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If Misan arbitrary loopless matroid with ground set B(M) and rank function p, then
let a(M) be the minimum size of a set of cocircuits of M, whose union is E(8), and let
A(M) be the maximum size of & set of pairwise disjoint cocircuits of - The following
conjecture is based on Gallai’s theorem that the vertex-stability and vertex-covering
numbers of a graph @ sum to the number of vertices of @ (1),

CONJECTURE 1. (Welsh (see (4)).) If M has k(M) components, then
“%(M) +B(M) < p(M) + k().
In this paper we prove this conjecture when J/ ig binary.,

The matroid terminology used here will in general follow Welsh (5). However, if
T = {a,2,,..., ,,} we shall denote the restriction of J/ to S\T by M\T or

M\wy, 2y, .02,

and the contraction of 47 to S\T by M/T or M [z, 2, ..., 2,. The symmetric difference
of sets 4 and B will be denoted by AAB, and @ (M) and €*(M) will denote respectively
the set of circuits of A7 and the set of cocircuits of M. A flat of A/ of rank one will be
called a point of M7
The next three results, which are well known (see, for example, ((5), theorems
5.1.1,2.1.6 and 10.1.8)), will be used frequently in the proof of the main theorem.

Lemma 1. Let C* be a cocireuit of a matroid M and let 2 and y be distinct elements of C*.
Then there exists a circust ¢ of 8 such that C 0 C* = {z, y}.

LeMMa 2. For a matroid 31 » 4 Cis a circuit and O 4 g cocireust, then

(@) |Cn O*| + 1.
Moreover, of M is binary, then ;
(b) |CnC* is even.
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Lmma 3. If € and Cyare circuits of a binary matroid M, then Cy & C, is a digjoint union

of circuils.

If A is a matroid having no coloops, then let a*(4f) = o M*) and f*(M) = p(M*).
We now prove that the dual of Conjecture 1, and hence Conjecture 1, holds for binary
matroids.

TurorEM 1. Let M be @ binary matroid having no colobps. Then
(1) oH (M) + fFM) < | B —p(M) -+ k().

Proof. We argue by induction on |B(M)). Clearly (1) holds for |E(M)| = 1. Assume
it holds for |E(M)| < n and suppose that |E(M)| = n. We may also assume that M is
connected, for otherwise the result follows easily by the induction assumption.

Assume that M has a set of p pairwise parallel elements (p = 2). If p = n, then
M= U, and (1) fs casily verified.

LemMa 4. If {2, ..., %) 18 @ S€b of pairwise parallel elements of Mand 3 <p <n,
then (1) holds by the induction assumption.

Proof. Clearly k(M \xy, x5) = k(M),
p(M\x,, ;) = p(M) and |B(M \x,, 2,)| = |E(M)]| — 2.

Moreover, since M is connected, o* (M \zy, 25) +1 2 a*(M). The lemma will be proved if

we can show that "
(2) B ey, @) > fH) =1,

To verify this, suppose that (Cl,Cy, ..., Cpo} 18 & maximal set of pairwise disjoint

(:61 Ci) N {2y, 2o}
:mmediate. The only other possibility is that x,€C; and 2,€C; for 4 and j distinect
members of {1,2,...,8%}. But {z,, 2.} € € (M) and hence (Cj\wg) U a, e € (D). It follows
that there is a circuit of 3, and hence of M \x;, %, contained in (C; U ((C;\2y) U a1))\2;.
Therefore (2) holds and so Lemma 4 is proved.|

By the above we may assume that

circuits of M. If either

< 1 or{ay, %} = C; for some ¢, then (2) is

(3) No point of M contains more than two elements of E(A1).

We now distinguish three cases.

(I) M has a cocircuit of size two.

(IT) Every cocircuit of M contains at least three elements but M has a cocircuit
containing only two points.

(II1) Every cocireuit of M contains at least threc points.

Case I. If {c, d} is a cocircuit of M, then k(M [c) = k(M) and p*(M[c) = p*(M).
Moreover, by Lemma 2(a), a*(M [c) = a*(M) and B*(M Jc) = *(M). The result
follows by applying the induction assumption to M fc.
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Clase 11. Let CF be a cocircuit of M containing at. least three elements but only two
points. Then by (3), cither

(i) C¥ = {u,v, w}', where {u,v} and {w} are points of M; or

(ii) CF = {u,v,w,x}, where {u, v} and {w, a} are poin{ts of M.

Case 11 (i). By Lemma 2(a), since A is connected, M /w is connected. Moreover,
g (M Jw) = p*(M) and f*(M|w) > f*¥(M). We shall show that a*(M/w) > a*(M)
from which (1) will follow by induction. Suppose that {Cy,C,,...,C,} is a minimal
eollection of circuits of M fw whose union is E(M [w). If for some¢in{1,2,...,4}, C;uw
is a circuit of M, then (1) holds. Therefore suppose that for all 1 <7 < ¢, C;is a circuit
of M. The next lemma completes the proof for case 11 (i).

LemMA 5. Let {c,d, e} be a cocircuit of a binary connected matroid N, where {d, e} and {c}
arepoints of N. If {Cy, Cy, ..., C} is a minimal collection of circuits of N [c covering E(N /c)
and {C,C,, ...,C} € €(N), then there is a set of t circuits of N covering E(N) such that ¢ is
1n exactly two of these circuils.

Proof. It is straightforward to show that N has a cocircuit D* such that D* contains
d but not ¢. Then by Lemma 2(a), D* n {c,d, e} = {d, e}. Hence D*e€*(N /c).

Since {C},C,, ...,Ci} = €(N), we have by Lemma 2(a) that {d,e}e{C,,C,, ...,Cy},
say {d,e} = C;. Thus C; n {d, e} = @ for 2 < 7 < &. Since D* properly contains {d, e}, for
some j in {2,3,...,t}, say j = 2, C;n D* &= . Now, since N is connected, there is a
circuit of N containing ¢ and intersecting C,. Among such circuits choose one, say F,,
such that |F\C,| is minimal. Since F} n {¢,d, e} + &, we have by Lemma 2 (a) that F,
contains exactly one of-d and e, say d. Consider F; AC,. This contains a circuit £, con-
taining d and ¢. By the choice of F} it follows that F,\C, = F|\C,. But I,\C, = F, n F,.
Therefore by Lemma 3, C,\F, = F,\F| and s0 F, = F1A§2- But now

{(‘Fl\d) U e»IﬂZ, 03! -..,Ct}'

is a set of circuits of IV covering E(N) and ¢ is in both (F,\d) U e and 13, 1

Case 11 (ii). M /w has two components: a loop, {z}, and M /w\z. Thus

k(M) = k(M /w)— 1.

‘Moreover, f¥(M /w) = f¥(M). We show that
(4) a* (M) < a*(M [w)— 1,
from which (1) follows using the induction assumption. 4

Let {C),C,, ..., C;} be a minimal collection of circuits of A7 /w covering E(M /w). Then
{x}{C,,C,, ...,C}, say {a} = C;. If for distinet elements ¢ and j of {1,2,...,t—1},
C; U wand C; y ware circuits of M, then C; U w and C; U z are circuits of 47 and (4) holds.

Next suppose that there is exactly one element ¢ of {1,2,...,¢t— 1} suchthat C;Uwis a
circuit of M. Then, as

t—1
CC¢ U Oi:
i=1

Lemma 2 (a) implies that {u, v}€{C},C,, ..., C,_}, say {u, v} = C;. Now |(C; Uw) n Cf| is
non-zero and hence exceeds one, and z ¢ (C; Uw) n Cf. Therefore C; contains one of »
and », say «. But then (C;\u) U v is a circuit of M /w and so, by Lemma 2 (a),

(C\u)UvUw
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o a cirenit of M. Thus (C\w)uo U@ is o cireuit of M and
, {(C\wyu oy @, Cyy s Cimpy G U W5 Cra1s RN Y

is a collection of L — 1 cireuits of M whose union is B(M). Honcee (4) holds.
To complete Case T1(ii), suppose that for all 210 (1,2, 1}, Oy is & circnit of M
and hence of M\z. In this case, we have, on taking N = M\» in Lemma 5, that thereis o
covering o of B (M \z) With ¢ — 1 circuits of M\» guch that w is In exactly two of these
cirouits, say K, and K, Now €(M\x) & (M) and (K \w) U e ®@(M). Thus replacing
K, by (K \w)U® in A gives & covering of E(M) with t — { circuits of M that is (4)
holds.

Case 111.1f every cocircuit of M contains ab least three points and M is the gimple

matroid associated with M, thenevery cocireuit of T contains at least three elements.
Moreover, M is connected.

The next lemma is an analogue for binary matroids of & graph-theoretic result of
Kaugars (see (2), P- 31).

LemMa 6. (P.D.Seymour, private communication.) Let N be a simple connected
binary matroid having no cocircuits of size less than three. Then N has a connected hyper-
plane.

Proof. Supposé that-every circuib of N has size p(N)+ 1. Then, since N has 1o co-
circuits of size tWO0, N has at least two circuits. Let ¥ and z be distinet elements of &
circuit C; of N and suppose that ©€ E(N)\C,. Then (C\y) U and (C,\z) Uz ar¢ circuits
of N and hence by Lemma 3, (G \y) U ©) A((CL\R) U T) = {y,2} 18 & disjoint union of
circuits of N, contradicting the simplicity of N.

We may therefore assume that N has a circuit of size less than p(N)+1 and hence
that E(N) has a non-empty subset A which 18 maximal with respect to being both
connected and non-spannihg. Clearly 4 is a flat of N.

As Nis connected there is & circuit interséﬁing both 4 and its compiement. Choose
cuch a cireuit Cy 80 that |C; 0 (B(N)\4)| =™ is minimal. We show that m = 2 from
which it follows that 4 18 & hyperplane and hence thab A is the required connected
hyperplane of V. :

1fC, =2 B(N )\4 and ¢ and d are distinct clements of E(V Y\4, then, by the choice of
C,, every circuit of NV containing one of ¢ and d also contains the other. Thus, by ((6),
theorem 2.1.6), {c,d} is & cocircuit of N, & contradiction. Therefore E(MN\(4 U C,) is
non-empty so let Z be an element of this set. As Gy U 4 is connected, we have, by the
choice of 4, that C,uAis spanning. Thus C; U 4 contains a base Bof N. Let G, be the
fundamental circuit of with respect to B. Then either G 0 4 = z ornot. In the first
case, by Lemma 3, C, 0 G, contains a cireuit C, containing . Then, as C\x & Ci,
we have, by Lemma 2(a) that C,n 4 =+ 3. Hence |{CyN C.n (E(N)\A)\ >m—1
and so |Gy < 2,2 contradiction. Thus weé may assume that ConA =+ - Then, since
|G (B (N)\A)| Z ™ by Lemma 3, (), contains exactly m—1 elements of Gy N (B(N)\A)-
But C,4C, contains a circuit C, containing & which, since B 18 simple, intersects 4
Thus m = 2 a8 required.l - ’
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By this lemma we have, in case 111, that M has a connected hyperplane. Therefore
M has & connected hyperplane, I say. Leb E(MM\I = C* and let {C, Gy, ..., Cp} bo &
maximal set of pairwise disjoint circuits of M. ’

If there is an element @ of

f*
(@),
i=1

then since M\C* is connected and C* contains at least three points of M we have, by
Lemma 1, that M\x is connected. The result now follows by applying the induction
agsumption to M \x.

ﬂt
Now suppose that U C; 2 C* Then since, by Lemma 2(b),|C; n C*| is even for all ¢,
i=1

|0*| is even and so |C*| > 4. We choose two elements x and y from C* as follows. If,
for some 7 in {1,2,...,4*}, |Ci] = 2 = |C;n C*|, then let C; = {x, y}. Otherwise choose
0, such that C;n C* + @ and let » and y be any two elements of this intersection. In
either case, it follows by Lemma 1 that M \z,y is connected. To see this, recall that C'*
contains at least three points of M, |C*| > 4, each element of M is parallel to at most
one other element and M \C* is connected. The result follows by applying the induction
assumption to M\z, y.

This completes the proof of case IIT and thereby finishes the proof of Theorem 1.1

The above proof makes frequent use of the fact that M is binary and the method
does not seem to generalize to arbitrary non-binary matroids. In particular, Lemma 6
fails for M ~ U, ;. However the method may be adapted to prove Conjecture 1 for
bicircular matroids, such matroids having been studied in detail by Matthews (3).

The suthor thanks Dr D. J. A. Welsh for prompting his interest in Conjecture 1 and
CSIRO (Australia) for their generous financial support. Theorem 1 was proved origin-
ally by the author for graphic matroids using, in place of Lemma 6, a result of
Kaugars ((2), p. 31). The author is greatly indebted to Dr P. D. Seymour for suggesting
that his proof could be generalized to binary matroids and for communicating the
required analogue of Kaugars’ theorem.
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