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1. Introduction

THE concept of n-connection for matroids was introduced by W. T. Tutte
[12] based upon the corresponding idea for graphs. The main result of
Tutte’s paper extends an earlier result of his [11] from 3-connected
graphs to 3-connected matroids. Similarly, Murty [7] and Inukai and
Weinberg [6] have given matroid generalizations of several results for
n-connected graphs. This paper concentrates primarily on minimally
3-connected matroids. In Section 2 a result of Seymour [9] for minimally
2-connected matroids is extended when it is shown that in a minimally
3-connected matroid every circuit meets at least two distinct cocircuits of
size 3. Sections 3, 4 and 5 generalize and extend work of Murty [7] and
Halin [4, 5]. The greatest and least numbers of elements in a rank r
minimally 3-connected matroid are determined and the matroids attain-
ing these bounds are characterized. _

The terminology used here for matroids and graphs will in general
follow Welsh [13]. If S is a set, then S=X, U X, U- - - U X,, indicates that
S is the disjoint union of X;, X, ..., X,,. The ground set and rank of the
matroid M will be denoted by E(M) and rk M respectively. If T < E(M),
its rank will be denoted by rk T. We shall sometimes denote the restric-
tion of M to EIM)—T by M\T, or, if T={x;,x;,...,%,}, by
M\x,, x,,...,x,. Likewise, the contraction of M to E(M)—T will
sometimes be written M/T or M/x,, x,, ..., x,,. Flats of M of ranks 1, 2
and 3 are called points, lines and planes respectively.

Familiarity will be assumed with the idea of n-connection for graphs
(see, for example, [1, p. 42]). We now recall the definition of n-
connection for matroids. If k is a positive integer; the matroid M is
k-separated if there is a subset T of E(M) such that |T|=k, |[E(M)—T|=
k and

rk T+rk (E(IM)—T)-rk M=k—-1.

If there is a least positive ihteger j such that M is j-separated, it is called
the connectivity A(M) of M. If there is no such integer we say that

A(M) =, :
The matroid M is said to be n-connected for any positive integer n
such that n<A(M). It is routine to show [12, (12)] that

(1.1) if M is n-connected, then M* is n-connected.
Quart. J. Math. Oxford (2), 32 (1981), 193-208
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The familiar notion of connectivity for matroids is related to n-
connection as follows.

(1.2) A matroid is connected if and only if it is 2-connected.

Let H be a matroid or a graph. Then we say that H is minimally
n-connected if it is n-connected and, for every element x of E(H), H\ x
1s not n-connected. An element e of a 3-connected matroid M is essential
if neither M\ e nor M/e is 3-connected. '

The notions of n-connection of a graph G and n-connection of the
corresponding cycle matroid M(G) do not, in general, coincide. However,
[13, pp. 78-79]

(1.3) if G has no loops and at least three vertices, then G is 2-connected
if and only if M(G) is 2-connected;

and

(1.4) if G is simple and has at least four vertices, then G is 3-connected
if and only if M(G) is 3-connected.

Frequent use will be made of the following well-known result (see, for
example, [13, Theorem 2.1.6]).

(1.5) Lemma A circuit and a cocircuit of a matroid cannot have exactly
one common element.

A circuit of size 3 of a matroid is called a triangle, and a cocircuit of
size 3 a triad. It is easy to check that:

(1.6) Lemma If M is an n-connected matroid and |[E(M)|=2n~1, then
E(M) has no n-element subset which is both a circuit and a cocircuit. In
particular, a 3-connected matroid with at least 5 elements has no triangle
" which is also a triad.

2. Minimally 3-connected matroids

Dirac [2, Theorem 5] and Plummer [8, Corollary 2a] showed that every
minimally 2-connected graph has a vertex of degree 2. The matroid
analogue of this result was proved by Murty [7, Lemma 3.1] who showed
that a minimally 2-connected matroid of rank at least two has a cocircuit
of size two. This result was strengthened by Seymour [9, Lemma 2.2; 10,
(2.3)). Halin [3] extended the graph result by showing that for n=1,
every minimally n-connected graph has a vertex of degree n. Recently,
Wong [14, Theorem 3.4] has proved the analogue of Halin’s result for
minimally 3-connected matroids. In this section we give a strengthening
of Wong’s result that resembles Seymour’s improvement of Murty’s
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result. For n>3 it remains open to determine whether a minimally
-n-connected matroid has a cocircuit of size n. To deal with the n =3 case
we shall use a number of results from [12] which we state without proof.

(2.1) Lemma [12, 7.1]. If M is a 3-connected matroid and e is an
essential element of M, then e is in a triangle or a triad.

The next result follows easily by combining (1.1) and the generalization
.of [12, 6.7] to n-connected matroids.

(2.2) Lemma If M is an n-connected matroid and |E(M)|22(n—1),
then every circuit and every cocircuit of M contains at least n elements.

(2.3) Lemma [12, 7.2]. Suppose M is a 3-connected matroid and |E(M)|=
4. Let {a, b,c} be a triangle of M such that neither M\ a nor M\b is
3-connected. Then M has a triad containing a and just one of b and c.

(2.4) ProrositioN If e is an essential element of a minimally 3-
connected matroid M, then e is contained in a triad.

- Proof. By Lemma 2.1, e is contained in either a triangle or a triad. If e

is contained in a triangle {e, f, h}, then, as M is minimally 3-connected,
neither M\ e nor M\ f is 3-connected. Since M has an essential element,
|E(M)|=5 [12, 6.8], and so by Lemma 2.3, M has a triad containing e.

Halin [5, Satz 5] has proved that every circuit in a minimally 3-
connected graph meets at least two vertices of degree 3. The next
theorem is a matroid analogue of this. The proof extends Seymour’s proof
[10, (2.3)] of a similar result for 2-connected matroids.

(2.5) Tueorem If C is a circuit of a minimally 3-connected matroid M
and |E(M)|=4, then M has at least two distinct triads intersecting C.

To prove this theorem we require the following additional result which
generalizes a result of Murty [7, p. 54] for 2-connected matroids.

(2.6) Lemma Suppose that x and y are distinct elements of an n-
connected matroid M where n=2 and |E(M)|=2(n—1). Assume that
M\ x/y is n-connected but that M\ x is not n-connected. Then M has a
cocircuit of size n containing x and y.

Proof. 1t is straightforward to show that M\ x is (n — 1)-separated. That
is, E(IM\x)=XUY where |X|,|Y|=n—~1. and

2.7) rk X+1k Y—-rk (M\x)=n-2.
Suppose, without loss of generality, that y € X. Then, denoting by rk’ the

rank function of M\x/y, we have, by Lemma 2.2, that rk' (M\x/y)=
rk (M\ x)—1. Hence ‘

k' (X —y)+1k’ (Y) -1k’ (M\ x/y)=1k X+1k (YUy)—rk (M\x)—1.
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Therefore, by (2.7), as M\ x/y is n-connected, |[X—y|<n—1. But |X|=
n—1, hence|X|=n—-1. Thus, as M is n-connected, it follows from
Lemma 2.2 that X is independent and so

k X = |X|=

It follows from (2.7) and Lemma 2.2 that tk M=rk (M\x)=rk Y+1.
Thus Y is contained in a hyperplane of M. But E(M)—Y=XUx and
|X U x| = n. Therefore, since M has no cocircuits of size less than n, we
conclude the XU x is a cocircuit of M containing both x and y.

Proof of Theorem 2.5. The argument is by induction on |C|. As
|E(M)|=4, we have, by Lemma 2.2, that |C|=3. Suppose |C|=3 and let
C={a, b, c}. Then neither M\a nor M\b is 3-connected. Thus, by
Lemma 2.3, M has a triad T, containing a and just one of b and c, say b.
Similarly, as neither M\ ¢ nor M\ b is 3-connected, there is a triad T,
containing ¢ and just one of a and b Clearly T, and T, are distinct and
so the result is established for |C|=

Assume the proposition holds for all circuits having fewer than m
elements and let |C|=m=4. Then, as M is 3-connected, E(M) # C and
so |[E(M)|=5.

If C does not contain a non-essential element, then by Proposition 2.4,
every element of C is in a triad. Since |C|=4, the required result follows.
We may therefore suppose that C contains an element z, such that M/z,
is 3-connected. Now, if M/z, is minimally 3-connected, then, as C\ z; isa
circuit of Mj/z,, the required result follows by induction. Thus we may
assume that there is an element x of M/z, such that M/z,\x is 3-
connected. Then, as M\ x is not 3-connected, it follows by Lemma 2.6
that M has a triad C¥ containing z, and x.

Since |C|=4, C—CY is non-empty and so contains an element z,. Now
either (I) M/z, is 3-connected; of (II) M/z, is not 3-connected. In case I,
arguing as above; we get that either M/z, is minimally 3-connected, in
which case the required result follows by induction; or z, is contained in a
triad C¥ of M. Since CT# C¥, the proposition holds in case I

In case 11, z, is an essential element of M and so, by Proposition 2. 4 Z,
is contained in a triad of M, and the required result holds.

(2.8) CoroLLaRrY If M is a minimally 3-connected matroid having at.
least 4 elements, then M has a cobase of elements each of which is in a
triad.

The next result is a matroid analogue of another graph-theoretic result
of Halin [5, Satz 4].
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(2.9) TueOoREM Let M be a minimally 3-connected matroid having at
least four elements. Then for all elements e of M such that e is not in a triad,
M]e is minimally 3-connected.

Proof. If e e E(M) and e is not in a triad, then by Proposition 2.4, e is
not essential. As M is minimally 3-connected, M\ e is not 3-connected
‘and so M/e is 3-connected. If M/e is not minimally 3-connected, then
there is an element x of E(M/e) such that M/e\ x is 3-connected. Now
M\ x is not 3-connected and so, by Lemma 2.6, M has a triad containing e
and x. This contradiction implies that M/e is minimally 3-connected, as
required.

(2.10) CoroLLARY Let M be a minimally 3-connected matroid having at
least four elements and let U be the set of elements of M which are not
contained in a triad. Then, if V< U, M/V is minimally 3-connected.

3. Minimally n-connected matroids with the least number of elements
Murty’s main result in [7, Corollary 3.3, Theorem 3.4] is the foHowing.

(3.1) Tueorem If r=3, a minimally 2-connected matroid M of rank r
has at most 2r—2 elements, the upper bound being attained if and only if
MEM(KLr—-I)'

In the next section we obtain the corresponding result for minimally
3-connected matroids. In this section we solve the easier problem of
determining the least number of elements in a minimally n-connected
matroid of rank r, again characterizing when the bound is attained.

(3.2) THeOREM Let M be a minimally n-connected matroid of rank r where
r,n=2 If n<r, then |E(M)|=r+n—1 with equality being attained if and
only if M=U,,,,_,. If n>r, then |E(M)|=2r—1 with equality being
attained if and only if M=U,,, ;.

The proof of this theorem uses the following two lemmas.

(3.3) Lemma [6, p. 312]. The connectivity of the uniform matroid U, is
as follows:

r+1, if k=2r+2,
AU, ) =3, if 2r—1<k<2r+1,
k—r+1, if r=1 and k<s2r-2.

(3.4) Lemma Let M be an n-connected matroid of rank r. If M is not
uniform, then |[E(M)|=r+n.
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Proof. As M is not uniform, there is a circuit C and a cocircuit C*
having empty intersection. Let k = min {|C|, |C*|} and |D|= k where D =
C or C*. Then |[E(M)—D|=k and tk D+1k (E(M)-D)-tk M<k—1.
Hence k=n and so |C|, |C¥|=n. Now 1k (E(M)-~C*)=r~1, and
E(M)~— C* contains C and is therefore dependent. Thus |[E(M)— C*|=r
and so |[E(M)|=n+r. '

Proof of Theorem 3.2. As any restriction of a uniform matroid is
uniform, it is straightforward to deduce the required result by combining
Lemmas 3.3 and 3.4.

4. The greatest number of elements in a minimally 3-connected matroid

To determine the greatest number of elements in a minimally 3-
connected matroid of rank r we shall require several preliminary results
including the next theorem, the main result of [12, 8.3].

Suppose that r=3. The wheel W, of order r is a graph having r+1
vertices, r of which lie on a cycle (the rim); the remaining vertex (the
hub) is joined by a single edge (a spoke) to each of the other vertices. The
whirl W™ of order r is a matroid on E(%,) having as its circuits all cycles of
W, other than the rim, as well as all sets of edges formed by adding a
single spoke to the edges of the rim. The terms “rim” and “spokes” will
be applied in the obvious way in both M(%',) and W". Each of M(%’,) and
W’ has rank r and is isomorphic to its dual [12, 4.7].

(4.1) THEOREM A 3-connected matroid has all of its elements essential if
and only if it is a whirl or the cycle matroid of a wheel.

(4.2) LemMA Let M be an n-connected matroid having at least 2(n—1)
elements and suppose Xy, Xy,...,x,€E(M) where m<n. If
M\ x,, x5, ..., X, is n-connected, then so is M\ x;, x,, ..., X, for k<m.

Proof. We shall prove this result by induction on m—k, it being
trivially true for m —k =0. Assumé it true for m—k<tandlet m—k =1t
Then M\ xy, x5, ..., Xn_,+q 18 n-connected. If M\ x,, x,, ..., X,,_, is not
n-connected, then for some j<n—1, M\x,, x,,..., X,,_, IS j-separated.
That is, E(M\xy, X5, . - ., X)) =X U Y where |X|,|Y|=j and

(4.3) tk X+1k Y—~1tk (M\ x;, %3, ..., Xp_)=]— 1.

Now, by Lemma 2.2, M has no cocircuit of size less than n, hence
rk (M\ Xy, Xoy v ooy X)) =TK M =1k (M\ x4, X5, ..., X,,_;+1), and so, from
(4.3), we get

(4.4) tk X+1k Y-tk (M\xy, %5, .. ., Xpuper)=j— 1.
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Suppose, without loss of generality, that x,_,.,eX. If |X|>j, then
| X =% pe| =] and, by 4.4), tk(X—x,,,_)+rk Y-
rk (M\xy, X2, ..., Xps1)<j—1, contrary to the fact that
M\ xy, X3, ..., Xp_rr1 IS n-connected. We may therefore assume that
|X| = j. Now, since j<n—1, M has no circuits of size less than j+1, hence
1k (X—x,,_,+1) =1k X —1. Therefore, from (4.4), we have,

l'k (X_xm—t+1)+rk Y—I'k (M\xls X250y xm—t+1)=j—2'

This contradiction to the fact that M\ x;, x,,..., X,,_,., is n-connected
completes the proof of the lemma. '

The next result contains the core of the argument which determines the
greatest number of elements in a minimally 3-connected matroid of rank
r. It is essentially the matroid analogue of a result of Halin [4, Satz 7.5].

(4.5) LEmMa Let M be a minimally 3-connected matroid and suppose
that |[E(M)|=6. Then either
(i) M is isomorphic to a whirl or the cycle matroid of a wheel; or
(i) M/e is minimally 3-connected for some element ¢ of M; or
(iii) every element of M is in a triad, M has a non-essential element and,
for all non-essential elements f, either
(a) MJf\x is minimally 3-connected where {f, x, y} is a triad of M, it
being the unique triad containing x and the unique triad containing
both f and y; or
(b) M/f\x, y is minimally 3-connected where {f, x, y} is the unique
triad intersecting {f, x, y}.

Proof. If |[E(M)| =6, then it is straightforward to check that either M is
isomorphic to Uy, in which case (ii) holds, or M is isomorphic to M(%",)
or %, in which case (i) holds. We may therefore assume that |[E(M)|=7.
Suppose, in addition, that neither (i) nor (ii) holds. Then, by Theorem 2.9,
every element of M is in a triad. Moreover, by Theorem 4.1, M certainly
has a non-essential element. Let f be any such element. Then, as M/f is
not minimally 3-connected, there is an element x of M/f such that M/f\ x
is 3-connected. Since M\ x is not 3-connected, it follows that for some
element y of M/f\x, the set {f, x, y} is a triad. Now since |E(M/f\x)|=5,
every triad of M containing x also contains f, as otherwise M/f\x has a
cocircuit of size 2; a contradiction. It follows from this, using circuit
exchange, that {f, x, y} is the unique triad containing both f and x and
hence {f, x, y} is the unique triad of M containing x. Applying circuit
exchange again gives that {f, x, y} is the unique triad containing both f
and y.

If M/f\ x is not minimally 3-connected, then there is an element z of
MJf\x such that M/f\x, z is 3-connected. But M/f and M/f\x, z are 3-
connected and |E(M/f)|= 6, hence by Lemma 4.2, M/f\z is 3-connected. It
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follows by Lemma 2.6 that for some element w, {f, z, w} is a triad of M.
Moreover, as above, every triad containing z also contains f. '

Now suppose z#y. Then {f, x, y} and {f, z, w} are distinct cocircuits of
M, so by exchange, there is a cocircuit C* contained in {x, y, z, w}. As
|C*|=3, C*—{x, z} contains a cocircuit D* of M/f\x, z and |D*|<2. As
MJf\x, z is 3-connected, this contradicts Lemma 2.2. We conclude that
z=y and hence that M/f\x, y is 3-connected and {f, x, y} is the unique
triad intersecting {x, y}. Another application of the argument just used
gives that {f, x, y} is the unique triad of M intersecting {f, x, y}. Since
M/f\x, y=M\F, x, y and every element of M is in a triad, every element
of M/f\x,y is in a triad of M/f\x,y, and so M/f\x, y is minimally
3-connected.

(4.6) LEMMA Let M be a minimally 3-connected matroid of rank r for
which none of (4.5) (i), (4.5) (ii) or (4.5) (iii) (a) holds. If |E(M)|=2r and
r=4, then r=6. Moreover, if r=6, then |[E(M)|=2r.

Proof. By Lemma 4.5 every element of M is in a triad. Moreover, M
has a non-essential element f such that M/f is 3-connected and M/f\x, y
is minimally 3-connected, where {f, x, y} is the unique triad of M
intersecting {f, x, y}. Now M/f\x, y=M\f,x,y and |[E(M\{, x, y)|=2r—
3=5, so M\f,x,y has no cocircuits of size less than 3. Therefore if
a, € E(M\{, x, y), then there is a triad of M containing a, and this triad
must avoid {f, x, y}. Hence the complementary hyperplane H, of this triad
contains {f, x, y} and |[E(M\f, x, y)N H;|=2r—6=2. We may therefore
choose an element a, from H,NE(M\f, x,y). Now M has a triad
containing a, and this triad avoids {f, x, y}. It follows that the correspond-
ing hyperplane H, contains {f, x, y} and |[E(M\f, x, y)N H, N H,|=2r—9.

If r=4, then H;N H, has rank 2 and so {f, x, y} is a circuit of M. But
{f, x, y} is also a cocircuit of M and this is a contradiction to Lemma 1.6.

If r=35, then we can choose an element a; from E(M\f, x, y)N H; N
H,. Now M has a triad containing a; and avoiding {f, x, y}. Thus the
corresponding hyperplane H; contains {f, x, y}, and so H{NH,NH;2
{f, x, y}. Therefore {f, x, y} is both a triangle and a triad of M; a contradic-
tion. .

If r=6 and |[E(M)|>2r, then |[E(M\f, x, yYNH,NH,N H,|=1 and we
can extend the above argument to again obtain the contradiction that
{f, x, y} is both a triangle and a triad of M.

(4.7) Tueorem Let M be a minimally 3-connected matroid of rank r

where r=3. Then

2r, if r<6;

|E(M)ls{3r—6, if r=7.
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Proof. f r is a positive integer and r=2, then let g(r)=
max {{E(M)|: M is a minimally 3-connected matroid of rank r}. It is easy
to check that g(2) =3, with the unique minimally 3-connected matroid of
rank 2 on 3 elements being U, ;. Since M(%;) is minimally 3-connected
of rank 3, g(3)=6. But g(3)=<6 as, by Lemma 4.5, -

(4.8) g(r+1)=max{2(r+1), g(r)+3}.

Thus g(3)=6.
We now show by induction on r that

4.9) g(r)=2rforr=3,4,5, 6.

Suppose that 3<r=<5 and g(r)=2r. As M(¥,.,) is minimally 3-
connected, g(r+1)=2(r+1). Now let M be a minimally 3-connected
matroid of rank r+1 having g(r+1) elements. If (4.5) (i) holds, then
|IE(M)|=2(r+1). If (4.5) (ii) holds, then g(r)=g(r+1)—1=2(r+1)—1>
2r; a contradiction. If (4.5) (iii) (a) occurs, then |E(M)|<2r+2. It follows
that we may assume that none of (4.5) (i), (ii) or (iii) (a) occurs. Thus by
Lemma 4.6, |E(M)|<2(r+1) and the proof of (4.9) is complete.

If r=7, then, by (4.8) and (4.9), g(r)=<12+3(r—6). That is, g(r)<
3r—6. Now as r=7, K;, , is a 3-connected graph. Thus, by (1.4),
M(K;, ,) is a 3-connected matroid and hence, as every element of
M(K;,_,) is in a triad, M(K;,_,) is minimally 3-connected. But
|E(M(K;,_,))| =3r—6, hence for r=7, g(r) =3r—6, as required.

5. The minimally 3-connected matroids with the greatest number of
elements

The characterization of those minimially 3-connected matroids attain-
ing equality in Theorem 4.7 will be broken up into the cases 3<r<5 and
r=6. The first of these is quite long.

(8.1) LemMA Let M be- a minimally 3-connected matroid of rank r+1
on a set of 2(r +1) elements where r = 4. Suppose that M satisfies (4.5)(iii)(a).
Then M/f\x is not isomorphic to M(W,) or W".

Proof. By (4.5)(iii)(a), every element of M is in a triad and M/f\x is
 minimally 3-connected where {f, x, y} is a triad of M. We shall assume
that M/f\x is isomorphic to M(#%,) or %" and obtain a contradiction.
Labelling both E(%",) and E(%") as shown we may suppose, without loss
of generality, that either (I) y=1, or (II) y=r+1.

Case L If y=1, then {f,x, 1} is a triad of M and {1,r+1,2r}, {2,r+
1,r+2}, 3,r+2,r+3},...,{r,2r—1, 2r} are the triads of M/f\ x. Now,
in M\x, the set {f,1} is a cocircuit, hence M/f\x=M/1\x and the
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triads of M/I\x are {f,r+1,2r}, {2,r+1,r+2}, {3,r+2,r+
3} ...,{rn2r—1,2r}. By (4.5)(iii) (a), {f,x, 1} is the unique triad of M
containing x, and the unique triad containing both f and 1.

Now every element of M is in a triad and the only triads of M/f\x
containing 2, 3, ..., r respectively are {2,r+1,r+2}, {3, r+2,r+3},...,
and {r,2r—1, 2r}. These are also the only triads of M/1\x containing
2,3,...,rrespectively, hence each of these r—1 sets is a triad of M. The
corresponding hyperplanes all have rank r and their intersection has rank
2 and contains {f, x, 1}. But this again gives the contradiction that M has a
subset which is both a triangle and a triad.

Case II. If y=r+1, then from (4.5) (iii) (a), {f, x, r+ 1} is the unique
triad containing x, and the unique triad containing both f and r+1. The
triads of M/f\ x are

{1, r+1a 2"},{2, r+19 r+2}7 {3’ r+2: r+3}, .. ’{razrr_lazr}a
and of M/r+1\x are
{Lf2ry, {2, f,r+2L{3, r+2,r+3}, ..., {r,2r—1, 2r}.

It follows that
(B, r+2,r+3%L {4, r+3,r+4}, ..., {r,2r- 1,21}

are triads of M, they being the only triads of M/f\x and of M/r+1\x
which contain 3,4, ..., r respectively.

M has a triad containing 1 and so at least one of {1,f,2r} and
{1, r+1, 2r} is a triad of M. Note that if both {1, r+1, 2r} and {1, f, 2r} are
triads, then {f, 1, #+1} is a triad of M; a contradiction. Similarly exactly
one of {2,r+1,r+2} and {2, f, r+2} is a triad of M.

Now taking the intersection of the hyperplanes of M corresponding to
the triads {3,r+2,r+3}, {4,r+3,r+4},...,{r,2r—1,2r}, we get that
{f,x,1,2,r+1} is a plane of M.
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We now distinguish 3 cases.

(A) {1,r+1,2r} is a triad of M;
B) {2,r+1,r+2} is a triad of M; and
(©) {1,f,2r} and {2, f, r+2} are triads of M.

(A) The hyperplane corresponding to {1, r+1, 2r} is
{f,x,2,3,4,...,r, T+2, r+3,...,2)"—'1},

Intersecting this with the plane {f, x, 1, 2, r + 1} gives that {f, x, 2} is a line

of M. Thus {2, x} is a circuit of the 3-connected matroid M/f; a contradic-

tion.

(B) A similar argument to that given in (A) again leads to a contradic-

tion. '

(O) In this case, {x,2,3,...,2r—1} and {x,1,3,4,...,r,r+1,r+3,r+

4,...,2r} are hyperplanes of M. Intersecting each of these hyperplanes

with the plane {f, x, 1,2, r+1} gives that {x,2,7+1} and {x,1,r+1} are
both lines of M; a contradiction. '

(5.2) Tueorem Let M be a minimally 3-connected matroid of rank r
having precisely 2r elements. If 3<r<35, then M is isomorphic to M(W,) or
W .

Proof. As noted earlier it is straightforward to check that the only rank
3 minimally 3-connected matroids having 6 elements are M (W) and W3,

Now let M be a minimally 3-connected matroid of rank 4 on a set of 8
elements. By Lemma 4.6, one of (4.5) (i), (ii) or (iii) (a) must hold. If M is
not isomorphic to M(W,) or W*, then (4.5) (i) does not hold. Moreover,
since g(3) =6, (4.5) (ii) does not hold. Therefore we may assume that (4.5)
(iii) (a) holds. Hence, every element of M is in a triad and M/f\x is a
minimally 3-connected matroid where {f,x, y} is a triad of M. Since
M/f\x has rank 3 and 6 elements it follows that M/f\ x is isomorphic to
M(W5) or W*. Thus M\f, x, y is isomorphic to one of the matroids N, or
N, in Figure 2. ‘ :

5

Fi1G. 2.
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Since every element of M is in a triad, corresponding to every element
e of M, there is a 5-point plane avoiding e. With N, and N, labelled as
shown, let F,={1,2, 3,4, 5} and F; be a 5-point plane of M avoiding 1.
Then, since |[E(M)—F,|=3, |F,NF;|=2. Moreover, since F,NF; has
rank 2 and all the 3-point lines of F, contain 1, |F,NF,|<2. Thus
|FoN F;|=2 and so F; 2{f, x, y}. Now, if F,N{1,2, 5}=49, then {1, 2, 5} is
both a triangle and a triad of M. Thus, without loss of generality, suppose
that FyNF; ={2,3}. Let F, be a 5-point plane of M avoiding 2. Then
|F, N F,|=2. Furthermore, in N,, |F,N F,|<2, since the only 3-point line
of F, in N, contains 2. Thus in N,, [F,NF,|=2, and so F;NF,2{f, x, y}.
This implies that {f, x, y} is both a triangle and a triad; a contradiction. If
|FsN F,|=2 in N; we obtain the same contradiction. However, in N;, we
may have |FyNF,|=3, in which case F,NF,={1,3,4}. Then
F,NF,NF,={3} and |F;NF,N{E(M)\ F,|=2. Now M/f is 3-connected
and is therefore simple, hence f¢ F, NF,. Therefore F,N F,={x,y, 3}.
Let F, be a 5-point plane of M avoiding the element 3. If |F;N F,|=2,
then F; N F; 2{f, x, y}, and M has {f, x, y} as both a circuit and a cocircuit;
a contradiction. If |F; N Fy| =3, then F;NFy={1,2,5}. Now, arguing as
for F, N F,, we get that F; N F; = {x, y, 2}. But this means that {x, y, 2} and
{x, y,3} are both lines of the simple matroid M. This contradiction
completes the proof of the case r =4. The rest of the proof uses the result
for this case together with Lemmas 4.6 and 5.1.

(5.3) Lemma Let M be a minimally 3-connected matroid of rank r on a
set of 3r—6 elements and suppose r=6. If r=6 and (4.5) (iii) (b) occurs,
or r=7, then E(M) is the disjoint union of r—2 triads. Moreover, no circuit
of M has fewer than 4 elements and M has precisely r—2 distinct triads.

Proof. If r=7, then since no minimally 3-connected matroid of rank
r—1 has more than 3r—9 elements, it follows that M satisfies (4.5) (iii)
(b). That is, every element of M is in a triad and M\, x, y is minimally
3-connected where {f, x, y} is the unique triad of M intersecting {f, x, y}.

Now |[E(M\f, x, y)|=3r—9=9. Choose a, from E(M\f, x, y). There
is a triad of M containing a, and avoiding {f, x,y}. Let H; be the
hyperplane which is complementary to this triad. Then H, 2{f, x, y} and
|E(M\f, x, y) NH{|=3r—12. Assume that for some i in {1,2,...,r—4},
the elements, a,,a,,...,a; and the hyperplanes H,, H,, ..., H; have
been chosen such that

a,€(EM\f,x,y)NH,NH, - -NH_)-H, |H|=|EM)-3
and H, 2{f, x, y} for all 1<j=<i. Then

IE(M\f, x, y)NH,NH,- - -NH|=3r—6-3(i+1)=3.
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Now choose a;,, from E(M\f,x,y)yNH,NH,N---NH, Then M has a
triad containing ag;,; and avoiding {f, x, y}. Let H,,, be the hyperplane
complementary to this triad. Then H, , 2{f, x, y} and

(5.4) [E(M\f,x, yyNHNH,N- - -NH,NH,,| <
=|E(M\f, x, y)NH;NH,N- - -NH|-3.

"It follows that
(8.5) [E(M\f,x,yyNH,NH,N- - -ﬂH,_3|>3r—6—3(r—2)>O.

If the inequality (5.4) is strict for some i, then the inequality (5.5) is strict
and so we may choose an element a,_, from E(M\f,x, yYNH,NH,N
-NH,_; and a hyperplane H, , of M such that |H, ,|=|E(M)|-3,
a, ,¢H _, and {f,x,y}=H,_,. Then HNH,N---NH_, is a line of M
containing the triad {f, x, y}. This contradlctlon to Lemma 1.6 means that
equality holds in (5. 4) for all i and hence that M is a d1s101nt union of
r—2 triads.

The fact that every circuit of M has at least 4 elements follows from
Lemmas 1.5 and 1.6. To see that M has precisely r—2 triads, first recall
that {f, x, y} is the unique triad intersecting {f, x, y}. If eeE(M\f,x,y)
and e is in two distinct triads C¥ and C¥, then let e=a, and H,=
E(M)—Cf. Now CyNH;#%, so choose a, from this set. Then H,=
E(M)- C’zl‘ is a hyperplane avoiding a, and containing {f, x, y}. But
|CTUC3|<5, hence |E(M\Ff, x,y)NH,NH,|=EMN\f, x,y)NH,|-2,
contrary to the fact that equality holds in (5.4). This completes the proof
of the lemma. :

(5.6) TueoREM Let M be a minimally 3-connected matroid of rank r
having precisély 3r—6 elements and suppose that r=6. Then either
(i) r=6 and M is isomorphic to M(W¢) or W*; or
(ii) no circuit of M has size less than 4 and M is a disjoint union of triads.

Proof. If r=6 and (i) above does not hold, then (4.5) (i) does not hold.
As g(5)=10, (4.5) (i) does not hold, and, by Lemma 5.1 and Theorem
5.2, (4.5) (iii) (a) does not hold. Thus (4.5) (iii) (b) holds. To complete the
proof one needs only to apply Lemma 5.3.

We show next that every rank r matroid having 3r—6 elements and
satisfying (5.6) (ii) is minimally 3-connected. o

(5.7) Lemma Let M be a rank r matroid where r=5 and suppose that M
has no circuits of size less then 4. If EIM)=T,UT,U- - -UT,_, where
T, T,,...,T,_, are triads of M, then M is minimally 3-connected.

Proof. Let T,={a; b, ¢;} for 1<i<r—2. As M has no cﬁrcuits of size

less than 4, B= T, U{d,, d, . .., d,_,} is a basis of M where d; € T; for all
i such that 2=<i=<r-2. Now if ¢ € T, - d;, then the fundamental circuit of
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e; with respect to B meets T, in at least two elements. Thus, by (1.2), M
is 2-connected. Now to establish that M is 3-connected we need to show
that for all pairs of subsets X and Y of E(M) such that XUY=E(M)
and |X|,|Y|=2,

(5.8) tk X+rk Y=r+2.

If X2 T, for some i, then either Y2 T, for some j#i, or not. In the
first case, on letting t=|{k: XN T,# @}, we have rk X=t+2 andrk Y=
(r—2—1t)+2, hence (5.8) holds. In the second case, Tk X =r and, as
|Y|=2, rk Y=2, thus again (5.8) holds. We may now assume that for all i
such that 1<i<r—-2, XNT,#0#YNT. Thenrtk X=r—-2 and tk Y=
r—2. But either [XNT|=2 or [YNT,|=2. Thustk X=r—1orrk Y=
r—1, and hence rk X+rk Y=(r—-1)+(r—2)=r+2, where the second
inequality holds since r—2=3. We conclude that M is 3-connected. As
every element is in a triad, it follows that M is minimally 3-connected.

If M satisfies the hypotheses of Lemma 5.7, it is not difficult to see that
M is uniquely determined by its set @ of circuits of size 4. Now, by
Lemma 1.5, circuit exchange, and the fact that M has no circuits of size
less than 4, we get that

(5.9) () if D€, then DN T, is even for aH i;
(i) if Dy, D,€9D, then |D,ND,|<2; and
(i) if D;,D,€D and |[D;ND,NT)|=2 for some i, then
D;AD,e9. '

(5.10) THEOREM Let S be a set of 3r—6 elements where r=6 and
suppose that S is the disjoint union of r—2 sets T,, T,, ..., T,_, of size 3.
Let 9 be a collection of 4-element subsets of S satisfying (5.9) (i)(iii) and

%={AUF: |A|=4, A< T,UT, where {ij}c{1,2,...,r-2}, _
: A¢D and Fis a transversal of {T, }i 4 }

Then B is the set of bases and {Tl, T,,...,T,_,} the set of triads of a
minimally 3-connected matroid on S.

~ The proof of this theorem, although long, is routine and will not be
given here.

(5.11) CoroLLARY Let M be a minimally 3-connected matroid of rank r
and suppose |E(M)|=3r—6. Then for r=6, either M is isomorphic to
M(Ws) or W, or M is as in Theorem 5.10,

Recall, from the proof of Theorem 4.7, that g(r) denotes the greatest
number of elements in a minimally 3-connected matroid of rank r.
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(5.12) TueoreMm Let M be a minimally 3-connected matroid of rank r
-having g(r) elements where r=2. If M is binary, then

M=U,, for r=2;
M=MW,) for 3=sr<35;
M=M(W;) or M(K;,) for r=6; and
M=M(K;,_,) for r=7.

Proof. Since W™ is not binary, if 3=<r=<35, the result follows by
Theorem 5.2. If r=6, we shall use (5.6), (5.7), (5.9) and (5.10) to get the
result. In particular, we show that for each r =6 there is a unique binary
matroid of the type specified in Theorem 5.10. Suppose that M is a
binary minimally 3-connected matroid of rank r where r=6. Assume,
moreover, that E(IM)=T,UT,U---UT,_, where T,,T,,..., T,_, are
triads of M and, for all i, T,={a, b, ¢;}. Consider M | (T;UT,) where
1=<i<j=<r—2. This is a binary matroid on a set of 6 elements. Since the
r—4 disjoint cocircuits Ty, T, ..., Ty, Tivayeoos Toyy Togyeoo, Thon
have been deleted from M, rk (M |(T,UT,))<4. But, by (5.6) (ii) and
(5.9) (@), {a,b,c,a} is independent in M|(T,UT,), and so
tk (M| (T,UT)))=4. By (5.9) () again, T,U{q;}, T,U{b}, T,U{c} and
T,U{a}, T;U{b}, T;U{c} are bases of M|(T,UT,). Consider
(M| (T, UT,))*. This is a rank 2 binary matroid on a set of 6 elements.
Moreover, if [B*|=2 and B*< T, or B*c T, then B* is a base of
(M|(T;UT))*. Since M is binary, it follows that (M|(T;UT))* is
isomorphic to a 3-point line where each point consists of a pair of parallel
elements. If we relabel the points of T,, T, ..., T,_, as necessary so that
in (M|(T,UT))*, {a,a}, {by,b}, and {c;,c} are circuits, then
{a,, a, by, b}, {a,, a;, ¢y, ¢;} and {b,, b, ¢y, ¢;} are circuits of M, the only
4-element circuits contained in T,UT, We want to check that in
M|(T,UT), {a; a; b, b}, {a;, a; ¢, ¢;} and {b;, b, c, ¢;} are circuits. Sup-~
pose then that {d,, e, f;}={a;, b, ¢;} and that {a, d, b, ¢}, {a;, d, ¢, f;} and
{b, e, ¢, f;} are circuits of M | (T,U T;). Then, as M is binary, taking the
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symmetric difference of these circuits with {a4, a,, by, b}, {a,, a;, c;, ¢;} and
{by, b;, 1, ¢;} respectively gives that each of {a,, d, by, ¢}, {a;, d,, c;, f;}
and {b,, e, c,, f;} must be a circuit of M. Thus d; = a;, ¢;= b, and f, = ¢,. We
conclude that the collection of circuits of size 4 of M is

{{xb xja Yia )’1}3 {x, y}g{a7 ba C} and 1 = l <] = r—2}
Labelling K, _, as shown we see that M=M(K;,_,).

(5.13 CoroLLARY [4, Satz 7.6]. Let G be a minimally 3-connected
graph. If |V(G)|=1, then |E(G)|<3|V(G)|—9. Equality is attained here
for |V(G)|=8 if and only if G=K, v(sy-s, and for |V(G)| =17 if and only
if G=K; 4 or W.
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