
A Switching Strategy for Target Tracking by
Mobile Sensing Agents

Wencen Wu and Fumin Zhang
School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, USA

Email: {wwencen3, fumin}@gatech.edu

Abstract— We introduce a co-design approach for control
and sensing algorithms for autonomous mobile sensing
agents to track a moving target. The mobile sensing agents
move in a group while taking bearings-only measurements.
We construct an extended Kalman filter that provides
estimates of the state of the target and investigate the optimal
formation of the agent group by maximizing the determinant
of Fisher information matrix (FIM). We develop a strategy
that allows the agents to form groups with different number
of agents. Agents autonomously switch to larger groups only
when the convergence rate of smaller groups to the target
is not satisfactory. This switching strategy strikes a balance
between the complexity of cooperation and performance of
sensing algorithms, which may enable more flexibility in
autonomy compared to fixed strategies.

Index Terms— target tracking, bearings-only measurement,
mobile sensing agents, switching strategy

I. INTRODUCTION
Target tracking is an important research area with a

wide range of civilian and military applications [1]–[3].
By a mobile sensing agent, we refer to an unmanned
autonomous vehicle (UAV) equipped with sensors that
are able to detect a target. The sensors could be cameras,
sonar, radars and thermal signature sensors, etc. Among
all types of sensor observations, bearings-only target
motion analysis (TMA) is a classical problem, in which an
observer measures noisy bearings from a target and esti-
mates the position and velocity of the target [4], [5]. With
bearings-only observations, the measurement function is
nonlinear. Various techniques have been developed to
deal with the nonlinearity such as least squares, extended
Kalman filter (EKF), maximum likelihood estimator, and
particle filter.

When implementing the estimating techniques, observ-
ability issue arises when only one single sensing agent is
used to track a target with bearings-only measurements.
For the state of the target to be observable by a sensing
agent, the agent is required to execute a proper maneuver
to collect enough information, as described in [6], [7].
Recently, researchers have developed algorithms using
sensor networks [8], [9] or multiple mobile sensing agents
[1], [9]–[13] for target localization and tracking because
measurements from multiple sensors can be fused and
filtered to produce efficient and reliable state estimation.
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Especially, if the number of sensing agents is limited and
the agents have limited sensing range, mobile sensing
agents are usually chosen to keep track of the target.

In this paper, we investigate the problem of using multi-
ple mobile sensing agents to track one moving target. The
objective is to estimate the target’s position and velocity,
and then control the mobile agents to follow the motion
of the target to ensure the target is always detectable.
To tackle this problem, one must solve an estimation
problem and a control problem simultaneously. We use the
constant velocity (CV) model for the target, and assume
that the sensing agents take bearings-only measurements
of the target. The state of the target, e.g. position, veloc-
ity, etc. can be estimated by filtering algorithms, which
extracts the state information of the target from sensor
measurements. Sensing agents will then be controlled to
move towards the target while avoiding collisions between
each other. The state estimation and motion planning
have to be co-designed. For this purpose, we use the
extended Kalman filter to produce state estimates and
control the agents to move along the opposite direction
of the gradient of a cost function, which depends on
the norm of the relative distances between the the agent
positions to the target position that is estimated by the
extended Kalman filter. The motion of the agents aims
to minimize the cost function. We also investigate the
optimal formation of the agent group by maximizing the
determinant of Fisher information matrix (FIM).

In typical scenarios, an agent group with more mobile
sensing agents are expected to outperform an agent group
with less agents or a static sensor network in terms of
adaptability, scalability, and performance [14], [15]. How-
ever, target tracking with a large number of networked
mobile agents increases communication delay and compu-
tational complexity. Because of the advantages and disad-
vantages of tracking with large groups and small groups,
we believe that the tracking behavior of the sensing agents
does not have to be fixed. Inspired by the switching
behavior in fish groups [16] and the switching strategy
developed in our previous papers regarding cooperative
source seeking [17], we propose a switching strategy
in this paper that allows the sensing agents to switch
between groups with different number of agents. The
switching conditions from smaller groups to larger groups
are inspired and developed from the Razumikhin theorem
[18]–[20]. Unlike the switching strategy introduced in
[17], in which the switching conditions are applied to
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scalar fields, the switching conditions in this paper are
considered in a field created by the cost function used for
motion design. The switching strategy aims to allowing
more flexible autonomy than fixed strategies.

The rest of the paper is organized as follows. First, we
introduce the problem formulation of bearings-only target
tracking. Next, we investigate optimal formations of the
agent group and discuss the formation and motion control.
We then propose the switching strategy that allows the
agent group to switch between different group sizes.
Simulation results are presented and conclusion remarks
are provided in the last.

II. PROBLEM FORMULATION

Suppose a target is moving in a two dimensional plane
with a constant velocity. Define rT = (xT ,yT ) as the
Cartesian coordinates of the target, and let ṙT = (ẋT , ẏT )
represent the velocity of the target. N sensing agents
mounted with bearings-only sensors are used in tracking
the target. Because of the limited number of sensing
agents and the limited sensing range of each sensing
agent, the sensing agents are controlled to move in a
group to keep track of the target. Denote the position of
the ith agent as ri = (xi,yi) and the corresponding bearing
measurement as θi, i = 1, · · · ,N. Assume that the sensing
agents move in a constant speed that is identical to the
speed of the target. In addition, the following assumptions
hold throughout the paper.

A1. Each sensing agent obtains one measurement at
each time instant k.

A2. Each sensing agent is aware of the positions of all
other agents.

Given the settings, at the kth time instant, the geometry
of the target tracking is illustrated in Figure 1, in which
ri,k represents the position of the ith sensing agent, rT,k
represents the position of the target, and θi,k is the bearing
from the ith agent to the target. The objective of the target

Figure 1. Bearings-only target tracking geometry in two-dimension.

tracking problem is to (1) estimate the state of the moving
target, e.g. position and velocity from the bearings-only
measurements taken by the N sensing agents, and (2)
control the sensing agents to keep track of of the target
while remaining in a desired formation.

At each time instant, the bearing measurement of the
ith sensing agent is

θi,k = arctan
yT,k− yi,k

xT,k− xi,k
+wi,k, (1)

where wi,k ∼ N (0,σ2
w) is assumed to be mutually in-

dependent zero-mean Gaussian noise with variance σ2
w.

Choose the state of the target to be s = [xT ,yT , ẋT , ẏT ].
Let h(sk) be a N×1 observation matrix with the ith row
defined by θi,k, that is,

h(sk) = [arctan
yT,k− y1,k

xT,k− x1,k
, · · · ,arctan

yT,k− yN,k

xT,k− xN,k
]T , (2)

and let yk = col(θ1,k, · · · ,θN,k)∈RN be the measurement
vector consisting of all the measurements collected from
the N collaborating agents at time k. Then, the measure-
ment equation for the N sensing agents is

yk = h(sk)+wk. (3)

The covariance of the noise vector wk is given by R=σ2
wI,

in which I is a N×N dimensional identity matrix. There-
fore, the measurement vector yk is a normally distributed
random vector with mean h(sk) and covariance matrix R,
i.e., yk ∼N (h(sk),R).

The evolution of the target state is described by the
dynamic model of a target. Most tracking algorithms are
model based assuming the knowledge of the target motion
is available. In this paper, we choose a constant-velocity
model to describe the motion of the target, which is

sk+1 = Fksk +vk, (4)

where Fk =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

 is the state transition ma-

trix, T is the sampling rate, vk ∼N (0,Q) is uncorrelated,
zero-mean Gaussian noise processes with covariance ma-
trices Q. The noise terms vk and wk satisfy:

E(vkvT
j ) = Qδk, j,

E(wkwT
j ) = Rδk, j,

E(vkwT
j ) = 0. (5)

The uncertainty in the target state estimates will be
influenced by the uncertainty of the bearing measurements
and the positions of the sensing agents with respect to the
target.

III. EXTENDED KALMAN FILTER

Since the measurement equation (3) is nonlinear, we
apply the extended Kalman filter (EKF) to estimate the
state of the target. Compared to particle filters, extended
Kalman filter requires less computational load, which
produces more efficient estimates.

Define Hk to be the Jacobian of the measurement vector
with respect to the state of the target. We derive Hk =
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∇sh(sk) =
(

∂θ1,k
∂ s · · · ∂θN,k

∂ s

)T
, the ith row of which

is

Hi,k =
(
− yT,k−yi,k

(xT,k−xi,k)
2+(yT,k−yi,k)

2
xT,k−xi,k

(xT,k−xi,k)
2+(yT,k−yi,k)

2 0 0
)
,

(6)
Two steps are consisted in the extended Kalman filter:

prediction and update. Given state equation (4) and mea-
surement equation (3), the equations of the EKF are listed
below:

Prediction step:

ŝ−k = Fk ŝk−1,

P−k = FkPk−1FT
k +Qk−1,

Kk = P−k HT
k|ŝ−k

(Hk|ŝ−k
P−k HT

k|ŝ−k
+Rk)

−1, (7)

where Pk is the error covariance matrix of the extended
Kalman filter, and Kk is the Kalman gain.

Update step:

Pk = (I−KkHk|ŝ−k
)P−k ,

ŝk = ŝ−k +Kk(yk−h(ŝ−k )). (8)

Consider the linearized system

sk+1 = Fksk +vk, (9)
yk = Hksk +wk. (10)

If only one agent is used in tracking the target,
N = 1. Then, the observation matrix becomes Hk =(
− yT,k−y1,k

(xT,k−x1,k)
2+(yT,k−yi,k)

2
xT,k−x1,k

(xT,k−x1,k)
2+(yT,k−yi,k)

2 0 0
)

,
which implies that the system is unobservable. In fact,
for the state of a moving target to be observable to a
sensing agent, the sensing agent must execute a proper
maneuver, e.g. changes the heading or accelerates, as
described in [6], [7]. Since we assume that the speed of
the sensing agents are the same of the target, we always
let N ≥ 2 in this paper.

IV. FORMATION AND MOTION CONTROL
For the control problem, we design formation control

laws that control the N sensing agents to remain in a
desired formation and motion control laws that control
the entire formation to move towards the target. The
desired formation aims to minimize the error variance
in estimating the state of the target. In this section, we
first introduce the optimal formation that the agent group
is required to maintain, then, we discuss the formation
control and motion control design for the group.

A. Optimal Formation

The Fisher information matrix (FIM) describes the
amount of information that the measurement yk carries
about the unobservable state sk. It is calculated in [21]
that the FIM is

I(sk) = ∇sh(sk)
T R−1

∇sh(sk). (11)

Recall the error covariance matrix Pk in the extended
Kalman filter, which can also be written as

P−1
k = (P−k )−1 +HT

k|ŝ−k
R−1Hk|ŝ−k

. (12)

The second term of P−1
k can be recognized as the Fisher

information matrix since

I(ŝ−k ) = ∇sh(ŝ−k )
T R−1

∇sh(ŝ−k ) = HT
k|ŝ−k

R−1Hk|ŝ−k
. (13)

Therefore, equation (12) becomes

P−1
k = (P−k )−1 + I(ŝ−k ). (14)

Hence, reducing the estimating error in the extended
Kalman filter can be translated into increasing the Fisher
information. The Cramer-Rao lower bound (CRLB) states
that the variance of any unbiased estimator is bounded by
the inverse of the Fisher information. As stated in [21]–
[24], an agent configuration over the space of all angle
positions θi, ∀i∈{1, · · · ,N} is optimal if the configuration
maximizes the determinant of Fisher information matrix,
or minimizes the Cramer-Rao lower bound.

Define the distance from the target to the ith sensing
agent as di = ‖rT − ri‖. We derive that

I(s) =
1

σ2
w


∑

N
i=1

1
d2

i
sin2

θi −∑
N
i=1

1
2d2

i
sin2θi 0 0

−∑
N
i=1

1
2d2

i
sin2θi ∑

N
i=1

1
d2

i
cos2 θi 0 0

0 0 0 0
0 0 0 0


=

1
σ2

w

(
I′(s) 0

0 0

)
, (15)

in which 0 is a 2×2 matrix. If we only consider the Fisher
information of the position measurements, that is, I′(s),
then, the optimal formation can be obtained by solving
the following two equations simultaneously [21]–[24]

N

∑
i=1

1
d2

i
sin2θi = 0, and

N

∑
i=1

1
d2

i
cos2θi = 0. (16)

In addition, θi can be found if and only if 1
d2

j
≤∑

N
i=1,i6= j

1
d2

i
for all j ∈ {1, · · · ,N}. It is also proved in [24] that if
there are only indices permutation, agents flipping about
the target, or global rotation, reflection of combined, the
two placements {θi}N

i=1 and {θ ′i }N
i=1 are equivalent.

In [21]–[24], the target that is being localized by
sensors is static, and di are considered as the sensor
ranges, which are fixed. If the sensor ranges are identical,
i.e., di = d j,∀i, j ∈ {1, · · · ,N}, i 6= j, the angles between
adjacent sensing agents can be calculated as θi, j =

2π

N .
Figure 2 (a) illustrates an example of an optimal formation
of three sensing agents with identical distances di from
the target. In this case, θ1,2 = θ2,3 = θ3,1 =

2π

3 .
In this paper, the sensing agents are tracking a moving

target, and may not start from locations close to the target.
Therefore, the agents may not be controlled to be placed
around the target. We solve this problem by flipping
sensor agents about the target so that all the agents are in
the same side with regard to the target. In addition, we
do not assume that each sensing agent has fixed sensing
range. We assume that the sensing agents can take bearing
measurements regardless of the distances from the target,
which indicates that di may change before the distances
between the sensing agents and the target converge. Thus,
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the optimal formation evolves with the change of the
distances di.

Figure 2 (b) illustrates an optimal formation of three
sensing agents by flipping the second agent about the
target in Figure 2 (a). As shown in the figure, the dashed
lines connecting three sensing agents form a triangular
formation. Note that the calculation of the optimal forma-
tion only determines θi, which indicates that the formation
size in terms of the distance between agents depends on
di. Then, we can observe from Figure 2 (b) that, as the
distances from agents to the target decrease, i.e., decrease
di, the formation size in terms of the distances between
agents decreases.

Figure 2. Bearings-only target tracking geometry in two-dimension.

B. Formation Control

For N sensing agents tracking a target, the agents are
controlled to maintain a desired formation, as described
in the previous section, and the entire formation moves
towards the target. Denote the center of the formation
as rc,k = 1

N ∑
N
i=1 ri,k. The formation shape is described

using Jacobi vectors that satisfy [rc,k,q1,k, · · · ,qN−1,k] =
[r1,k,r2,k, · · · ,rN,k]Ψ, in which qi,k are Jacobi vectors and
Ψ is the Jacobi transform. For example, if we deploy three
agents, the Jacobi vectors are

q1,k =

√
2

2
(r2,k− r3,k),

q2,k =

√
6

6
(2r1,k− r2,k− r3,k), (17)

and the Jacobi transform Ψ =


1
3

1
3

1
3

0
√

2
2 −

√
2

2√
6

3 −
√

6
6 −

√
6

6

 .

The Jacobi transform decouples the kinetic energy of
the entire system [25], [26], which enables us to design
separate control laws for the formation center motion and
the formation shape.

We assume Jacobi vectors q j,k obey second order
dynamics q̈ j,k = u j,k, in which u j,k are forces applied to
q j,k. Then, the control laws can be designed as

u j,k =−K1(q j,k−q0
j,k)−K2q̇ j,k, j = 1, · · · ,N−1, (18)

where K1 and K2 are positive constant gains and q0
j,k are

desired vectors that define a formation. q0
j,k can be deter-

mined by the optimal formation calculated according to
the previous section. The control laws have an exponential
rate of convergence. qi,k can be calculated by integrating
the control forces u j,k twice.

After obtaining the position of the formation center
rc,k+1 using motion control laws and Jacobi vectors q j,k
at step k, we can take the inverse Jacobi transform to get
the new positions of the agents ri,k+1, i = 1, · · · ,N by

[r1,k+1,r2,k+1, · · · ,rN,k+1] = [rc,k+1,q1,k+1, · · · ,qN−1,k+1]Ψ
−T .

(19)
In this way, the positions of the agents at each step
are determined, and the formation of the agents are
maintained.

C. Group Motion Planning

Define a simple convex quadratic cost function

Vc,k =
1
2
(rc,k− rT,k)

T M(rc,k− rT,k), (20)

where M is a symmetric matrix. Equation (20) yields

∇Vc,k = M(rc,k− rT,k). (21)

Let the agent group move towards the target along the
gradient of Vc,k.

rc,k+1 = rc,k−
∇Vc,k

|∇Vc,k|
v = rc,k−

rc,k− rT,k

|rc,k− rT,k|
v, (22)

where v is the speed of the agent, which is assumed to be
constant. The agent moves in the direction that reduces
the value of the cost function until it gets sufficient close
to the target.

V. THE SWITCHING STRATEGY

As we discussed in the extended Kalman filter section,
the number of agents in a group should be greater or
equal to two so that the observability of the system can
be ensured. However, if we just use two agents, there are
situations that the noise strength is high so that a group
with two agent may not be able to keep track of the target.
In these cases, a group with more agents are required to
produce state estimates of the target. With the increased
number of the agents in a group, the complexity of
cooperation increases. Therefore, we propose a switching
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strategy in this section that balances the tradeoffs of the
performance and cost between the smaller groups and
larger groups in terms of the number of agents.

Suppose we deploy even number of agents and first
let the agents form groups with two agents. The center
of the ith two-agent group is denoted by ri

c,k, in which
i = 1, · · · , N

2 . We always treat agent-groups as “super-
agents” since we can design separate control laws for the
formation control and formation center motion control.

We assume that each mobile sensing agent has a finite
memory length to store information (positions, velocities,
values of cost function, etc) gathered over time. For an
agent group, the memory length of the group can be
considered as either the weighted average or the sum of
the memory lengths of all the agents in the group. In this
paper, we assume that the memory lengths of each agent
and each agent group are identical.

In the tracking process, the N agents first form N
2

two-agent groups. For each group, a cost function V i
c,k

in Equation (20) is calculated at each time instant. The
two-agent groups keep tracking the target using the s-
tate estimates from the extended Kalman filter and the
formation and motion control laws derived in previous
sections until they are not guaranteed to move towards
the target at a convergence rate that is compatible with
their memory lengths. To examine if a convergence rate
is satisfactory, we introduce sufficient conditions for a
group to converge to a constant distance from the target
position. The sufficient conditions then serve as switching
conditions that decide if the agent group needs to switch
from smaller groups to larger groups. If the sufficient
conditions are satisfied, then a satisfactory convergence
rate will not be guaranteed. The agents will start forming
larger groups.

The switching conditions are based on the Razumikhin
theorem, which was originally developed for verifying the
stability of time-delay systems [18]–[20]. We first restate
the Razumikhin theorem for the asymptotic stability of
time-delay systems [20] without proof.

Theorem 1(Razumikhin) Given a system ẋ(t) = f (t,xt)
where x ∈ Rn and xt ∈ C represents the delayed sys-
tem trajectory, suppose f : R×C → Rn takes bound-
ed subsets of C into bounded subsets of Rn. Suppose
α1,α2,w :R+→R+ are continuous nondecreasing func-
tions, α1(u)> 0, α2(u)> 0 and w(u)> 0 for u > 0, and
α1(0) = α2(0) = 0, α2 strictly increasing. Suppose there
exists a continuous nondecreasing function g(u) > u for
u > 0. If there exists a continuous differentiable function
V :R×Rn→R such that

α1(‖x‖)≤V (t,x)≤α2(‖x‖),∀t ∈R,x ∈Rn, (23)

and the derivative of V along the solution x(t) satisfies

V̇ (t,x(t))≤−w(‖x(t)‖), (24)

whenever V ((t + θ),x(t + θ))≤g(V (t,x(t))) for all θ ∈
[−r,0], then the equilibrium x(t) = 0 of the system is
asymptotically stable.

For discrete systems, condition (24) becomes [18]

V (k+1,x(k+1))−V (k,x(k))≤−w(‖x(k)‖), (25)

whenever V ((k+θ),x(k+θ))≤g(V (k,x(k))) for all θ ∈
[−r,0].

At each time step k, the cost function V i
c,k is calculated

by each agent group. For simplicity, we drop the subscript
i used to index the group in the following arguments.
Suppose that each agent has a memory with finite length r,
in which r ∈ z+. The memory is used to store the previous
values of the cost function Vc,k+s, in which s is a non-
positive integer such that −r≤ s≤ 0. Then, based on the
discrete time Razumikhin theorem, we have the following
proposition.

Proposition 1 Let V̄c,k =maxs∈[−r,0]Vc,k+s where r∈ z+.
Suppose Vmin ≤Vc,k ≤Vmax, in which Vmin ≥ 0 depending
on the initial position of rc,k. If Vc,k+1 −Vc,k ≤ K1Vc,k
whenever V̄c,k ≤K2Vc,k, in which K1,K2 > 0 are constants,
then Vc,k will converge to Vmin as k→∞, which means the
distance between rc,k and rT,k will converge to a constant.

The proof for the proposition is straight-forward from
the proof of the Razumikhin theorem, so we omit it here.
Given the above proposition, we propose the following
tracking algorithm for target tracking.

Algorithm 1 Suppose N sensing agents with memory
length r are tracking a moving target. N is an even
number. The N agents form N

2 two-agent groups at step
k = 0. At step k, do the following:

S1. Each agent takes a bearings-only measurement yi,k
of the target;

S2. Each two-agent group obtains the state estimation
produced by the extended Kalman filter;

S3. Given the state estimation, each two-agent group
calculates the value of the cost function Vc,k (20)
and moves towards the target according to equa-
tion (22); If k = Tterminal , in which Tterminal is the
terminal time, stop.

S4. If k≤ r, go to step S1. Otherwise, continue to step
S5.

S5. If V̄c,k ≤ K2Vc,k, go to step S1. Otherwise, continue
to step S6;

S6. The agent group moves one step further, and obtain
a new cost function value Vc,k+1. Then, the group
checks the value of Vc,k+1−Vc,k. If Vc,k+1−Vc,k ≤
K1Vc,k, then, it remains in the two-agent group. Go
to step S1. Otherwise, continue to step S7;

S7. The group requires to switch to larger groups with
more agents by sending switching signals to other
groups.

Under the above algorithm, if for all k > 0, Vc,k+1−
Vc,k ≤K1Vc,k whenever V̄c,k ≤K2Vc,k, the distance between
the agent group and the target will converge to a constant
according to Proposition 1. According to Proposition 1
and Algorithm 1, the switching conditions from smaller
groups to larger groups can be stated as: (1) V̄c,k ≤K2Vc,k,
and (2) Vc,k+1−Vc,k ≤ K1Vc,k. Once a two-agent group
detects that both switching conditions are satisfied, it
notifies other two-agent groups, then all two-agent groups
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switch to cooperative tracking upon request. All the agents
form a N-agent group with similar formation control laws
and motion control laws developed in previous sections.
This ensures that all agents behave consistently in the
cooperative tracking mode.

One drawback of the proposed algorithm is that when
one two-agent group initiates cooperation, all the two-
agent groups will need to cooperate. As we can tell
from the extended Kalman filter, when the number of
collaborating agents increases, the estimation error of the
state of the target decreases. However, due to the increased
cost associated with collaboration, it may not be efficient
to have all agent groups collaborating with each other.
Therefore, we modify the algorithm to allow the agent
groups to gradually form larger groups.

To state the modified algorithm, let’s first review the
definition of the nearest neighbor to an agent group i. Let
di, j = |ri

c,k− r j
c,k| be the distance between agent group i

and j, i, j ∈ (1, · · · , N
2 ), i 6= j. We call an agent group n

the nearest neighbor to agent i if min j∈(1,N
2 ), j 6=i di, j = di,n.

Then, after step S6 of Algorithm 1, only the nearest
neighbor to the agent group that requires collaboration
joins the group and form a group with N = 4 agents. The
four-agent group checks the switching conditions at each
time step while moving as a “super-agent” to track the
target. Only when the four-agent group fails to track the
target with a satisfactory convergence rate determined by
the switching conditions, it requires more agent groups
to join it and form larger groups. In this way, the agents
gradually form larger groups from smaller groups. This
strategy guarantees the convergence without requiring all
agents to collaborate, which allows more flexibility of
balancing the cost and performance of using different
number of agents in a group.

The difference between the switching strategy intro-
duced in [17] and the one discussed in this paper is that
the switching conditions in this paper are evaluated in
a cost function, which is calculated at every step based
on the state estimates from the extended Kalman filter,
instead of in a scalar field, which is directly measured
by the sensing agents. Therefore, the switching strategy
can be generalized to other applications as long as a cost
function is defined. In addition, note that the switching
strategy is valid when the speed of the target and the
sensing agents are identical. If the speed of the sensing
agents is less than the speed of the target, the sensing
agents will lost the track of the target. If the speed
of the sensing agents is greater than that of the target,
the positions of the sensing agents will converge to the
position of the target.

VI. SIMULATION RESULTS

We simulate a group of agents tracking a target moving
in constant velocities. In the simulations, we choose T =
0.1, σw = 0.4, and σv = 0.2. At each time step, the sensing
agents take bearings-only measurements from the target.
A central controller collects the measurements and runs
an extended Kalman filter that produces state estimates,

which are used in calculating the motion control laws
and formation control laws. We obtain optimal formations
according to Equation (16). In the case of two-agent
groups, the state of the target is unobservable if the
target is located on the line that connects the two sensing
agents. Therefore, we choose another form of optimal
formation that the two lines connecting each agent and
the target are perpendicular. Figures 3 and 4 illustrate
the tracking results of a two-agent group and a four-
agent group, respectively. In the figures, we use different
colored dots to represent the positions of the agents and
plot the agent formations every 50 steps. The red lines
are the trajectories of the moving target, and the black
lines are the trajectories of the center of the groups. As
illustrated in the figures, as the formation moves closer
to the target, the size of the optimal formation reduces.
The green dots illustrate the estimated positions of the
moving target produced by the extended Kalman filter.
The green dots in the two figures indicate that the error
in the estimates is reduced by increasing the number of
agents in a group.

Figure 3. The trajectory of a two-agent group tracking a moving target.

Figure 4. The trajectory of a four-agent group tracking a moving target.

We then implement the switching strategy using four
sensing agents. As illustrated in Figure 5, we first let
the four agents form two two-agent groups and track the
moving target using the techniques introduced previously.
The blue and cyan dots are trajectories of the two two-
agent groups, and the magenta and yellow dots are the
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estimated positions of the target by the two two-agent
groups, respectively. The two-agent groups check the
switching conditions at each time step while moving
towards the target based on the estimated target positions.
Once the switching conditions are satisfied, which indi-
cates that the convergence to the constant distance from
the target is not guaranteed, the two two-agent groups join
together and form a four-agent group. In this simulation,
the switching occurs at step k = 65. The black dots are
the trajectories of the four-agent group, and the green dots
are the estimated positions of the target. Figure 6 shows
the estimated speed by the four-agent group. The red line
is the real speed of the target, which is 0.1. Figure 7
shows the relative distance between the center of the four-
agent group and the moving target, which indicates that
the relative distance converges.

Figure 5. The trajectories of the agent groups and the estimates in the
switching strategy.

Figure 6. The estimated speed of the target after switching to a four-
agent group.

Figure 7. The relative distance between the four-agent group and the
target.

VII. CONCLUSIONS

In this paper, we propose a switching strategy for target
tracking using mobile sensing agents that take bearings-
only measurements. The switching strategy allows the
agents to switch between different group sizes, which bal-
ances the complexity of cooperation and performance of
sensing algorithms and allows more flexibility in tracking
targets than fixed strategies.
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