Wavelet Sets, Fractal Surfaces and Coxeter Groups

David Larson

Peter Massopust

Workshop on Harmonic Analysis and Fractal Geometry

Louisiana State University

February 24 - 26, 2006

Outline

- Wavelet Sets based on Dilation/Translation Structure
- Fractal Functions and Fractal Surfaces
- Foldable Figures and Coxeter Groups
- Multiresolution Structures for $L^2(\mathbb{R}^n)$ on Foldable Figures
- Wavelet Sets based on Dilation/Reflection Structure

Fractal Interpolation Functions

- Fractal Interpolation Functions *f* introduced by Michael Barnsley in 1986
- Construction based on Affine Iterated Function Systems
- graph f is the limit (in the Hausdorff metric) of sequence of compact sets
- More general construction based on function spaces via Read-Bajraktarević operators (Dubuc, Bedford, M.)
- Fractal function is limit (in the metric of the underlying function space) of a sequence of functions (M. 1995)
- Regularity properties of fractal functions studied by M. in the setting of Besov and Triebel-Lizorkin spaces (1997, 2005)

Fractal Functions

Theorem. Let $\Omega \subset \mathbb{R}$ be compact and $1 < N \in \mathbb{N}$. Assume $u_i : \Omega \to \Omega$ are contractive homeomorphisms, $\lambda_i : \mathbb{R} \to \mathbb{R}$ bounded functions and s_i real numbers, i = 1, ..., N. Let

$$\mathscr{T}(f) := \sum_{i=1}^{N} \left[\lambda_i \circ u_i^{-1} + s_i f \circ u_i^{-1} \right] \chi_{u_i(\Omega)}$$

If $\max\{|s_i|\} < 1$, then the operator \mathscr{T} is contractive on $L^{\infty}(\Omega)$ and its unique fixed point $\mathfrak{F} : \Omega \to \mathbb{R}$ satisfies

$$\mathfrak{F} = \sum_{i=1}^{N} \left[\lambda_i \circ u_i^{-1} + s_i \,\mathfrak{F} \circ u_i^{-1} \right] \chi_{u_i(\Omega)}$$

 \mathfrak{F} is called an *(* \mathbb{R} *-valued) fractal function.*

(Affine) Fractal Surfaces

- Systematically defined first by M. (1990);
 Geronimo & Hardin 1993; Hardin & M. (1993)
- Defined on (triangular) regions Δ of \mathbb{E}^n
- Mappings $u_i : \Delta \to \Delta$, $x \mapsto A_i x + b_i$, $i = 1, \dots, N$

•
$$\Delta = \bigcup_i u_i \Delta \text{ and } u_i \stackrel{\circ}{\Delta} \cap u_j \stackrel{\circ}{\Delta} = \emptyset, i \neq j$$

- ▶ $\lambda_i : \mathbb{R}^n \to \mathbb{R}$, continuous (affine) functions, i = 1, ..., N
- \blacksquare $-1 < s_i < 1$ real numbers, $i = 1, \ldots, N$
- Iinear isomorphism $\Lambda := (\lambda_1, \dots, \lambda_N) \to \mathfrak{F}_{\Lambda}$

Example I

$$w_{1}\begin{pmatrix}x\\y\\z\end{pmatrix} = \begin{pmatrix}1/2 & 0 & 0\\0 & 1/2 & 0\\-z_{1} & z_{2} - z_{1} & s\end{pmatrix}\begin{pmatrix}x\\y\\z\end{pmatrix} + \begin{pmatrix}1/2\\0\\z_{1}\end{pmatrix}$$
$$w_{2}\begin{pmatrix}x\\y\\z\end{pmatrix} = \begin{pmatrix}-1/2 & 0 & 0\\0 & 1/2 & 0\\-z_{1} & z_{2} - z_{1} & s\end{pmatrix}\begin{pmatrix}x\\y\\z\end{pmatrix} + \begin{pmatrix}1/2\\0\\z_{1}\end{pmatrix}$$
$$w_{3}\begin{pmatrix}x\\y\\z\end{pmatrix} = \begin{pmatrix}1/2 & 0 & 0\\0 & -1/2 & 0\\z_{2} - z_{3} & -z_{3} & s\end{pmatrix}\begin{pmatrix}x\\y\\z\end{pmatrix} + \begin{pmatrix}0\\1/2\\z_{3}\end{pmatrix}$$
$$w_{4}\begin{pmatrix}x\\y\\z\end{pmatrix} = \begin{pmatrix}1/2 & 0 & 0\\0 & 1/2 & 0\\z_{2} - z_{3} & -z_{3} & s\end{pmatrix}\begin{pmatrix}x\\y\\z\end{pmatrix} + \begin{pmatrix}0\\1/2\\z_{3}\end{pmatrix}$$

Fractal Surface Basis I

A fractal surface basis is obtained by using the isomorphism $\Lambda \to \mathfrak{F}_{\Lambda}$:

If \mathfrak{F} interpolates the set $\{(x_i, y_j, z_{ij})\}$ on Δ , then

$$\mathfrak{F} = \sum_{i,j} z_{ij} \,\varphi_{ij},$$

where
$$\varphi_{ij}(x,y) = \begin{cases} 1, & (x,y) = (x_i, y_j) \\ 0, & \text{otherwise} \end{cases}$$

Fractal Surface Basis II

Foldable Figures

Definition. [Hoffman & Withers 1988] A compact connected subset F of \mathbb{R}^n is called a *foldable figure* iff \exists finite set S of hyperplanes that cuts F into finitely many congruent subfigures F_1, \ldots, F_m , each similar to F, so that reflection in any of the hyperplanes in S bounding F_k takes it into some F_ℓ .

Theorem. [Hoffman & Withers 1988] A foldable figure $F \subset \mathbb{E}^n$ is a convex polytope that tessellates \mathbb{E}^n by reflections in hyperplanes.

Coxeter Groups

▲ Let $H \subset \mathbb{E}^n$ be a (linear) hyperplane. A linear transformation ρ is called a reflection about H if $\rho(H) = H$ and $\rho(x) = -x$, if $x \in H^{\perp}$.

•
$$\rho_r(x) = x - \frac{2\langle x, r \rangle}{\langle r, r \rangle} r$$
, for fixed $0 \neq r \in H^{\perp}$.

• Coxeter Group: A discrete group with a finite set of generators $\{r_i : i = 1, ..., k\}$ satisfying

$$\mathcal{C} := \left\langle r_1, \dots, r_k \,|\, (r_i r_j)^{m_{ij}} = 1, \ 1 \le i, j \le k \right\rangle$$

where $m_{ii} = 1$, for all i, and $m_{ij} \ge 2$, for all $i \ne j$. ($m_{ij} = \infty$ is used to indicate that no relation exists.)

Finite Coxeter groups \cong finite Euclidean reflection groups

Root Systems and Weyl Groups I

Root System \mathcal{R} : finite set of nonzero vectors $r_1, \ldots, r_k \in \mathbb{E}^n$ satisfying

•
$$r, \alpha r \in \mathcal{R} \text{ iff } \alpha = \pm 1$$

•
$$\forall r, s \in \mathcal{R}: s - \frac{2\langle s, r \rangle}{\langle r, r \rangle} r \in \mathcal{R} \iff$$

 $\forall r \in \mathcal{R}$, the root system \mathcal{R} is closed with respect to the reflection through the hyperplane orthogonal to r.

•
$$\forall r, s \in \mathcal{R}: \frac{2\langle s, r \rangle}{\langle r, r \rangle} \in \mathbb{Z} \iff \rho_r(s) - s \in \mathbb{Z}$$

Weyl Group \mathcal{W} of \mathcal{R} : group generated by the set of reflections $\{\rho_r : r \in \mathcal{R}\}$. $|\mathcal{W}| < \infty$.

Root Systems and Weyl Groups II

- $r \in \mathcal{R}$ is positive (negative)
 ⇔ $\langle r, x \rangle > 0$ ($\langle r, x \rangle < 0$) for some $x \in \mathbb{E}^n$.
- Every \mathcal{R} has a basis $\mathcal{B} = \{b_i\}$ consisting of positive (negative) roots.
- Weyl Chamber: $C_i := \{x \in \mathbb{E}^n : \langle x, b_i \rangle > 0\}$
- \checkmark \mathcal{W} acts simply transitive on the Weyl chambers.
- $C := \overline{\bigcap_i C_i}$ is a noncompact fundamental domain for the Weyl group \mathcal{W} . *C* is convex and connected.
- Every Weyl group = finite Coxeter group has a fundamental domain that is a simplicial cone.

Affine Reflection Groups

■ Reflection about affine hyperplanes: $r \in \mathcal{R}, k \in \mathbb{Z}$, $H_{r,k} := \{x \in \mathbb{E}^n : \langle x, r \rangle = k\}$

$$\rho_{r,k}(x) = x - \frac{2\langle x, r \rangle - k}{\langle r, r \rangle} r = \rho_r(x) + k r^{\vee}$$

- Affine Weyl Group: $\widetilde{\mathcal{W}} := \langle \rho_{r,k} | r \in \mathcal{R}, k \in \mathbb{Z} \rangle$
- $|\widetilde{\mathcal{W}}| = \infty$
- **Theorem.** The affine Weyl group \widetilde{W} of a root system \mathcal{R} is the semi-direct product $\mathcal{W} \ltimes \Gamma$, where Γ is the abelian group generated by the coroots r^{\vee} . Moreover, Γ is the subgroup of translations of \widetilde{W} and \mathcal{W} the isotropy group (stabilizer) of the origin.

Essential Reflection Groups

Let \mathcal{G} be a reflection group and \mathcal{O}_n the group of linear isometries of \mathbb{E}^n . There exists a homomorphism $\phi : \mathcal{G} \to \mathcal{O}_n$

$$\phi(g)(x) = g(x) - g(0), \quad g \in \mathcal{G}, \ x \in \mathbb{E}^n.$$

- \mathcal{G} is called essential if $\phi(\mathcal{G})$ only fixes $0 \in \mathbb{E}^n$.
- The elements of $\ker \phi$ are called translations.

Connection to Foldable Figures

Theorem. [Bourbaki, 1968] The reflection group corresponding to a foldable figure F is the affine Weyl group of some root system.

Theorem. [Bourbaki,1968] If F is a foldable figure then F is the fundamental domain for the group generated by reflections through its bounding hyperplanes.

Theorem. [Bourbaki,1968] Let \mathcal{G} be a reflection group with fundamental domain C. Then C is compact if \mathcal{G} is essential and without fixed points.

Theorem. There exists a bijection between foldable figures and reflection groups that are essential and without fixed points.

Fractal Surfaces on Foldable Figures I

- Let $F \subset \mathbb{E}^n$ be a foldable figure with 0 as one of its vertices.
- Let \mathcal{H} be the set of hyperplanes associated with F.
- Let Σ be the tessellation of F induced by \mathcal{H} .
- Let $\widetilde{\mathcal{W}}$ be the affine Weyl group generated by \mathcal{H} .

Then the following properties hold.

- \mathcal{H} consists of the translates of a finite set of linear hyperplanes.
- $\widetilde{\mathcal{W}}$ is simply-transitive on Σ , i.e., $\forall (\sigma, \tau \in \Sigma) \exists ! r \in \widetilde{\mathcal{W}} : \tau = r\sigma$.
- ${ { \hspace{-.1em} \hspace{-.1em} \hspace{-.1em} \hspace{-.1em} \hspace{-.1em} \hspace{-.1em} } \hspace{-.1em} \hspace{-1em} \hspace{-1e$

Fractal Surfaces on Foldable Figures II

• Fix
$$1 < \varkappa \in \mathbb{N}$$
 and let $\Delta := \varkappa F$.

- Δ is also a foldable figures, whose N subfigures $\Delta_i \in \Sigma$. Let $\Delta_1 := F$.
- Tessellation and set of hyperplanes for Δ are $\varkappa \Sigma$ and $\varkappa H$, resp.
- By simple transitivity of $\widetilde{\mathcal{W}}$, define similitudes $u_i : \Delta \to \Delta_i$ by:

$$u_1 := (1/\varkappa)(\cdot)$$
 and $\forall j = 2, ..., N : u_j := r_{j,1} \circ u_1.$

• Choose functions $\lambda_1, \ldots, \lambda_N \in C(\mathbb{R}^n, \mathbb{R})$ satisfying $\lambda_i(x) = \lambda_j(x)$, whenever $x = u_i^{-1}(e_{ij}) = u_j^{-1}(e_{ij})$, where $e_{ij} = u_i(\Delta) \cap u_j(\Delta)$.

Fractal Surfaces on Foldable Figures III

• Construct a fractal function \mathfrak{F}_{Λ} on Δ .

• Let
$$C^{\widetilde{\mathcal{W}}} := \prod \left\{ \underbrace{C(\mathbb{R}^n, \mathbb{R}) \times \ldots \times C(\mathbb{R}^n, \mathbb{R})}_{N \text{ factors}} : r \in \widetilde{\mathcal{W}} \right\}$$

• For $\Lambda \in C^{\widetilde{\mathcal{W}}}$, define \mathfrak{F}_{Λ} by

$$\mathfrak{F}_{\mathbf{\Lambda}}|_{r\Delta}^{\circ} := \mathfrak{F}_{\mathbf{\Lambda}(r)} \circ r^{-1}, \quad r \in \widetilde{\mathcal{W}},$$

where $\Lambda(r) = (\Lambda(r)_1, \dots, \Lambda(r)_N)$ is the *r*-th coordinate of Λ .

MRA on Foldable Figures I

Let *V* be a linear space of \mathbb{R} -valued functions on \mathbb{R}^n , $1 < \varkappa \in \mathbb{N}$, and $\widetilde{\mathcal{W}}$ an affine Weyl group.

- V is dilation invariant with scale $\varkappa \iff$ $(f \in V \Longrightarrow D_{\varkappa} f := f(\cdot/\varkappa) \in V)$
- $I \quad V \text{ is } \widetilde{\mathcal{W}} \text{ invariant} \Longleftrightarrow (f \in V \Longrightarrow f \circ r \in V, \forall r \in \widetilde{\mathcal{W}})$

 D_{\varkappa} - invariance of a global fractal function \mathfrak{F}_{Λ} can be expressed in terms of an associated δ_{\varkappa} - invariance of $\Lambda \in C^{\widetilde{\mathcal{W}}}$.

MRA on Foldable Figures II

• Choose a finite-dimensional subspace U of $C(\mathbb{R}^n, \mathbb{R})$ such that $U^{\widetilde{W}}$ is δ_{\varkappa} - invariant.

• Define
$$V_0 := \left\{ \mathfrak{F}_{\Lambda} : \Lambda \in U^{\widetilde{\mathcal{W}}} \right\}$$
 and $V_m := D_{\varkappa}^{-m} V_0$

• If dim
$$U = d$$
, then dim $V_0|_{\Delta} = Nd$.

- Gram-Schmidt Orthogonalization $\implies \exists$ orthogonal basis $\{\varphi_j : j = 1, ..., Nd\}$ of $V_0|_{\Delta}$.
- Let $\Phi := (\varphi_1, \dots, \varphi_{Nd})^T$. Then $V_1 \subset V_0 \Longrightarrow \exists$ sequence of $(Nd \times Nd)$ -matrices $\{P(r) : r \in \widetilde{\mathcal{W}}\}$, only a finite number of which are nonzero, such that

$$\Phi(x/\varkappa) = \sum_{r \in \widetilde{\mathcal{W}}} P(r) \left(\Phi \circ r \right)(x)$$

MRA on Foldable Figures III

- For $m \in \mathbb{N}$, define the wavelet spaces $W_m := V_{m-1} V_m$.
- Gram-Schmidt Orthogonalization $\implies \exists$ orthogonal basis $\{\psi_{\ell} : \ell = 1, \dots, K\}$ of $W_0|_{\Delta}$.
- Let $\Psi := (\psi_1, \dots, \varphi_K)^T$. $W_1 \subset V_0 \Longrightarrow \exists$ sequence of $K \times Nd$ -matrices $\{Q(r) : r \in \widetilde{\mathcal{W}}\}$, only a finite number of which are nonzero, such that

$$\Psi(x/\varkappa) = \sum_{r \in \widetilde{\mathcal{W}}} Q(r) \left(\Phi \circ r \right)(x)$$