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Outline

Wavelet Sets based on Dilation/Translation Structure
Fractal Functions and Fractal Surfaces
Foldable Figures and Coxeter Groups

Multiresolution Structures for L?(R"™) on Foldable
Figures

Wavelet Sets based on Dilation/Reflection Structure
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Fractal Interpolation Functions

Fractal Interpolation Functions f introduced by Michael T
Barnsley in 1986

Construction based on Affine Iterated Function Systems

graph f IS the limit (in the Hausdorff metric) of sequence
of compact sets

More general construction based on function spaces via
Read-Bajraktarevic operators (Dubuc, Bedford, M.)

Fractal function is limit (in the metric of the underlying
function space) of a sequence of functions (M. 1995)

Regularity properties of fractal functions studied by M.
In the setting of Besov and Triebel-Lizorkin spaces
(1997, 2005)
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Geometric Construction
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Fractal Functions

fTheorem. Let 2 C R be compactand 1 < N € N. Assume T
u; - ) — Q) are contractive homeomorphisms, \; : R — R
bounded functions and s; real numbers, i =1,..., N. Let

N
T(f) =D Piow +si f ouy ] xuye)

1=1

If max{|s;|} < 1, then the operator .7 is contractive on
L*°(Q2) and its unique fixed point § : 2 — R satisfies

N
§= Diou +siFou ] xu
1=1

L& Is called an (R-valued) fractal function. J
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(Affine) Fractal Surfaces

Systematically defined first by M. (1990); T
Geronimo & Hardin 1993; Hardin & M. (1993)

Defined on (triangular) regions A of E™
Mappings u; : A - A,z — Ajx+b;,i=1,....N

A:UZUZA and uiAﬂujA:@,i#j

A; - R™ — R, continuous (affine) functions, i =1,..., N
—1 < s; <1realnumbers,i=1,...,N
linear isomorphism A := (A, ..., Ax) — Sa
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Fractal Surface Basis |

fA fractal surface basis is obtained by using the T
Isomorphism A — §:

If § Interpolates the set {(z;,y;, zi;)} on A, then

S5 = E 2ij Pij»
1,]

17 (xay) — (x7y)
where @ij(xay) — {() otherwise o
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Fractal Surface Basis I
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Foldable Figures

fDefinition. [Hoffman & Withers 1988] A compact T
connected subset £’ of R™ is called a foldable figure iff
finite set S of hyperplanes that cuts F' into finitely many
congruent subfigures Fi, ..., F,,, each similar to F', so that
reflection in any of the hyperplanes in S bounding Fj, takes
It Into some F.

Theorem. [Hoffman & Withers 1988] A foldable figure
F C E™ is a convex polytope that tessellates E” by

Lreflections In hyperplanes. J
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Coxeter Groups

Let H C E” be a (linear) hyperplane. A linear T
transformation p is called a reflection about H if

p(H) = H and p(z) = —z, ifz € H .

pr(x) =1 — 2@, ) r, for fixed 0 # r € H+.
(7, 7)

Coxeter Group : A discrete group with a finite set of
generators {r; : i =1,...,k} satisfying

C .= <7“1,...,7“k’(7“7;7“j)mij =1, 1<1,7< k>

where m;; = 1, for all 7, and m;; > 2, for all i # ;.
(m;; = oo Is used to indicate that no relation exists.)

Finite Coxeter groups = finite Euclidean reflection

groups J
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Root Systems and Weyl Groups |

fRoot System 7R.: finite set of nonzero vectors rq,...,r; € T
E™ satisfying

® E"=span{ry,..., 1.}
® rarcRIffa==+1
2(s,1)

® VrseRl s— reR <<

(r, )

Vr € R, the root system R Is closed with respect to the
reflection through the hyperplane orthogonal to r.
2(s,7)
(r, )
Weyl Group W of R.: group generated by the set of
reflections {p, : r € R}. |W| < oo.

o |
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Root Systems and Weyl Groups I

r € R IS positive (negative) <= (r,x) > 0 ((r, x) < 0) for T
some r € E".

Every R has a basis B = {b;} consisting of positive
(negative) roots.

Weyl Chamber : C; :={x € E" : (x,b;) > 0}
W acts simply transitive on the Weyl chambers.

C' :=(), C; Is a noncompact fundamental domain for the
Weyl group W. C'is convex and connected.

Every Weyl group = finite Coxeter group has a
fundamental domain that is a simplicial cone.
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Affine Reflection Groups

Reflection about affine hyperplanes: r € R,k € Z, T
H.p={xcE": (z,7) =k}

prie(T) = 2 — 2<x<7:z“>— Sr = pr(z) + ko

Affine Weyl Group : W := (p,;|r € R,k € Z)

® W=
# Theorem. The affine Weyl group W of a root system R

IS the semi-direct product W x I', where I' is the abelian
group generated by the coroots V. Moreover, I' is the

subgroup of translations of W and W the ISotropy group
(stabilizer) of the origin.
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Essential Reflection Groups

-

Let G be a reflection group and O,, the group of linear
Isometries of E™. There exists a homomorphism ¢ : G — O,

é(g)(z) = g(z) — g(0), ge€g, x€E"

# G Is called essential if ¢(G) only fixes 0 € E”.

-

#® The elements of ker ¢ are called translations.
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Connection to Foldable Figures

fTheorem. [Bourbaki,1968] The reflection group T
corresponding to a foldable figure £ is the affine Weyl group
of some root system.

Theorem. [Bourbaki,1968] If F' is a foldable figure then £ is
the fundamental domain for the group generated by
reflections through its bounding hyperplanes.

Theorem. [Bourbaki,1968] Let G be a reflection group with
fundamental domain C. Then C'is compact if G is essential
and without fixed points.

Theorem. There exists a bijection between foldable figures
and reflection groups that are essential and without fixed

Lpoints. J
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Fractal Surfaces on Foldable Figures |

f.p Let /' C E" be a foldable figure with 0 as one of its T
vertices.

#® Let H be the set of hyperplanes associated with F.
# Let X be the tessellation of F' induced by H.

® Let )V be the affine Weyl group generated by H.

Then the following properties hold.

® H consists of the translates of a finite set of linear
hyperplanes.

® ) is simply-transitive on ¥, i.e., V(o,7 € ) dlr W
T = T0.

® Ve N:H CH.
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Fractal Surfaces on Foldable Figures Ii

f.o FIXx1 < e Nandlet A := xF. T

# A s also a foldable figures, whose N subfigures A; € ..
Let Ay .= F.

# Tessellation and set of hyperplanes for A are s> and
xH, resp.

® By simple transitivity of 1V, define similitudes

up = (1/5)(:) and Vj=2,...,N: wuj:=rj10u.

# Choose functions Ay, ..., Ay € C(R" R) satisfying
\i(z) = \j(z), whenever » = u; *(e;;) = u; '(eij), where

€ij = UZ(A) M UJ(A) :

o |
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Fractal Surfaces on Foldable Figures Il

f.o Construct a fractal function g, on A. T

® LetCW = H{C(R”,R) X...x C(R"R) :re )7\//}
Nfargtors
® For A c CW, define §5 by

SA‘T& — SA(T)OT_l, TEW,

where A(r) = (A(r)1,...,A(r)y) IS the r-th coordinate
of A.



MRA on Foldable Figures |

fLet V be a linear space of R-valued functions on R", T
1 < 2 € N, and W an affine Weyl group.

® V Is dilation - invariant with scale » <«~—
(feV = D,f:=f(/»x)eV)

o VisW—invarianH:)(feV:foreV,vreVA\?)

D, - iInvariance of a global fractal function 5 can be
expressed in terms of an associated ¢,, - invariance of

AGOW

o |
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MRA on Foldable Figures Il

Choose a finite-dimensional subspace U of C'(R", R) T
such that U is §,, - invariant.

Define Vj := {gA A c UW} and V,, .= D=V},

If dim U = d, then dim Vj|a = Nd.

Gram-Schmidt Orthogonalization —- 3 orthogonal
basis {¢; : j =1,...,Nd} of 1.

Let ® := (p1,...,90nq)". Then Vi C Vo = 3 sequence
of (Nd x Nd)-matrices {P(r) : r € W}, only a finite
number of which are nonzero, such that

b)) = ZP (P or)(x)
rew J
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MRA on Foldable Figures Il

For m € N, define the wavelet spaces W,,, := V,,_1 — Vm.j
dim Wy|a = dim V_1|ao — dim Vp|a = (3" — 1)(Nd) =: K

Gram-Schmidt Orthogonalization —- 3 orthogonal
basis{yy : £=1,..., K} of Wp|a.

Let ¥ := (¢1,...,0r)". W1 C Vy = 3 sequence of

K x Nd-matrices {Q(r) : r € W}, only a finite number
of which are nonzero, such that

U(x/x) = ZQ (®or)(x)

rew
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