characteristic polynomial. For example, when 
HD = {{1

2 ,
1
2 ,

1
2 ,

1
2}, {1, 1, 1, 1}}, Example 1 says

ρ{HD;1} ≃ ρf8.4.a.a
⊕ ϵℓ.

Equivalently, for each odd prime p,

Trρ{HD;1}(Frobp) = −
(︃−1

p 

)︃
P (HD; 1) = Hp(HD; 1) = ap(f8.4.a.a) + p.

4.2. Extendable Galois representations

Note that condition (2) of Theorem 2.1 is equivalent to the G(M)-representation 
χHD ⊗ ρ{HD;1} − δγ(HD)=1ψHDϵℓ|G(M) being extendable to GQ, see (2.12). From the 
representation point of view, this boils down to the following well-known result:

Proposition 4.2. Let M be a positive integer. Assume ρ is a semi-simple finite dimensional 
ℓ-adic representation of G(M) which is isomorphic to ρτ for each τ ∈ GQ, then ρ is 
extendable to GQ. Equivalently, for each nonzero prime ideal 𝔭 of Z[ζM ] unramified for 
ρ, Tr ρ(Frob𝔭) ∈ Z.
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As the Frobenius traces are given by character sums, there are cases the extend-
ability can be seen from character sum identities of [18,19,27]. For example, when 
HD = {{1

2 ,
1
2 ,

1
4}, {1, 1, 3

4}} we use Proposition 1 of [27] to obtain

P

(︃{︃
1
2 ,

1
2 ,

1
4

}︃
,

{︃
1, 1, 3

4

}︃
; 1; 𝔭

)︃
= P

(︃{︃
1
2 ,

1
2 ,

3
4

}︃
,

{︃
1, 1, 1

4

}︃
; 1; 𝔭

)︃
(4.3)

for each nonzero prime ideal 𝔭 ∈ Z[
√−1].

We now verify the conditions of Theorem 2.1 for the above example. Note that fHD in 
condition (1) can be chosen to be either K2

(︁ 1
4 ,

3
4
)︁
(8τ) or K2

(︁ 3
4 ,

5
4
)︁
(8τ), as these modular 

forms are in the same Hecke orbit. Further, the identity (4.3) establishes condition (2). 
Therefore, we conclude that

P

(︃{︃
1
2 ,

1
2 ,

1
4

}︃
,

{︃
1, 1, 3

4

}︃
; 1; p

)︃
= ap(f32.3.c.a),

for primes p ≡ 1 (mod 4) by Theorem 2.1 and (1.9).
Note that condition (2) of Theorem 2.1 cannot always be established directly with a 

character sum identity, such as in (4.3). For example, to our knowledge, the two functions 
P ({1/2, 1/2, 1/8}, {1, 1, 1}; 1; 𝔭) and P ({1/2, 1/2, 3/8}, {1, 1, 1}; 1; 𝔭) cannot be directly 
related by character sum identities. There are several other cases where the supplies of 
character sum identities are seemingly insufficient for condition (2) of Theorem 2.1. For 
these cases, we use a complementary approach via the notation of being Galois, defined 
in Definition 3.2.

Applying this Proposition together with part iii) of Theorem 4.1, we have the follow-
ing.

Proposition 4.3. Let HD be a length n ∈ {3, 4} primitive hypergeometric datum and 
assume that χHD ⊗ ρ{HD;1} of G(M) has an extension ρ̂{HD;1} to GQ, which is not 
unique in general. Then

1). If n = 3, then ρ̂{HD;1} is a 2-dimensional representation of GQ, at each prime 
p ∤ 2M , and ρ̂{HD;1}(Frobp) has two roots of the same absolute value p. In this case, 
we let ρ̂prim

{HD;1} be ρ̂{HD;1}.
2). If n = 4, then ρ̂{HD;1} is a 3-dimensional representation of GQ.

2a). If γ(HD) ∈ Z, then ρ̂{HD;1} is reducible and has a 2-dimensional subrepre-
sentation ρ̂prim

{HD;1} of GQ whose corresponding eigenvalues at unramified Frobenius 
element Frobp are both of absolute value p3/2.

2b). If γ(HD) / ∈ Z, then ρ̂{HD;1} could be irreducible.

Remark 6. If HD has length 4, then assumption (1) of Theorem 2.1 implies that γ(HD) ∈
Z and hence ρ{HD;1} falls into the case of 2a) above. To be more precise, fHD being a 
modular form means that F (α♭,β♭; t) is a modular form on an arithmetic triangle group. 
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The only cases are α♭ = {1
2 ,

1 
d , 1− 1 

d} for the triangle groups of the form (2,m,∞), where 
m = ∞, 6, 4, 3 when d = 2, 3, 4, 6 respectively, see §A. Thus t takes value 1 at the elliptic 
point of order 2 so γ(HD♭) is a half integer. In particular, when 0 < rn < qn ≤ 1 and 
qn − rn = 1/2, γ(HD) ∈ Z.

In both cases, the conclusion of Theorem 2.1 can be rephrased as follows.

Proposition 4.4. Assume the notation and assumptions of Theorem 2.1. The representa-
tion ρ̂prim

{HD;1} is modular. For each prime p ≡ 1 (mod 2M),

Trρ̂prim
{HD;1}(Frobp) = b̃p, where TpfHD = b̃pfHD.

As was the case in the statement of Theorem 2.1, we could consider all primes equiv-
alent to 1 modulo M with the addition of a sign. The choice in the above proposition 
to restrict to p ≡ 1 (mod 2M) is only made to remove this sign for a more succinct 
statement.

5. Supercongruences

5.1. p-adic background

This section is dedicated to the proof of Theorem 2.3. Here we will make ample use 
of the function Γp defined in (2.18). Given a multiset α = {r1, r2, . . . , rn} we take the 
convention

α + a = {r1 + a, r2 + a, . . . , rn + a} . (5.1)

Throughout the remainder of this section, we will combine the shorthand notations from 
(2.7) and (5.1). For example, in (5.5) below,

Γp

(︃
β + k0,α + k0 + k1p

α + k0,β + k0 + k1p

)︃
=

n ∏︂
j=1

Γp(qi + k0)Γp(ri + k0 + k1p)
Γp(ri + k0)Γp(qi + k0 + k1p)

.

Additionally, without loss of generality, we assume going forward that α,β ⊂ Q ∩ (0, 1]
are ordered so that

0 < r1 ≤ r2 ≤ . . . ≤ rn < 1, 0 < q1 ≤ q2 ≤ . . . ≤ qn ≤ 1

Given some a ∈ Zp, we use 0 ≤ [a]0 ≤ p− 1 to denote the first p-adic digit of a. Given a 
hypergeometric datum HD = {α,β}, for each ri ∈ α, qi ∈ β we set

ai := [−ri]0, bi := [−qi]0. (5.2)
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In particular, every ri + ai and bi + qi is divisible by p, and so the p-adic valuation of 
(α)k
(β)k increases by 1 at each ai + 1 and decreases at each bi + 1.

Lemma 5.1. Let HD = {α,β}, where each element of α and β belongs to (0, 1]∩Q. Set 
M = lcd({α,β}) and let p ≡ 1 (mod M). Then the p-adic Dwork dash operation

·′ : Zp → Zp r′ = r + [−r]0
p 

(5.3)

fixes every element of α and β. Additionally, for each ri ∈ α and qi ∈ β we have

ai = ri(p− 1) bi = qi(p− 1), (5.4)

where ai and bi are defined as in (5.2).

Proof. From the assumptions we know ri(p− 1) ∈ Z ∩ [1, p− 1]. As ri + ri(p− 1) = pri
is divisible by p, it then follows that [−ri]0 = ri(p−1). Thus r′i = (ri + ri(p−1))/p = ri. 
The argument for the qi’s is the same. □

For any such prime, expanding our index k as k0 + k1p with 0 ≤ k0 ≤ p− 1 we have 
the following specialization of Corollary 4.2 in [3]:

(α)k0+k1p

(β)k0+k1p
= (α)k0

(β)k0

(α)k1

(β)k1

Λα,β(k0 + k1p)Γp

(︃
β + k0,α + k0 + k1p

α + k0,β + k0 + k1p

)︃
(5.5)

where, with ν(k0, x) defined by

ν(k0, x) = −
⌊︃
x− k0

p− 1 

⌋︃
=
{︄

0 if k0 ≤ x,

1 if x < k0 < p,
(5.6)

we set

Λα,β(k0 + k1p) :=
n ∏︂

j=1

(︃
1 + k1

rj

)︃ν(k0,aj)(︃
1 + k1

qj

)︃−ν(k0,bj)

.

This Λ term corresponds to the discrepancy between the functional equations of Γ and 
Γp.

Remark 7. The hypotheses in Theorem 2.3 that qi > ri+2 for all i and that at least 
two elements of β are 1 are equivalent to assuming that the p-adic valuations of the 
hypergeometric coefficients (α)k

(β)k with a2 + 1 ≤ k ≤ p − 1 will be divisible by p2, as is 
illustrated in Fig. 2. 
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Fig. 2. A lower bound on the p-adic valuation of (α)k
(β)k

for k ranging from 0 to p−1 and for the hypergeometric 
data appearing in Theorem 2.3. The valuations on the intervals labeled I1 and I2 are exactly 0 and 1, whereas 
on the intervals I3 and I4 we only know that the valuations are greater than or equal to 2.

As we aim to establish congruence modulo p2 we will only need to consider this Λ for 
k0 ≤ a2. On this interval, we have

Λα,β(k0 + k1p) =
{︄

1 0 ≤ k0 ≤ a1;
1 + k1

r1
a1 < k0 ≤ a2.

(5.7)

From the definition of Γp in (2.18), we immediately conclude the following translation 
between the Pochhammer symbol and Γp for all 0 ≤ a ≤ p− 1:

(t)a = (−1)aΓp(t + a)
Γp(t) 

(t + [−t]0)ν(a,[−t]0). (5.8)

We now define a function G1(x) : Zp → Zp by

G1(x) :=
Γ′
p(x)

Γp(x) .

Taking logarithmic derivatives of both sides of (5.8) yields

d 
dt (t)a
(t)a

= G1(t + a) −G1(t) + ν(a, [−t]0)
t + [−t]0

. (5.9)

We can also logarithmically differentiate the reflection identity (2.20) to obtain

G1(a) = G1(1 − a), a ∈ Zp. (5.10)

It will now be useful for us to generalize the function G1 in analogy with our notation 
in (2.7). Specifically, we set
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G1(α + a,β + a) := logder
(︃

Γp

(︃
α + a

β + a 

)︃)︃
=

n ∑︂
j=1 

G1(ri + a) −G1(qi + a).

We note that G1(α + a,β + a) agrees with the definition of the function J1(α,β; a) in 
[30] and in [3]. The following result allows us to expand our hypergeometric functions 
p-adically:

Theorem 5.2 (Long–Ramakrishna, [29]). For p ≥ 5, r ∈ N and a,m ∈ Zp, we have

Γp(a + mpr)
Γp(a) 

≡ 1 + G1(a)mpr (mod p2r).

As an immediate consequence, we can evaluate the product modulo p2 of the Γp

quotient in (5.5) as we run over all elements of α and β.

Corollary 5.3. For multi-sets α = {r1, r2, . . . , rn}, β = {q1, q2, . . . qn}, and fixed 0 ≤
k0 ≤ p− 1, and k1 ∈ Zp, we have

Γp

(︃
β + k0,α + k0 + k1p

α + k0,β + k0 + k1p

)︃
≡ 1 + G1(α + k0,β + k0)k1p (mod p2). (5.11)

Additionally, logarithmically differentiating Theorem 5.2 gives the congruence

G1(a + mpr) ≡ G1(a) (mod pr). (5.12)

5.2. Dwork type congruences

5.2.1. The general case
We use the shorthand notation Fs(α,β;λ) for the truncation of the classical hyper-

geometric series after ps terms evaluated at z = λ. The discussion below originated in 
Dwork’s paper [17], in which β = {1, · · · , 1}. Dwork showed that when F1(α,β, λ) ̸= 0 
(mod p), there exists a p-adic unit root μα,β,λ,p such that for each s ≥ 0

Fs+1(α,β;λ)/Fs(α′,β′;λp) ≡ μα,β,λ,p (mod ps+1), (5.13)

where α′ = {r′1, · · · , r′n} is the image of α under the Dwork dash operation (5.3) and 
β′ is defined similarly. See more recent discussions of Dwork crystals by Beukers and 
Vlasenko in [9,10]. We also note the similarity between (5.13) and (3.22). To extend 
Dwork’s work to more general β, we add the assumption of p ≡ 1 (mod M(HD)) so that 
each ri and qi is invariant under the Dwork dash operation by Lemma 5.1. The proofs in 
this section rely heavily on the assumption qi > ri+2 for all 1 ≤ i ≤ n−2, as this dictates 
the p-adic valuations of the hypergeometric coefficients as documented in Remark 7 and 
Fig. 2.
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Example 4. Let HD = HD2 as before. For each odd prime p and λ ∈ Zp \ {0, 1} such 
that ap(λ) = Hp(HD2;λ) ̸≡ 0 (mod p), μHD2,λ,p is the root of T 2 − ap(λ)T + p in Zp

that is congruent to ap(λ) (mod p).

We now turn our attention towards the Dwork type congruences appearing in Re-
mark 3.

Lemma 5.4. Let α = {r1, r2, . . . , rn} and β = {q1, q2, . . . , qn−2, 1, 1} form a primitive 
hypergeometric datum HD with n ≥ 2 such that qi > ri+2 for each 1 ≤ i ≤ n − 2. Let 
M = M(HD) and p ≡ 1 (mod M). Then for each λ ∈ Zp

Fs+1(α,β;λ) − pλpF ′
s(α,β;λp)EDwork(α,β;λ) ≡ Fs(α,β;λp)F1(α,β;λ) (mod p2),

where here F ′ denotes the derivative, not the Dwork dash operation, and

EDwork(α,β;λ) :=
a1∑︂
k=0

(α)k
(β)k

λk (G1(α + k,β + k)) +
a2∑︂

k=a1+1

(α)k
(β)k

λk

pr1
, (5.14)

where ai is defined as in (5.2).

Under our assumptions, EDwork(α,β;λ) ∈ Zp. If F1(α,β;λ) ̸≡ 0 (mod p), meaning 
the ordinary case, then λpF ′

s(α,β;λp) ∈ Zp. To show the desired mod p2 supercon-
gruences, we need to show that the p-linear term F ′

1(α,β;λ)EDwork(α,β;λ) vanishes 
modulo p. Our definition of EDwork is made because this term will always vanish for HD
as in Theorem 2.3 with γ(HD) ≤ 1 and λ = 1. In this case, we have the following:

Remark 8. Assume λ ∈ Zp and p is ordinary. Then F1(α,β;λ) ≡ μHD,λ,p (mod p2)
where μHD,λ,p is the unit root as in (5.13) if EDwork(α,β;λ) ≡ 0 (mod p).

We are now ready to prove Lemma 5.4.

Proof of Lemma 5.4. We decompose our index of summation by k = k0 + k1p with 
0 ≤ k0 ≤ p− 1. We find

Fs+1(α,β;λ) =
ps−1 ∑︂
k1=0

p−1 ∑︂
k0=0

(α)k0+k1p

(β)k0+k1p
λk0+k1p

(5.5)= 
ps−1 ∑︂
k1=0

(α)k1

(β)k1

λk1p

p−1 ∑︂
k0=0

(α)k0

(β)k0

λk0Λα,β(k0 + k1p)Γp

(︃
α + k0 + k1p,β + k1

α + k0,β + k0 + k1p

)︃
(5.11)≡ 

ps−1 ∑︂
k1=0

(α)k1

(β)k1

λk1p

p−1 ∑︂
k0=0

(α)k0

(β)k0

λk0

× (1 + G1(α + k0,β + k0)k1p) Λα,β(k0 + k1p) (mod p2).
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As noted in Remark 7 the hypergeometric coefficients (α)k
(β)k are always zero modulo p2

for k ≥ a2 + 1. Using this as well as (5.7) then gives

Fs+1(α,β;λ) ≡
ps−1 ∑︂
k1=0

(α)k1

(β)k1

λk1p

[︃ a1∑︂
k0=0

(α)k0

(β)k0

λk0 (1 + G1(α + k0,β + k0)k1p)

+
a2∑︂

k0=a1+1

(α)k0

(β)k0

λk0

(︃
1 + k1

r1

)︃]︃
(mod p2)

≡ Fs(α,β;λp)F1(α,β;λ) + pλpF ′
s(α,β;λp)EDwork(α,β;λ) (mod p2). □

5.2.2. The λ = 1 case
We will adopt a strategy used in [3,30,34] by constructing a rational function 

R(t) ∈ Q(t)—depending on p—such that the sum of the residues of R(t) is congru-
ent modulo p to EDwork(α,β; 1). Thus, we will be able to translate the corresponding 
residue sum identity into our desired congruence EDwork(α,β; 1) ≡ 0 (mod p). Examin-
ing EDwork(α,β; 1) in (5.14) more closely, the desired rational function will satisfy the 
following conditions when we consider its reduction R̄(t) ∈ Fp(t):

(1) For each k ∈ Fp, R(t) has a pole at t = −k. If nk is the order of this pole, then 
(R(t)(t + k)nk)|t=−k ≡ C (α)k

(β)k (mod p) for some constant C independent of k.
(2) The order nk is equal to 2 for k ∈ [0, . . . , a1] and 1 for k ∈ [a1 +1, . . . , a2]. This will 

lead to the appearance of G1 in the first sum defining EDwork.

Additionally, we wish to balance the degrees of the numerator and denominator of R(t)
so that the residue at infinity is zero for γ(HD) < 1 and becomes nonzero exactly when 
γ(HD) = 1, as this will lead to the appearance of the p-linear term on the left-hand side 
of (2.15). The choice of such an R(t) is not unique, but each choice will give the same 
first p-adic digit for the EDwork error term.

We now define a rational function that can be used to handle all cases listed in 
Lemma 5.4. We will need to track the number of elements of β which are not equal to 
1, and so first we make the following definition:

Definition 5.1. For a fixed HD = {α,β} of length n, let n̂ be the largest index 2 ≤ n̂ ≤ n

such that qn̂ < 1, or 0 if no such index exists.

We define a rational function by

R(t) =

n ∏︁
i=2

(t + 1 − ri − p)p−ai−1

(t)2a1+1(t + a1 + 1)b1−a1(t + b1 + 1)2p−b1−1

n̂∏︁
i=2

(−t + 1 + ip)p−bi−1

. (5.15)
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We note that R(t) is fully reduced, as the denominator has roots only at integers while 
the numerator only has roots at integer shifts of the ri, which are non-integral. Our 
broad strategy will be to consider the sum of the residues of R(t) two ways—over C
we will use standard residue calculus to show that the sum of the residues is zero if 
and only if γ(HD) ≤ 1, while p-adically we will show that the difference between this 
residue sum and EDwork(α,β; 1) will be small. Together, this will yield our desired con-
gruence EDwork(α,β; 1) ≡ 0 (mod p). Our particular choice of R(t) in (5.15) is made 
to make both sides of this calculation as simple as possible. For example, the shifts of 
the Pochhammer symbols by ip in the denominator are not strictly necessary; we make 
this choice as it guarantees that the poles at each t = k + ip with 2 ≤ i ≤ n and 
1 ≤ k ≤ p − bi − 1 are simple. The perturbation in the numerator by −ri − p is made 
so that the residues of these simple poles will be divisible by p. The function R(t) has 
partial fraction decomposition

R(t) =
a1∑︂
k=0

(︃
Ak

(t + k)2 + Bk

t + k

)︃
+

b1∑︂
k=a1+1

Bk

t + k
+

p−1 ∑︂
k=b1+1

(︃
Ak

(t + k)2 + Bk

t + k

)︃

+
n̂∑︂

i=2 

p−bi−1∑︂
k=1 

Ci,k

−t + k + ip
.

(5.16)

Going forward, we will separate the range [0, . . . , p− 1] into four intervals, as illustrated 
in Fig. 2. Namely, we set

I1 = [0, . . . , a1], I2 = [a1 + 1, . . . , a2]

I3 = [a2 + 1, . . . , b1], I4 = [b1 + 1, . . . , p− 1].
(5.17)

We will eventually relate this decomposition to EDwork(α,β; 1) by showing that the sum 
of the residues Bk over I1 and I2 each match to the corresponding sums in the definition 
of EDwork. Before doing so, we show that the remaining residues vanish modulo p and 
so will not contribute p-adically.

Lemma 5.5. Let HD,M , and p be as in Lemma 5.4, with the additional assumption that 
p > n̂ + 1 where n̂ is defined as in Definition 5.1. With Ci,k as in (5.16) and for all 
2 ≤ i ≤ n̂ and 1 ≤ k ≤ p− bi − 1 we have

Ci,k ≡ 0 (mod p).

Proof. For each fixed pair (i0, k0), the corresponding residue Ci0,k0 can be computed 
directly as

Ci0,k0 = (−t + k0 + i0p)R(t)
⃓⃓⃓⃓
t=k0+i0p
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=

n ∏︁
i=2

(k0 + 1 − ri + (i0 − 1)p) 

(k0 + i0p)2a1+1(k0 + a1 + 1 + i0p)b1−a1(k0 + b1 + 1 + i0p)2p−b1−1

× 1 

(−k0 + 1)k0−1(1)p−bi0−k0−1
n̂∏︁

i=1
i̸=i0

(−k0 + 1 + (i− i0)p)p−bi−1

.

The index of each Pochhammer symbol above is less than or equal to p, and so each 
symbol contains at most one multiple of p. As we saw in (5.8), for 0 ≤ a ≤ p − 1, 
p | (t)a if and only if the index a is larger than the first p-adic digit of the negative of 
the argument, [−t]0. In this case, the multiple of p appearing in (t)a is exactly t+ [−t]0. 
We can use this term by term to evaluate the p-adic valuation of the above expression 
for Ci0,k0 . First we note that, together,

(k0 + i0p)a1+1(k0 + a1 + 1 + i0p)b1−a1(k0 + b1 + 1 + i0p)p−b1−1

is a product over all (k0 + i0p+ j) with j ranging from 0 to p− 1. In particular, exactly 
one of these three Pochhammer symbols is divisible by p, and the p-divisible term is 
exactly

(k0 + i0p) + [−k0 − i0p]0 = (k0 + i0p) + (p− k0) = (i0 + 1)p.

Because 0 < i0 +1 ≤ n̂+1 < p, the p-adic valuation of (i0 +1)p is exactly one. We could 
be precise about which of the three Pochhammer symbols this term will appear in for 
our fixed k0, but it will be enough for our purposes to conclude that

ordp

(︁
(k0 + i0p)2a1+1(k0 + a1 + 1 + i0p)b1−a1(k0 + b1 + 1 + i0p)2p−b1−1

)︁ ≤ 2, (5.18)

where we use ordp(·) to denote the p-adic valuation. Both of the terms (−k0 + 1)k0−1 =
(−1)k0−1(k0 − 1)! and (1)p−bi0−k0−1 = (p − bi0 − k0 − 1)! have p-adic valuation zero. 
Thus, we now need only consider

n ∏︁
i=2

(k0 + 1 − ri + (i0 − 1)p) 

n̂∏︁
i=1
i̸=i0

(−k0 + 1 + (i− i0)p)p−bi−1

.

In the denominator, the first p-adic digit of the negative of the argument is

[k0 − 1]0 = k0 − 1.

This is smaller than the index if and only if k0 < p− bi, in which case the multiple of p
appearing is (i− i0)p which has valuation 1 as −p < i− i0 < p and i ̸= i0. Let 1 ≤ ℓ ≤ n̂

be the largest index such that k0 < p− bℓ. Then
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ordp

⎛⎜⎝ n̂∏︂
i=2
i̸=i0

(−k0 + 1 + (i− i0)p)p−bi−1

⎞⎟⎠ = ℓ− 2. (5.19)

The −2 arises from the omitted terms at i = 1 and i = i0.
The numerator behaves quite similarly. By an analogous argument, we find that

p | (k0 + 1 − ri + (i0 − 1)p)p−ai−1

if and only if k0 < p− ai − 1, in which case the multiple of p appearing is p(i0 − ri). We 
can not guarantee that i0 − ri has p-adic valuation zero, but it must have a nonnegative 
valuation which will be sufficient. As k0 < p−bi, the inequality k0 < p−ai−1 must hold 
for all i such that ai < bℓ. By hypothesis, ai < bℓ holds for all 1 ≤ i ≤ 2 + ℓ. Therefore,

νp

(︄
n ∏︂

i=2
(k0 + 1 − ri + (i0 + 1)p)p−ai−1

)︄
≥ ℓ + 1. (5.20)

Combining (5.18), (5.19), and (5.20) then yields

ordp(Ci0,k0) ≥ ℓ + 1 − 2 − (ℓ− 2) = 1,

as was to be shown. □
We will see in the proof of Proposition 5.7 that for k ∈ I3 we have Bk ≡ 0 (mod p). 

For now we move past I3 and consider the residues on the final interval I4.

Lemma 5.6. Let HD,M , and p be as in Lemma 5.5. In the notation of (5.16) and (5.17), 
Bk ≡ 0 (mod p) for all k ∈ I4.

Proof. The proof is essentially a simpler version of the argument we just made to show 
Lemma 5.5, with the one complication that our poles now have order 2. Thus,

Bk = d 
dt

(t + k)2R(t)
⃓⃓⃓⃓
t=−k

= (t + k)2R(t)
d 
dt (t + k)2R(t)
(t + k)2R(t) 

⃓⃓⃓⃓
t=−k

. (5.21)

We rewrite Bk in this manner as it will be simpler to evaluate the p-adic valuations of the 
terms arising from (t + k)2R(t) and its logarithmic derivative separately. In particular, 
we note that logarithmic differentiation transforms the Pochhammer symbol (t)a into

d 
dt (t)a
(t)a

=
a−1∑︂
i=0 

1 
t + i

.

Therefore, the p-adic valuation of the logarithmic derivative, after specializing t = −k, 
will be bound below by the negative of the largest exponent appearing on any multiple 
of p in the original Pochhammer symbol.
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We turn our attention to the p-adic valuation of

(t + k)2R(t)
⃓⃓⃓⃓
t=−k

=
∏︁n

i=2(−k + 1 − ri − p)p−ai−1

(−k)2a1
(−k + a1 + 1)b1−a1(−k + b1 + 1)2k−b1−1(1)2p−k−1

× 1 ∏︁n̂
i=2(k + 1 + ip)p−bi−1

.

This valuation can be computed via the same direct approach we used in the proof of 
Lemma 5.5, and the results are quite similar. As such, we omit many of the details. First, 
we find

ordp((−k)2a1
(−k + a1 + 1)b1−a1(−k + b1 + 1)2k−b1−1(1)2p−k+1) = 0,

as the one guaranteed multiple of p is at the residue t + k that we are removing. Next, 
the terms (k+1+ ip)p−bi−1 contain a multiple of p, namely p(i+1) which has valuation 
1, if and only if k > bi. Thus, letting 2 ≤ ℓ ≤ n̂ be the maximal index for which k > bℓ, 
we find

ordp

(︄
n̂∏︂

i=2
(k + 1 + ip)p−bi−1

)︄
= ℓ− 1.

The terms (−k + 1 − ri − p)p−a1−1 appearing in the numerator will be divisible by p
if and only if k > ai. As we saw in the proof of the previous Lemma, our hypotheses 
ensure this holds for all 1 ≤ i ≤ 2 + ℓ. The multiple of p which does appear in this case 
is −p(1 + ri), which has p-adic valuation at least 1. As this valuation could a priori be 
larger than 1, we define

mp = max 
1≤i≤n

ordp(1 + ri).

We conclude

ordp

(︄
n ∏︂

i=2
(−k + ai + 1 − p)p−ai−1

)︄
≥ ℓ + 1 + mp.

Therefore,

ordp

(︄
(t + k)2R(t)

⃓⃓⃓⃓
t=−k

)︄
≥ 2 + mp.

Additionally, we have seen that only linear powers of p appear in the denominator (t +
k)2R(t), and so the maximal exponent of p appearing overall will be 1 + mp. As noted 
above, this guarantees that
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vp

(︄
d 
dt (t + k)2R(t)
(t + k)2R(t) 

)︄
≥ −1 −mp.

Taken together, vp(Bk) ≥ 1, as was to be shown. □
Proposition 5.7. With HD, M , and p as in Lemma 5.5 and EDwork defined as in 
Lemma 5.4, we have

EDwork(α,β; 1) ≡ (−1)
∑︁n̂

i=2 biΓp

(︃
β

α

)︃
Rest=∞(R(t)) (mod p),

where Γp

(︂
β
α

)︂
:=
∏︁n

i=1
Γp(qi) 
Γp(ri) .

Proof. When λ = 1, the error term (5.14) reduces to

EDwork(α,β; 1) =
a1∑︂

k0=0

(α)k0

(β)k0

G1(α + k0,β + k0) +
a2∑︂

k0=a1+1

(α)k0

(β)k0

1 
pr1

.

With our rational function R(t) expressed in the partial fraction decomposition (5.16), 
the Residue Theorem then implies

p−1 ∑︂
k=0

Bk +
n̂∑︂

i=2 

p−bi−1∑︂
k=1 

Ci,k = −Rest=∞(R(t)). (5.22)

We have already considered the p-adic behavior of Ci,k as well as Bk for k ∈ I4, so we 
now turn our attention to Bk for k ∈ I1, I2, and I3.

First, for k ∈ I1, Ak can be computed directly as

Ak =
∏︁n

i=2(−k + 1 − ri − p)p−ai−1

(k!)2(a1 − k)!2(−k + a1 + 1)b1−a1(−k + b1 + 1)2p−b1−1
∏︁n

i=2(k + 1 + ip)p−bi−1
.

(5.23)
Note that we have changed the index on the product in the denominator from n̂ to n. 
Either indexing gives the same value, as qi = 1 implies bi = p− 1 and the corresponding 
Pochhammer symbol is equal to 1. Reintroducing those qi which are equal to 1 now 
simplifies our organization throughout the remainder of the proof. We interpret Ak p-
adically using (5.8). For example,

(−k + 1 − ri − p)p−ai−1 = (−1)ai
Γp(−k − pri) 

Γp(−k + 1 − ri − p) (−pri)ν(p−ai−1,p−ai−1+k)

= (−1)ai
Γp(−k − pri) 

Γp(−k + 1 − ri − p) .
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In fact, the ν terms are zero for each of our Pochhammer symbols, and we are left with 
only the signs and the Γp values. Following a similar analysis for each of the remaining 
Pochhammer symbols in Ak, we find

Ak =
(−1)

∑︁n
i=1 ai+biΓp(−k + b1 + 1)

∏︁n
i=2 Γp(−k − pri)Γp(k + 1 + ip) 

Γ2
p(k + 1)Γp(a1 − k + 1)Γ2

p(p− k)
∏︁n

i=2 Γp(−k + 1 − ri − p)Γp(k − bi + (1 + i)p)

This expression can be simplified extensively using (2.20), (5.8), and (5.11). Namely,

Ak
(2.20)= (−1)

∑︁n
i=2 bi

Γp(k − a1)Γ2
p(k + 1 − p)

∏︁n
i=2 Γp(k + ri + p)Γp(k + 1 + ip) 

Γ2
p(k + 1)Γp(k − b1)

∏︁n
i=2 Γp(k + 1 + pri)Γp(k − bi + (1 + i)p)

(5.8)≡ (−1)
∑︁n

i=2 bi
(α)k
(β)k

Γp

(︃
α

β

)︃
(mod p).

Next, we compute Bk using the residue formula

Bk = lim 
t→−k

d 
dt

(︁
(t + k)2R(t)

)︁
= Ak lim 

t→−k

d 
dt

(︁
(t + k)2R(t)

)︁
(t + k)2R(t) .

Therefore,

Bk

Ak
=

n ∑︂
i=2 

p−ai−1∑︂
j=1 

d 
dt (t + 1 − ri − p)p−ai−1

(t + 1 − ri − p)p−ai−1
− 2

d 
dt (t)k
(t)k

− 2
d 
dt (t + k + 1)a1−k

(t + k + 1)a1−k

−
d 
dt (t + a1 + 1)b1−a1

(t + a1 + 1)b1−a1

− 2
d 
dt (t + b1 + 1)p−b1−1

(t + b1 + 1)p−b1−1

−
n ∑︂

i=2 

d 
dt (−t + 1 + ip)p−bi−1

(−t + 1 + ip)p−bi−1

⃓⃓⃓⃓
t=−k

.

Each of these logarithmic derivatives can be evaluated using (5.9)—as in the computation 
of Ak each of the ν terms will be zero. Then, the G1 terms are simplified using (5.10) so 
that each term has a positive k and then reduced modulo p, using (5.12) to remove each 
multiple of p appearing inside of a G1. For example,

d 
dt (t + 1 − ri − p)p−ai−1

(t + 1 − ri − p)p−ai−1
≡ G1(k + 1) −G1(k + ri) (mod p).

After computing an analogous reduction we find

Bk

Ak
≡ −G1(α + k,β + k) (mod p). (5.24)

Thus,
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Bk ≡ (−1)1+
∑︁n

i=2 biΓp

(︃
α

β

)︃
(α)k
(β)k

G1(α + k,β + k) (mod p).

We now turn our attention to the interval I2 ∪ I3. Suppose a1 + 1 ≤ k ≤ b1. Then

Bk = (t + k)R(t)
⃓⃓⃓⃓
t=−k

=
∏︁n

i=2(−k + 1 − ri − p)p−ai−1

(−k)2a1+1(−k + a1 + 1)k−a1−1(b1 − k)!(−k + b1 + 1)2p−bi−1

n ∏︁
i=2

(k + 1 + ip)p−bi−1

We observe that the denominator never contains a multiple of p as k ≤ b1, whereas the 
numerator will contain at least one multiple of p for all k ≥ a2. Thus, Bk ≡ 0 (mod p)
for all k ∈ I3. On I2, all of the ν terms arising from (5.8) will be zero and we can 
reduce in the same manner as we used for Ak above. After doing so, we find that for 
a1 + 1 ≤ k ≤ a2,

Bk ≡ (−1)1+
∑︁n

i=2 bi

pr1

(α)k
(β)k

Γp

(︃
α

β

)︃
(mod p). (5.25)

The 1/(pr1) arises from the fact that k > a1 implies

Γp(r1 + k) = (−1)k

pr1
Γp(r1)(r1)k.

We now return to the residue sum (5.22), which we reduce modulo p. By Lemma 5.5, 
Lemma 5.6, and the fact that Bk ≡ 0 (mod p) for k ∈ I3, we have

−Rest=∞(R(t)) ≡
a2∑︂
k=0

Bk (mod p)

≡ −(−1)
∑︁n

i=2 biΓp

(︃
α

β

)︃(︃ a1∑︂
k=0

(α)k
(β)k

G1(α + k,β + k)

+
a2∑︂

k=a1+1

(α)k
(β)k

1 
pr1

)︃
(mod p)

≡ −(−1)
∑︁n

i=2 biΓp

(︃
α

β

)︃
EDwork(α,β; 1) (mod p).

This completes the proof. □
In light of Remark 8, we are particularly interested in cases where this error term 

EDwork(α,β; 1) vanishes modulo p, which will occur when R(t) is holomorphic at ∞. 
Recalling γ(HD) = −1+

∑︁n
i=1(qi−ri), this vanishing of EDwork can be rephrased purely 

arithmetically as follows:
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Corollary 5.8. With α,β,M , and p as in Lemma 5.5, if γ(HD) ≤ 1 we have

Fs+1(α,β; 1) ≡ Fs(α,β; 1)F1(α,β; 1) (mod p2).

Proof. We assume that γ(HD) ≤ 1, namely 
∑︁n

i=1 qi − ri ≤ 2, and multiply both sides 
by p− 1. Recalling that ai = (p− 1)ri and bi = (p− 1)qi, our inequality then becomes

2p +
n ∑︂

i=1 
(ai − bi) ≥ 2.

It is easy to check that the left-hand side of the above inequality is exactly the degree of 
the denominator of R(t) minus the degree of the numerator, and so this final inequality 
implies Rest=∞(R(t)) being zero and hence for the error term EDwork(α,β; 1) to vanish 
modulo p. □
5.3. Gross–Koblitz type supercongruences

5.3.1. The general case
We now consider the Gross–Koblitz type supercongruence stated in Remark 3. Recall 

that we have a direct relationship between the p-adic gamma function and the Gauss 
sum from Theorem 2.5. This can be extended to the following relationship between Hp

and truncated hypergeometric functions.

Lemma 5.9. Let α,β, and M be as in Lemma 5.4. For a fixed prime p ≡ 1 (mod M)
and with ωp the Teichmüller character of Fp, we have

Hp(α,β;λ; ω̄p) − EGK(α,β;λp)p ≡ F (α,β;λp)p−1 (mod p2),

where

EGK(α,β;λ) :=
a1∑︂
k=0

(α)k
(β)k

λk (G1(α + k,β + k)k + 1) +
a2∑︂

k=a1+1

(α)k
(β)k

λk k

pr1
. (5.26)

Remark 9. Formally,

EGK(α,β;λ) − λ
d 
dλ

EDwork(α,β;λ) =
a1∑︂
k=0

(α)k
(β)k

λk. (5.27)

Proof of Lemma 5.9. As before, we let 1 ≤ n̂ ≤ n be the minimal index such that qn̂ ̸= 1. 
If no such n̂ exists, instead take n̂ = 0. By definition,

Hp(α,β;λ; ω̄p) = 1 
1 − p

p−2 ∑︂
k=0

ω−k
p ((−1)nλ)

⎛⎝ n ∏︂
j=1

𝔤
(︂
ω
−(p−1)rj−k
p

)︂
𝔤
(︂
ω
−(p−1)rj
p

)︂
⎞⎠
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×
n̂∏︂

i=1

𝔤
(︂
ω

(p−1)qi+k
p

)︂
𝔤
(︂
ω

(p−1)qi
p

)︂ (︁−𝔤
(︁
ωp−1−k
p

)︁)︁n−n̂
.

First, we reverse the order of summation for k > 0 by replacing k by p − 1 − k. This 
gives us

Hp(α,β;λ; ω̄p) = 1 
1 − p

p−2 ∑︂
k=0

ωk
p ((−1)nλ)

⎛⎝ n ∏︂
j=1

𝔤
(︂
ω

(p−1)(1−rj)+k
p

)︂
𝔤
(︂
ω

(p−1)(1−rj)
p

)︂
⎞⎠

×
n̂∏︂

i=1

𝔤
(︂
ω
−(p−1)(1−qi)−k
p

)︂
𝔤
(︂
ω
−(p−1)(1−qi)
p

)︂ (︁−𝔤
(︁
ωk
p

)︁)︁n−n̂
.

We use the Gross–Koblitz formula (Theorem 2.5) to rewrite the above expression in 
terms of Γp. To do so we must have our exponent written in the range [2− p, 0], and so 
a shift by p− 1 may be required if the exponent does not fall into this range. With this 
in mind and recalling that aj = (p− 1)rj ,

𝔤
(︂
ω(p−1)(1−rj)+k
p

)︂
=

⎧⎨⎩𝔤
(︂
ω

(p−1)(−rj)+k
p

)︂
0 ≤ k ≤ aj ;

𝔤
(︂
ω

(p−1)(−1−rj)+k
p

)︂
aj < k

=

⎧⎨⎩−π
rj(p−1)−k
p Γp

(︂
rj(p−1)−k

p−1 

)︂
0 ≤ k ≤ aj ;

−π
(1+rj)(p−1)−k
p Γp

(︂
(1+rj)(p−1)−k

p−1 

)︂
aj < k.

(5.28)

We can compute 𝔤
(︂
ω

(p−1)(1−rj)
p

)︂
similarly. Taking the quotient and simplifying we find

𝔤
(︂
ω

(p−1)(1−rj)+k
p

)︂
𝔤
(︂
ω

(p−1)(1−rj)
p

)︂ = (−p)ν(k,aj)π−k
p

Γp

(︂
rj(p−1)−k

p−1 + ν(k, aj)
)︂

Γp(rj) 
,

where ν is defined as in (5.6). An analogous computation shows that

𝔤
(︂
ω
−(p−1)(1−qi)−k
p

)︂
𝔤
(︂
ω
−(p−1)(1−qi)
p

)︂ = (−1)bi+1(−1/p)ν(k+1,bi)πk
pΓp

(︃
k

p− 1 − qi + ν(bi, k)
)︃

Γp(qi)

and

−𝔤(ω−k
p ) = πk

pΓp

(︃
k

p− 1

)︃
.

All together we have
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Hp = 1 
1 − p

p−2 ∑︂
k=0

ωk
p((−1)nλ)

⎛⎝ n ∏︂
j=1

(−p)ν(k,aj)
Γp

(︂
rj − k

p−1 + ν(k, aj)
)︂

Γp(rj) 

⎞⎠
×

n̂∏︂
i=1

(︃
(−1)bi+1(−1/p)ν(k+1,bi)Γp

(︃
k

p− 1 − qi + ν(bi, k)
)︃

Γp(qi)
)︃(︃

Γp

(︃
k

p− 1

)︃)︃n−n̂

.

(5.29)
Using the functional equation (2.19) as well as the definition of ν we have

(−p)ν(k,aj)Γp

(︃
rj − k

p− 1 + ν(k, aj)
)︃

=
(︃
p

(︃
rj − k

p− 1

)︃)︃ν(k,aj)

Γp

(︃
rj − k

p− 1

)︃
.

In the product we have

n ∏︂
j=1

(−p)ν(k,aj)Γp

(︃
rj− k

p− 1 + ν(k, aj)
)︃

=
n ∏︂

j=1

(︃
p

(︃
rj − k

p− 1

)︃)︃ν(k,aj)

Γp

(︃
rj − k

p− 1

)︃
,

(5.30)

and in particular this vanishes modulo p2 for k ≥ a2. 
Turning our attention to the qi term, (2.20) yields

Γp

(︃
k

p− 1 − qi + ν(bi, k)
)︃

= (−1)xi

Γp

(︂
qi − k

p−1 + ν(k + 1, bi)
)︂ ,

where

xi =
{︄
ν(bi, k) − k + bi if 0 < ν(bi, k) − k + bi;
ν(bi, k) + p− k + bi otherwise.

(5.31)

From this, (2.19), and the fact that 1 − ν(bi, k) = ν(k + 1, bi) we conclude

(−p)−ν(k+1,bi) Γp

(︃
k

p− 1 − qi + ν(bi, k)
)︃

= (−1)ν(k+1,bi)+xi

pν(k+1,bi)Γp

(︂
qi − k

p−1 + ν(k + 1, bi)
)︂

= (−1)xi(︂
p
(︂
qi − k

p−1

)︂)︂ν(k+1,bi)
Γp

(︂
qi − k

p−1

)︂ .
(5.32)

Additionally,
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Γp

(︃
k

p− 1

)︃
= (−1)k

Γp

(︂
1 − k

p−1

)︂ = (−1)k+1 Γp(1) 
Γp

(︂
1 − k

p−1

)︂ . (5.33)

Combining (5.32) and (5.33) yields

n̂∏︂
i=1

(−1)bi+1 (−p)−ν(k+1,bi) Γp

(︃
k

p− 1 − qi + ν(bi, k)
)︃

Γp(qi)Γn−n̂
p

(︃
k

p− 1

)︃

=
n̂∏︂

i=1

(−1)xi+bi+1Γp(qi) (︂
p
(︂
qi − k

p−1

)︂)︂ν(k+1,bi)
Γp

(︂
qi − k

p−1

)︂
⎛⎝ (−1)k+1Γp(1)

Γp

(︂
1 − k

p−1

)︂
⎞⎠n−n̂

.

(5.34)

Using (5.30) and (5.34), we can further reduce (5.29) to

Hp(α,β;λ; ω̄p) = 1 
1 − p

p−2 ∑︂
k=0

(−1)n̂+
∑︁n̂

i=1(bi+xi)+(n−n̂)(k+1)ωk
p((−1)nλ)

×
∏︁n

j=1

(︂
p
(︂
rj − k

p−1

)︂)︂ν(k,aj)

∏︁n̂
i=1

(︂
p
(︂
qi − k

p−1

)︂)︂ν(k+1,bi)
Γp

(︄
α− k

p−1 ,β

α,β − k
p−1

)︄
.

(5.35)

As Γp takes values in the p-adic integers, we observe that the kth coefficient of Hp

will vanish modulo p2 for all k > a2. Utilizing Theorem 5.2, we find

Γp

(︄
α− k

p−1 ,β

α,β − k
p−1

)︄
= Γp

(︄
α + k + kp 

1−p ,β

α,β + k + kp 
1−p

)︄

≡ Γp

(︃
α + k,β

α,β + k

)︃(︃
1 + G1(α + k,β + k) kp 

1 − p

)︃
(mod p2).

Furthermore, by (5.8) we have

pν(k,aj)Γp (rj + k)
Γp(rj) 

= (−1)k(rj)k(rj)−ν(k,aj),

and

Γp(q1) 
pν(k+1,bi)Γp(qi + k)

= (−1)kpδk=bi (qi)ν(k,bi)

(qi)k

with δk=bi = 1 if k = bi and 0 otherwise, and

Γp(k + 1) = (−1)k+1(1)k.

Therefore,
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Γp

(︃
α + k,β

α,β + k

)︃
p
∑︁n

j=1 ν(k,aj)−
∑︁n̂

i=1 ν(k+1,bi) = (−1)n−n̂
n ∏︂

i=1

(ri)kqν(k,bi)
i pχk=bi

r
ν(k,ai)
i (qi)k

. (5.36)

For 0 ≤ k < b1, by definition (5.31) we have xi = ν(bi, k)− k + bi = 1− k + bi, in which 
case the sign appearing in (5.35) can be reduced as

(−1)n̂+
∑︁n̂

i=1(bi+xi)+(n−n̂)(k+1) = (−1)n(k+1)+n̂.

After factoring in the (−1)n−n̂ arising from (5.36) this will further reduce to (−1)nk. We 
let

C(α,β, k) :=

⎛⎜⎝ n ∏︂
i=1

(︂
1 − k

rj(p−1)

)︂ν(k,aj)
pχk=bi(︂

1 − k
qi(p−1)

)︂ν(k,bi)

⎞⎟⎠ (α)k
(β)k

(︃
1 + G1(α + k,β + k) kp 

1 − p

)︃
,

so that

Hp(α,β;λ; ω̄p) ≡ 1 
1 − p

a2∑︂
k=0

(−1)nkωk
p((−1)nλ)C(α,β, k) (mod p2) (5.37)

For 0 ≤ k ≤ a1, we have

C(α,β, k) = (α)k
(β)k

(︃
1 + G1(α + k,β + k) kp 

1 − p

)︃
≡ (α)k

(β)k
(1 + G1(α + k,β + k)kp) (mod p2)

(5.38)

where the final congruence holds by using the fact that 1/(1 − p) ≡ 1 + p (mod p2). 
When a1 + 1 ≤ k ≤ a2, we instead have

C(α,β, k) = (α)k
(β)k

(︃
1 + k

r1(1 − p)

)︃(︃
1 + G1(α + k,β + k) kp 

1 − p

)︃
≡ (α)k

(β)k

(︃
1 + k

r1

)︃
(mod p2).

(5.39)

Together (5.38) and (5.39) allow us to expand (5.37) as

Hp(α,β;λ; ω̄p) ≡ 1 
1 − p

(︃ a1∑︂
k=0

(−1)knωk
p ((−1)nλ) (α)k

(β)k
(1 + G1(α + k,β + k)kp)

+
a2∑︂

k=a1+1

(−1)knωk
p ((−1)nλ) (α)k

(β)k

(︃
1 + k

r1

)︃)︃
(mod p2).

Hensel lifting applied to the polynomial f(x) = xp − p with root (−1)nλ gives
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ωk
p ((−1)nλ) ≡ (−1)nkλpk (mod p2).

This together with the congruence 1/(1 − p) ≡ 1 + p (mod p2) yields

Hp(α,β;λ; ω̄p) ≡
a1∑︂
k=0

(α)k
(β)k

(λp)k (1 + (G1(α + k,β + k)k + 1)p)

+
a2∑︂

k=a1+1

(α)k
(β)k

(λp)k
(︃

1 + k

r1

)︃
(mod p2).

This can now be decomposed as

Hp(α,β;λ; ω̄p) ≡
p−1 ∑︂
k=0

(α)k
(β)k

(λp)k +
a1∑︂
k=0

(α)k
(β)k

(λp)kp(G1(α + k,β + k)k + 1)

+
a2∑︂

k=a1+1

(α)k
(β)k

(λp)k k

r1
(mod p2).

The right-hand side is exactly F (α,β;λp)p−1+pEGK(α,β;λp), completing the proof. □
5.3.2. The λ = 1 case

Once again, the error term EGK at λ = 1 can be computed explicitly via residue sums. 
In particular, Remark 9 indicates that EGK will correspond to the residue sum of tR(t).

Proposition 5.10. With α, β,M , and p as in Lemma 5.5 and R(t) as in (5.15),

EGK(α,β; 1) ≡ (−1)1+
∑︁n̂

i=2 biΓp

(︃
β

α

)︃
Rest=∞(tR(t)) (mod p).

Proof. By definition (5.26),

EGK(α,β; 1) =
a1∑︂
k=0

(α)k
(β)k

(kG1(α + k,β + k) + 1) +
a2∑︂

k=a1+1

(α)k
(β)k

k

pr1
.

In the same way that our previous error term corresponded to the residues of the function 
R(t) defined in (5.15), this error term will relate to the residues of tR(t). As before, we 
have a partial fraction decomposition of the form

tR(t) =
a1∑︂
k=0

Ãk

(t + k)2 + B̃k

(t + k) +
b1∑︂

k=a1+1

B̃k

t + k
+

p−1 ∑︂
k=b1+1

Ãk

(t + k)2 + B̃k

(t + k)

+
n̂∑︂

i=2 

p−bi−1∑︂
k=1 

C̃i,k

−t + k + ip

(5.40)
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We use the intervals I1, I2, I3, and I4 defined in (5.17). The coefficients Ãk, B̃k, and C̃i,k

are closely related to the coefficients Ak, Bk, and Ci,k appearing in (5.16). Specifically, 
from Lemma 5.5,

C̃i,k = lim 
t→k+ip

(−t + k + ip)tR(t) = (k + ip)Ci,k ≡ 0 (mod p). (5.41)

Similarly, the proof of Lemma 5.6 implies that, for k ∈ I4,

B̃k = −kAk lim 
t→−k

d 
dt

(︁
(t + k)2tR(t)

)︁
(t + k)2tR(t) ≡ 0 (mod p). (5.42)

For k ∈ I1, recalling (5.24) we have

Ãk = −kAk (5.43)

and

B̃k/Ãk = −1
k

−G1(α + k,β + k). (5.44)

For k ∈ I2 ∪ I3 we have B̃k = −kBk. In conclusion,

B̃k ≡

⎧⎪⎪⎨⎪⎪⎩
(−1)

∑︁n̂
i=2 biΓp

(︂
α
β

)︂
(α)k
(β)k (1 + kG1(α + k,β + k)) 0 ≤ k ≤ a1

(−1)
∑︁n̂

i=2 bi k
pr1

Γp

(︂
α
β

)︂
(α)k
(β)k a1 + 1 ≤ k ≤ a2

0 a2 + 1 ≤ k ≤ p− 1

(mod p).

Therefore,

Rest=∞(tR(t)) = −
p−1 ∑︂
k=0

B̃k −
n̂∑︂

i=2 

p−bi−1∑︂
k=0 

C̃i,k

≡ (−1)1+
∑︁n̂

i=2 biΓp

(︃
α

β

)︃
EGK(α,β; 1) (mod p)

as was to be shown. □
In particular, the residue of tR(t) at infinity is zero whenever the denominator has a 

degree at least two greater than the numerator, which gives us the following:

Corollary 5.11. Let HD = {α,β} be as in Lemma 5.4 satisfying γ(HD) < 1. For all 
primes p ≡ 1 (mod M(HD)) such that p > n̂ + 1, where as before n̂ is the number of 
elements of β not equal to 1,

Hp(α,β;λ; ω̄p) ≡ F (α,β; 1)p−1 (mod p2)
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If instead γ(HD) = 1, from the definition of R(t) given by (5.15), we have

Rest=∞(tR(t)) = − lim 
|t|→∞

(t2R(t)) = (−1)1+
∑︁n̂

i=2 bi .

Thus, by Proposition 5.10,

EGK(α,β; 1) ≡ Γp

(︃
β

α

)︃
(mod p),

so that Lemma 5.9 becomes

Hp(α,β;λ; ω̄p) ≡ F (α,β; 1)p−1 + Γp

(︃
β

α

)︃
p (mod p2).

We conclude this section by deducing Theorem 2.3.

Proof of Theorem 2.3. As we are assuming γ(HD) ≤ 1, Corollary 5.11 yields

Hp(α,β; 1; ω̄p) − δγ(HD)=1Γp

(︃
β

α

)︃
p ≡ F (α,β; 1)p−1 (mod p2).

By Corollary 5.8, it follows that for all positive integers s,

Hp(α,β; 1; ω̄p) − δγ(HD)=1Γp

(︃
β

α

)︃
p ≡ Fs+1(α,β; 1)

Fs(α,β; 1) (mod p2).

Letting s go to infinity and using Dwork’s congruence (5.13) then gives the result. □
In the ensuing discussion, we will primarily focus on cases where the hypergeometric 

data HD has length three or four. As such, we state the specializations of Corollary 5.11
to these settings. For the length four case, we utilize Corollary 2.6 to express our super-
congruence using P rather than Hp.

6. Proof of Theorem 2.1

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. The length n of HD is 3 or 4 by assumption. By Theorem 4.1, 
the representation ρ{HD;1} of G(M) is n− 1 dimensional. Condition (2) of Theorem 2.1
implies χHD ⊗ ρ{HD;1} of G(M) has an extension to GQ; use ρ̂{HD;1} to denote such an 
extension as in Proposition 4.3. When n = 4, condition (1) of Theorem 2.1 implies the 
three-dimensional representation χHD⊗ρ{HD;1} is reducible so γ(HD) = 1, see Remark 6. 
Part (iii) of Theorem 4.1 implies if this representation is self-dual, (which is the case by 
condition (2)), then it contains a nontrivial d-dimensional subrepresentation space that 
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admits a non-degenerate alternating pairing. Thus d is even, and so must be 2. Then 
χHD ⊗ ρ{HD;1} is the direct sum of two sub-representations both extendable to GQ. 
Namely ρ̂{HD;1} = ρ̂prim{HD;1} ⊕

(︁
ψHD ⊗ ϵℓ|G(M)

)︁
where ρ̂prim{HD;1} is 2-dimensional, ψHD is 

a finite order character of G(M) such that ψHD(𝔭) = ±1 for any prime ideal 𝔭 of Z[ζM ]
above p ∈ PM = {p | p prime, p ≡ 1 (mod M)}, and ϵℓ denotes the ℓ-adic cyclotomic 
character. When n = 3, we refer to ρ̂{HD;1} as ρ̂prim{HD;1} for uniformity of notation. In 
either case, for any prime ideal 𝔭 above p ∈ PM ,

Trρ̂{HD;1}(Frob𝔭) = Trρ̂prim{HD;1}(Frob𝔭) + δγ(HD)=1ψHD(p)p. (6.1)

We use p rather than 𝔭 in ψHD as the character is independent of choice of 𝔭 over p.
We now relate the discussion to the modular target f ♯

HD. By the assumption (1) of 
Theorem 2.1, if fHD is inside a Hecke orbit then any Hecke eigenform in the orbit is 
a natural candidate for f ♯

HD. Further, assumption (2) of Theorem 2.1 implies the well-
definedness of f ♯

HD which will work for not only HD but also its conjugates, as in §3.2. 
Next, we will show that Deligne’s representation ρf♯

HD
|G(M) ≃ ρ̂prim{HD;1}. By the CFGL 

discussion in §3.3 amounting to Proposition 3.8, we know for p ≡ 1 (mod M) their 
Frobenius traces agree modulo p and have the same unit root in the ordinary case. To 
proceed we show that the supercongruences in Theorem 2.3 are enough to strengthen 
this from a congruence modulo p to equality.

By part (iii) of Theorem 4.1, the weight of f ♯
HD is n. By condition (2) of Theorem 2.1

and the discussion in §3.3, ap(f ♯
HD) = b̃p for p ∈ PM , where ̃bp is the pth Hecke eigenvalue 

of fHD, as in the statement of Theorem 2.1. For any such prime ideal 𝔭 that is ordinary,

Trρ̂prim{HD;1}(Frob𝔭) = ap(f ♯
HD) = ufHD,p + ϕ(p)pn−1/ufHD,p, (6.2)

where ufHD,p ∈ Z×
p is a solution of T 2 − ap(f ♯

HD)T + ϕ(p)pn−1 = 0 which can be also 
computed by (3.22) using CFGL.

We turn our attention to the traces of the Katz representation. By condition (2) 
of Theorem 2.1, for every nonzero prime ideal 𝔭 above p ∈ PM , χHD(𝔭)P (HD; 1; 𝔭)
is in Z, where we recall χHD(𝔭) = ι𝔭(rn)(C1)−1 · ∏︁n−1

i=1 ι𝔭(ri)(−1). To proceed, 
we fix the p-adic embedding ι𝔭( 1 

p−1 ) ↦→ ω̄p as in (2.13). Thus, the embedding of 
ι𝔭(rn)(C1)−1 into Zp is ω(p−1)rn

p (C1). Together with the conversion from P to H
given by (2.4), the embedding of Trρ̂{HD;1}(Frob𝔭) = (−1)n−1χHD(𝔭)P (HD; 1; 𝔭)
is ω(p−1)rn

p (C1)Γp

(︂
rn,qn−rn

qn

)︂
Hp(HD; 1; ω̄p). Comparing with the earlier formula for 

Trρ̂{HD;1}(Frob𝔭) in (6.1) we have

ω(p−1)rn
p (C1)Γp

(︃
rn, qn − rn

qn

)︃
Hp(HD; 1; ω̄p) = ap(f ♯

HD) + δγ(HD)=1 · ψHD(p) · p,

which is (2.10). Note that modulo p, the above is equivalent to (3.26).
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What remains to be determined is the sign ψHD(p), which follows from Theorem 2.3. 
Applying (2.15) to Hp(HD; 1; ω̄p), one has

ap(f ♯
HD) + δγ(HD)=1 · ψHD(p) · p ≡ ω(p−1)rn

p (C1)Γp

(︃
rn, qn − rn

qn

)︃
×
(︃
F (α,β; 1)p−1 + δγ(HD)=1Γp

(︃
β

α

)︃
p

)︃
(mod p2). (6.3)

From the comparison, at ordinary primes p, we have the following agreement of unit 
roots.

μfHD,p = ω(p−1)rn
p (C1)Γp

(︃
rn, qn − rn

qn

)︃
μHD,1,p

When γ(HD) = 1, by comparing the terms of (6.3) with p-adic valuation one at 
ordinary p ∈ PM , one has

ψHD(p) ≡ ω(p−1)rn
p (C1)Γp

(︃
rn, qn − rn

qn

)︃
Γp

(︃
β

α

)︃

≡ ω(p−1)rn
p (C1)Γp

(︄
β♭, qn − rn

α♭

)︄

≡ (−1)n−1C
(p−1)rn
1 Γp

(︃
qn − rn

α♭

)︃
(mod p),

(6.4)

as (−1)n−1 = Γp(β♭) = Γp(1)(n−1). Thus the claim (2.11) is established.
To finish the proof, we note that for 𝔭 above p ≡ 1 (mod M), the absolute value of 

the integer

(−1)n−1χHD(𝔭)P (HD; 1; 𝔭) − δγ(HD)=1 · ψHD(p) · p

is less than 3p3/2 + p when n = 4 (resp. 2p when n = 3) while ap(f ♯
HD) is an integer 

whose absolute value is less than 2p3/2 (resp. 2p). Theorem 2.3 implies that they agree 
modulo p2. For all p ≥ 29, 5p3/2 + p < p2, and so the two integers must be the same. 
Similarly, for n = 3 they agree for all p ≥ 5. □
Remark 10. From the modularity of two-dimensional motivic GQ representations—see 
for example Theorem 1.0.4 of [35]— any extension of ρ̂prim{HD;1} to GQ is isomorphic to 

a Deligne representation associated with a Hecke eigenform f ♯
HD of character ϕ = ϕHD. 

Our method gives the explicit Deligne representation by constructing the corresponding 
Hecke eigenforms which are unique up to twisting.
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We end this section by pointing out that the Galois condition given by Definition 3.2
often gives rise to Galois representations being extendable to GQ. Here we give a demon-
stration for the case discussed in Proposition 3.9.

Proposition 6.1. For each j ∈ {1, 3, 5, 7}, any prime p ≡ 1 (mod 8), and any prime 
𝔭 ∈ Z[ζ8] above p

P

(︃{︃
1
2 ,

1
2 ,

j

8

}︃
, {1, 1, 1}; 1; 𝔭

)︃
= ap (f256.3.c.g) .

Proof. Note that under the assumptions, χHD(𝔭) = 1. First note that the right-hand 
side is an integer whose absolute value is less than or equal to 2p from the Weil bound. 
Meanwhile, the left-hand side takes value in Z[ζ8], so it can be written as a11+a12

√−1+
a21

√
2 + a22

√−2 for aij ∈ 1
2Z. There are four different ways to embed Z[ζ8] in Qp, 

namely if we fix one embedding σ(ζ8) ∈ Qp, then all such embeddings are given by 
sending ζ8 ↦→ σ(ζ8)j where j = 1, 3, 5, 7. We note them by σj accordingly. By (3.27) and 
the corresponding modulo p2 supercongruences we know for each j

σj

(︂
a11 − ap (f256.3.c.g) + a12

√−1 + a21
√

2 + a22
√−2

)︂
≡ 0 (mod p2).

Thus p2 divides each of the half integers a11 − ap (f256.3.c.g) , a12, a21, a22. If any of these 
half integers is nonzero, then any complex norm of

P

(︃{︃
1
2 ,

1
2 ,

1
8

}︃
, {1, 1, 1}; 1; 𝔭

)︃
− ap (f256.3.c.g)

is at least p2/2, while any complex norm of either P
(︁{︁1

2 ,
1
2 ,

1
8
}︁
, {1, 1, 1}; 1; 𝔭

)︁
or 

ap (f256.3.c.g) is less than or equal to 2p, this is impossible when p ≥ 17. Thus the 
difference between both hand sides is 0. □

The j = 1 case of Proposition 6.1 resolves case 3 of the conjectures of Dawsey and 
McCarthy in Table 2 of [13].

Appendix A. Modular forms on triangle groups

A crucial part of our method is computing the target modular form explicitly us-
ing the integral representation of classical hypergeometric functions and an appropriate 
Hauptmodul. In the n = 3 case, the values of a classical 2F1 function evaluated at a 
Hauptmodul td are used. In [40], Stiller pointed out that suitable homogeneous solutions 
of certain degree-2 ordinary differential equations can be viewed as weight-1 forms of 
the corresponding monodromy groups. Conversely, it is known that weight-1 (resp. more 
generally k) modular forms are annihilated by degree-2 (resp. k+1) ordinary differential 
equations in terms of non-constant modular functions, see [42,43] by Yang. The Schwarz 
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(2,6,∞) 
Γ+

0 (3); t6+

2

(2,3,∞) 
SL2(Z); 1728

j

4

3

(2,4,∞) 
Γ+

0 (2); t4+

2

(3,∞,∞)
Γ0(3); t3

(2,∞,∞)
Γ0(2); t4

2

(∞,∞,∞) 
Γ(2)≃Γ0(4); t2

Fig. 3. Some triangle groups commensurable with SL2(Z). 

Table 1
Hauptmoduln.

Group Hauptmodul t C1 e1, e2, e3 Orders t
W↔ 1 − t

Γ0(1) 1728/j(τ) 1728 i∞, i, −1+i
√

3
2 ∞, 2, 3

Γ(2) λ(τ) := 16 η( τ

2 )8η(2τ)16

η(τ)24 16 i∞, 0, 1 ∞,∞,∞
(︂0 −1
1 0

)︂
Γ0(3) t3(τ) := 27η(3τ)12

η(τ)12+27η(3τ)12 27 i∞, 0, 3+i
√

3
6 ∞,∞, 3

(︂0 −1
3 0

)︂
Γ0(4) t2(τ) := λ(2τ) 16 i∞, 0, 1

2 ∞,∞,∞
Γ0(2) u(τ) := −64 η(2τ)24

η(τ)24 −64 i∞, 1+i
2 , 0 ∞, 2,∞

(︂0 −1
2 0

)︂
Γ0(2)+ t4+(τ) := 256η(τ)24η(2τ)24

(η(τ)24+64η(2τ)24)2 256 i∞, i √
2 ,

1+i
2 ∞, 2, 4

Γ0(3)+ t6+(τ) := 108η(τ)12η(3τ)12

(η(τ)12+27η(3τ)12)2 108 i∞, i √
3 ,

3+i
√

3
6 ∞, 2, 6

map, mentioned earlier relates the 2F1 function in question to a triangle group, that is 
commensurable to SL2(Z), in the cases we consider.

A similar idea is used in the n = 4 case. However, here the Clausen formula is needed 
to relate the target 3F2 function, which now appears in the computation, back to a 
square of 2F1 functions.

Below we list a few relevant groups commensurable with SL2(Z) related to our method, 
given in the partial order of containment, see Fig. 3.

For each group Γ in Fig. 3, we choose a Hauptmodul t(τ) which takes the values 0, 
1, and ∞ at the elliptic points e1, e2, e3 of Γ. By abuse of notation, we regard each cusp 
as an elliptic point of infinite order. See Table 1 for the exact functions. The first t(τ)
coefficient, denoted as C1, is important in our explicit method. We also give explicit 
evaluations of certain hypergeometric functions evaluated at these Hauptmoduln. We 
set

α
(2)
d =

{︃
1 
d
, 1 − 1 

d

}︃
, α

(3)
d =

{︃
1
2 ,

1 
d
, 1 − 1 

d

}︃
.

Additionally, we let 2F1(α(2)
d ; td) and 3F2(α(3)

d ; td+) denote
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2F1

[︃ 1 
d

d−1
d 

1 1
; td
]︃

and 3F2

[︃ 1
2

1 
d

d−1
d 

1 1 1
; td+

]︃
,

respectively. The 2F1(α(2)
d ; td) value for d = 2 is given in (3.3). The analogous theory for 

d = 3 involves the Hauptmodul t3 from Table 1. In [11], Borwein, Borwein, and Garvan 
show that

2F1

[︃ 1
3

2
3

1 1
; t3(τ)

]︃
=
∑︂

n,m∈Z
qn

2+nm+m2
, (A.1)

when both sides converge. Another weight 1
2 Jacobi theta function which appears in 

the 3F2(α(3)
d ; td+) function when d = 2 is θ4. The definition of θ4 and the connection 

to θ3 are given in (3.9). Now combining (3.3) and (A.1) with the Clausen formula for 
hypergeometric functions gives the following information

d Γd td 2F1(α(2)
d ; td)

2 Γ(2) λ(τ) θ3(τ)2

2 Γ0(4) λ(2τ) θ3(2τ)2

3 Γ0(3) t3(τ) 3η(3τ)3+η
(︁

τ
3 
)︁3

η(τ) 

4 Γ0(2) u(τ) 
u(τ)−1 (−E2,2(τ))1/2

d Γd t+ 3F2(α(3)
d ; td+)

2 Γ0(2) u(τ) θ4(2τ)4

3 Γ0(3)+ t6+(τ) − 1
2E2,3(τ)

4 Γ0(2)+ t4+(τ) −E2,2(τ)

6 Γ0(1) 1728
j(τ) E4(τ)1/2

where E2,N (τ) := E2(τ) − NE2(Nτ), E2(τ) = 1 − 24
∑︂
n≥1

nqn

1 − qn
is the weight two 

Eisenstein series—a holomorphic quasi-modular form, and E4 is the normalized weight 
four Eisenstein series on SL2(Z). We also remark that when d = 6, by a hypergeometric 
quadratic formula,

2F1(α(2)
6 ; t6) = 2F1

[︃ 1 
12

5 
12

1 1
; 4t6(1 − t6)

]︃
= 2F1

[︃ 1 
12

5 
12

1 1
; 1728

j

]︃
= E

1/4
4 ,

where t6 is a function satisfying 4t6(1 − t6) = 1728
j .

The proof of Lemma 3.1 indicates understanding the logarithmic derivatives of the 
Hauptmoduln of interest is an important part of computing the target modular form. 
Therefore, the logarithmic derivatives for the Hauptmoduln of interest are recorded be-
low.

Proposition 7.1. Use Θ := q d 
dq log to denote the logarithmic derivative in terms of q =

e2πiτ , then

Θλ(τ) = 1
2θ

4
4(τ)

Θu(τ) = 1 + λ(2τ)
1 − λ(2τ) θ

4
4(2τ) = (1 − u)1/2θ4

4(2τ)
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Θt3(τ) = (1 − t3(τ))
(︄

3η(3τ)3 + η
(︁
τ
3 
)︁3

η(τ) 

)︄2

Θj(τ) = E6(τ)
E4(τ)

Θt4+(τ) = −E2,2(τ)η(τ)24 − 64η(2τ)24

η(τ)24 + 64η(2τ)24

Θt6+(τ) = −1
2E2,3(τ)η(τ)12 − 27η(3τ)12

η(τ)12 + 27η(3τ)12
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