Wavelet Sets, Fractal Surfaces and Coxeter Groups

David Larson
Peter Massopust

Workshop on Harmonic Analysis and Fractal Geometry
Louisiana State University
February 24-26, 2006

Outline

- Wavelet Sets based on Dilation/Translation Structure
- Fractal Functions and Fractal Surfaces
- Foldable Figures and Coxeter Groups
- Multiresolution Structures for $L^{2}\left(\mathbb{R}^{n}\right)$ on Foldable Figures
- Wavelet Sets based on Dilation/Reflection Structure

Fractal Interpolation Functions

- Fractal Interpolation Functions f introduced by Michael Barnsley in 1986
- Construction based on Affine Iterated Function Systems
- graph f is the limit (in the Hausdorff metric) of sequence of compact sets
- More general construction based on function spaces via Read-Bajraktarević operators (Dubuc, Bedford, M.)
- Fractal function is limit (in the metric of the underlying function space) of a sequence of functions (M. 1995)
- Regularity properties of fractal functions studied by M. in the setting of Besov and Triebel-Lizorkin spaces $(1997,2005)$

Geometric Construction

Fractal Functions

Theorem. Let $\Omega \subset \mathbb{R}$ be compact and $1<N \in \mathbb{N}$. Assume $u_{i}: \Omega \rightarrow \Omega$ are contractive homeomorphisms, $\lambda_{i}: \mathbb{R} \rightarrow \mathbb{R}$ bounded functions and s_{i} real numbers, $i=1, \ldots, N$. Let

$$
\mathscr{T}(f):=\sum_{i=1}^{N}\left[\lambda_{i} \circ u_{i}^{-1}+s_{i} f \circ u_{i}^{-1}\right] \chi_{u_{i}(\Omega)}
$$

If $\max \left\{\left|s_{i}\right|\right\}<1$, then the operator \mathscr{T} is contractive on $L^{\infty}(\Omega)$ and its unique fixed point $\mathfrak{F}: \Omega \rightarrow \mathbb{R}$ satisfies

$$
\mathfrak{F}=\sum_{i=1}^{N}\left[\lambda_{i} \circ u_{i}^{-1}+s_{i} \mathfrak{F} \circ u_{i}^{-1}\right] \chi_{u_{i}(\Omega)}
$$

\mathfrak{F} is called an (\mathbb{R}-valued) fractal function.

(Affine) Fractal Surfaces

- Systematically defined first by M. (1990); Geronimo \& Hardin 1993; Hardin \& M. (1993)
- Defined on (triangular) regions Δ of \mathbb{E}^{n}
- Mappings $u_{i}: \Delta \rightarrow \Delta, x \mapsto A_{i} x+b_{i}, i=1, \ldots, N$
- $\Delta=\bigcup_{i} u_{i} \Delta$ and $u_{i}^{\circ} \Delta \cap u_{j}^{\circ} \Delta=\varnothing, i \neq j$
- $\lambda_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$, continuous (affine) functions, $i=1, \ldots, N$
- $-1<s_{i}<1$ real numbers, $i=1, \ldots, N$
- linear isomorphism $\Lambda:=\left(\lambda_{1}, \ldots, \lambda_{N}\right) \rightarrow \mathfrak{F}_{\Lambda}$

Example I

Example II

$$
\begin{aligned}
w_{1}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) & =\left(\begin{array}{ccc}
1 / 2 & 0 & 0 \\
0 & 1 / 2 & 0 \\
-z_{1} & z_{2}-z_{1} & s
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)+\left(\begin{array}{c}
1 / 2 \\
0 \\
z_{1}
\end{array}\right) \\
w_{2}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) & =\left(\begin{array}{ccc}
-1 / 2 & 0 & 0 \\
0 & 1 / 2 & 0 \\
-z_{1} & z_{2}-z_{1} & s
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)+\left(\begin{array}{c}
1 / 2 \\
0 \\
z_{1}
\end{array}\right) \\
w_{3}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) & =\left(\begin{array}{ccc}
1 / 2 & 0 & 0 \\
0 & -1 / 2 & 0 \\
z_{2}-z_{3} & -z_{3} & s
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)+\left(\begin{array}{c}
0 \\
1 / 2 \\
z_{3}
\end{array}\right) \\
w_{4}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) & =\left(\begin{array}{ccc}
1 / 2 & 0 & 0 \\
0 & 1 / 2 & 0 \\
z_{2}-z_{3} & -z_{3} & s
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)+\left(\begin{array}{c}
0 \\
1 / 2 \\
z_{3}
\end{array}\right)
\end{aligned}
$$

Example III

Fractal Surface Basis I

A fractal surface basis is obtained by using the isomorphism $\Lambda \rightarrow \mathfrak{F}_{\Lambda}$:

If \mathfrak{F} interpolates the set $\left\{\left(x_{i}, y_{j}, z_{i j}\right)\right\}$ on Δ, then

$$
\mathfrak{F}=\sum_{i, j} z_{i j} \varphi_{i j},
$$

where $\varphi_{i j}(x, y)= \begin{cases}1, & (x, y)=\left(x_{i}, y_{j}\right) \\ 0, & \text { otherwise }\end{cases}$

Fractal Surface Basis II

Foldable Figures

Definition. [Hoffman \& Withers 1988] A compact connected subset F of \mathbb{R}^{n} is called a foldable figure iff \exists finite set \mathcal{S} of hyperplanes that cuts F into finitely many congruent subfigures F_{1}, \ldots, F_{m}, each similar to F, so that reflection in any of the hyperplanes in \mathcal{S} bounding F_{k} takes it into some F_{ℓ}.

Theorem. [Hoffman \& Withers 1988] A foldable figure $F \subset \mathbb{E}^{n}$ is a convex polytope that tessellates \mathbb{E}^{n} by reflections in hyperplanes.

Coxeter Groups

- Let $H \subset \mathbb{E}^{n}$ be a (linear) hyperplane. A linear transformation ρ is called a reflection about H if $\rho(H)=H$ and $\rho(x)=-x$, if $x \in H^{\perp}$.
- $\rho_{r}(x)=x-\frac{2\langle x, r\rangle}{\langle r, r\rangle} r$, for fixed $0 \neq r \in H^{\perp}$.
- Coxeter Group: A discrete group with a finite set of generators $\left\{r_{i}: i=1, \ldots, k\right\}$ satisfying

$$
\mathcal{C}:=\left\langle r_{1}, \ldots, r_{k} \mid\left(r_{i} r_{j}\right)^{m_{i j}}=1,1 \leq i, j \leq k\right\rangle
$$

where $m_{i i}=1$, for all i, and $m_{i j} \geq 2$, for all $i \neq j$. ($m_{i j}=\infty$ is used to indicate that no relation exists.)

- Finite Coxeter groups \cong finite Euclidean reflection groups

Root Systems and Weyl Groups I

Root System \mathcal{R} : finite set of nonzero vectors $r_{1}, \ldots, r_{k} \in$ \mathbb{E}^{n} satisfying

- $\mathbb{E}^{n}=\operatorname{span}\left\{r_{1}, \ldots, r_{k}\right\}$
- $r, \alpha r \in \mathcal{R}$ iff $\alpha= \pm 1$
- $\forall r, s \in \mathcal{R}: s-\frac{2\langle s, r\rangle}{\langle r, r\rangle} r \in \mathcal{R} \Longleftrightarrow$
$\forall r \in \mathcal{R}$, the root system \mathcal{R} is closed with respect to the reflection through the hyperplane orthogonal to r.
- $\forall r, s \in \mathcal{R}: \frac{2\langle s, r\rangle}{\langle r, r\rangle} \in \mathbb{Z} \Longleftrightarrow \rho_{r}(s)-s \in \mathbb{Z}$

Weyl Group \mathcal{W} of \mathcal{R} : group generated by the set of reflections $\left\{\rho_{r}: r \in \mathcal{R}\right\} .|\mathcal{W}|<\infty$.

Root Systems and Weyl Groups II

- $r \in \mathcal{R}$ is positive (negative) $\Longleftrightarrow\langle r, x\rangle>0(\langle r, x\rangle<0)$ for some $x \in \mathbb{E}^{n}$.
- Every \mathcal{R} has a basis $\mathcal{B}=\left\{b_{i}\right\}$ consisting of positive (negative) roots.
- Weyl Chamber: $C_{i}:=\left\{x \in \mathbb{E}^{n}:\left\langle x, b_{i}\right\rangle>0\right\}$
- \mathcal{W} acts simply transitive on the Weyl chambers.
- $C:=\overline{\bigcap_{i} C_{i}}$ is a noncompact fundamental domain for the Weyl group \mathcal{W}. C is convex and connected.
- Every Weyl group = finite Coxeter group has a fundamental domain that is a simplicial cone.

Affine Reflection Groups

- Reflection about affine hyperplanes: $r \in \mathcal{R}, k \in \mathbb{Z}$, $H_{r, k}:=\left\{x \in \mathbb{E}^{n}:\langle x, r\rangle=k\right\}$

$$
\rho_{r, k}(x)=x-\frac{2\langle x, r\rangle-k}{\langle r, r\rangle} r=\rho_{r}(x)+k r^{\vee}
$$

- Affine Weyl Group: $\widetilde{\mathcal{W}}:=\left\langle\rho_{r, k} \mid r \in \mathcal{R}, k \in \mathbb{Z}\right\rangle$
- $|\widetilde{\mathcal{W}}|=\infty$
- Theorem. The affine Weyl group $\widetilde{\mathcal{W}}$ of a root system \mathcal{R} is the semi-direct product $\mathcal{W} \ltimes \Gamma$, where Γ is the abelian group generated by the coroots r^{\vee}. Moreover, Γ is the subgroup of translations of $\widetilde{\mathcal{W}}$ and \mathcal{W} the isotropy group (stabilizer) of the origin.

Essential Reflection Groups

Let \mathcal{G} be a reflection group and \mathcal{O}_{n} the group of linear isometries of \mathbb{E}^{n}. There exists a homomorphism $\phi: \mathcal{G} \rightarrow \mathcal{O}_{n}$

$$
\phi(g)(x)=g(x)-g(0), \quad g \in \mathcal{G}, x \in \mathbb{E}^{n} .
$$

- \mathcal{G} is called essential if $\phi(\mathcal{G})$ only fixes $0 \in \mathbb{E}^{n}$.
- The elements of $\operatorname{ker} \phi$ are called translations.

Connection to Foldable Figures

Theorem. [Bourbaki, 1968] The reflection group corresponding to a foldable figure F is the affine Weyl group of some root system.

Theorem. [Bourbaki, 1968] If F is a foldable figure then F is the fundamental domain for the group generated by reflections through its bounding hyperplanes.

Theorem. [Bourbaki,1968] Let \mathcal{G} be a reflection group with fundamental domain C. Then C is compact if \mathcal{G} is essential and without fixed points.

Theorem. There exists a bijection between foldable figures and reflection groups that are essential and without fixed points.

Fractal Surfaces on Foldable Figures I

- Let $F \subset \mathbb{E}^{n}$ be a foldable figure with 0 as one of its vertices.
- Let \mathcal{H} be the set of hyperplanes associated with F.
- Let Σ be the tessellation of F induced by \mathcal{H}.
- Let $\widetilde{\mathcal{W}}$ be the affine Weyl group generated by \mathcal{H}.

Then the following properties hold.

- \mathcal{H} consists of the translates of a finite set of linear hyperplanes.
- $\widetilde{\mathcal{W}}$ is simply-transitive on Σ, i.e., $\forall(\sigma, \tau \in \Sigma) \exists!r \in \widetilde{\mathcal{W}}$: $\tau=r \sigma$.
- $\forall \varkappa \in \mathbb{N}: \varkappa \mathcal{H} \subset \mathcal{H}$.

Fractal Surfaces on Foldable Figures II

- Fix $1<\varkappa \in \mathbb{N}$ and let $\Delta:=\varkappa F$.
- Δ is also a foldable figures, whose N subfigures $\Delta_{i} \in \Sigma$. Let $\Delta_{1}:=F$.
- Tessellation and set of hyperplanes for Δ are $\varkappa \Sigma$ and $\varkappa \mathcal{H}$, resp.
- By simple transitivity of $\widetilde{\mathcal{W}}$, define similitudes $u_{i}: \Delta \rightarrow \Delta_{i}$ by:

$$
u_{1}:=(1 / \varkappa)(\cdot) \quad \text { and } \quad \forall j=2, \ldots, N: \quad u_{j}:=r_{j, 1} \circ u_{1} .
$$

- Choose functions $\lambda_{1}, \ldots, \lambda_{N} \in C\left(\mathbb{R}^{n}, \mathbb{R}\right)$ satisfying $\lambda_{i}(x)=\lambda_{j}(x)$, whenever $x=u_{i}^{-1}\left(e_{i j}\right)=u_{j}^{-1}\left(e_{i j}\right)$, where $e_{i j}=u_{i}(\Delta) \cap u_{j}(\Delta)$.

Fractal Surfaces on Foldable Figures III

- Construct a fractal function \mathfrak{F}_{Λ} on Δ.
- Let $C^{\widetilde{\mathcal{W}}}:=\Pi\{\underbrace{C\left(\mathbb{R}^{n}, \mathbb{R}\right) \times \ldots \times C\left(\mathbb{R}^{n}, \mathbb{R}\right)}_{N \text { factors }}: r \in \widetilde{\mathcal{W}}\}$
- For $\Lambda \in C^{\widetilde{\mathcal{W}}}$, define \mathfrak{F}_{Λ} by

$$
\left.\mathfrak{F}_{\boldsymbol{\Lambda}}\right|_{r \Delta}:=\mathfrak{F}_{\boldsymbol{\Lambda}(r)} \circ r^{-1}, \quad r \in \widetilde{\mathcal{W}},
$$

where $\boldsymbol{\Lambda}(r)=\left(\boldsymbol{\Lambda}(r)_{1}, \ldots, \boldsymbol{\Lambda}(r)_{N}\right)$ is the r-th coordinate of Λ.

MRA on Foldable Figures I

Let V be a linear space of \mathbb{R}-valued functions on \mathbb{R}^{n}, $1<\varkappa \in \mathbb{N}$, and $\widetilde{\mathcal{W}}$ an affine Weyl group.

- V is dilation - invariant with scale \varkappa
$\left(f \in V \Longrightarrow D_{\varkappa} f:=f(\cdot / \varkappa) \in V\right)$
- V is $\widetilde{\mathcal{W}}$ - invariant $\Longleftrightarrow(f \in V \Longrightarrow f \circ r \in V, \forall r \in \widetilde{\mathcal{W}})$
D_{\varkappa} - invariance of a global fractal function \mathfrak{F}_{Λ} can be expressed in terms of an associated δ_{\varkappa} - invariance of $\Lambda \in C^{\widetilde{W}}$.

MRA on Foldable Figures II

- Choose a finite-dimensional subspace U of $C\left(\mathbb{R}^{n}, \mathbb{R}\right)$ such that $U^{\widetilde{\mathcal{W}}}$ is δ_{\varkappa} - invariant.
- Define $V_{0}:=\left\{\mathfrak{F}_{\boldsymbol{\Lambda}}: \boldsymbol{\Lambda} \in U^{\widetilde{\mathcal{W}}}\right\}$ and $V_{m}:=D_{\varkappa}^{-m} V_{0}$
- If $\operatorname{dim} U=d$, then $\left.\operatorname{dim} V_{0}\right|_{\Delta}=N d$.
- Gram-Schmidt Orthogonalization $\Longrightarrow \exists$ orthogonal basis $\left\{\varphi_{j}: j=1, \ldots, N d\right\}$ of $\left.V_{0}\right|_{\Delta}$.
- Let $\Phi:=\left(\varphi_{1}, \ldots, \varphi_{N d}\right)^{T}$. Then $V_{1} \subset V_{0} \Longrightarrow \exists$ sequence of $(N d \times N d)$-matrices $\{P(r): r \in \widehat{\mathcal{W}}\}$, only a finite number of which are nonzero, such that

$$
\Phi(x / \varkappa)=\sum_{r \in \widetilde{\mathcal{W}}} P(r)(\Phi \circ r)(x)
$$

MRA on Foldable Figures III

- For $m \in \mathbb{N}$, define the wavelet spaces $W_{m}:=V_{m-1}-V_{m}$.
- $\left.\operatorname{dim} W_{0}\right|_{\Delta}=\left.\operatorname{dim} V_{-1}\right|_{\Delta}-\left.\operatorname{dim} V_{0}\right|_{\Delta}=\left(\varkappa^{n}-1\right)(N d)=: K$
- Gram-Schmidt Orthogonalization $\Longrightarrow \exists$ orthogonal basis $\left\{\psi_{\ell}: \ell=1, \ldots, K\right\}$ of $\left.W_{0}\right|_{\Delta}$.
- Let $\Psi:=\left(\psi_{1}, \ldots, \varphi_{K}\right)^{T}$. $W_{1} \subset V_{0} \Longrightarrow \exists$ sequence of $K \times N d$-matrices $\{Q(r): r \in \widetilde{\mathcal{W}}\}$, only a finite number of which are nonzero, such that

$$
\Psi(x / \varkappa)=\sum_{r \in \widetilde{\mathcal{W}}} Q(r)(\Phi \circ r)(x)
$$

