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Abstract. Let M be a 3-connected matroid other than a wheel or
a whirl. In the next paper in this series, we prove that there is an
element whose deletion from M or M∗ is 3-connected and whose only 3-
separations are equivalent to those induced by M . The strategy used to
prove this theorem involves showing that we can remove some element
from a leaf of the tree of 3-separations of M . The main result of this
paper is designed to allow us to do this.

1. Introduction

This is the second in a series of three papers—the others are [11, 13]—
in which we address the question of when it is possible to find an element
that can be deleted or contracted from a 3-connected matroid in such a way
as to remain 3-connected and avoid creating new unwanted 3-separations.
Such 3-separations are called exposed 3-separations. The formal definition
of “exposed” require some preparation and is given in Section 2. In [13] we
prove that it is almost always possible to find such an element.

Theorem 1.1. Let M be a 3-connected matroid other than a wheel or whirl.
Then M has an element e whose deletion from M or M∗ is 3-connected but
does not expose any 3-separations.

In [11], we considered the special case of triangles and determined the
structure that arises when no element of a triangle can be deleted without
either losing 3-connectivity or exposing a 3-separation. In this paper, we
consider another important special case. The following is our main result.

Theorem 1.2. Let (A,B) be a non-sequential 3-separation in a 3-connected
matroid M . Suppose that B is fully closed, A meets no triangle or triad of
M , and if (X,Y ) is a non-sequential 3-separation of M , then either A ⊆
fcl(X) or A ⊆ fcl(Y ). Then A contains an element whose deletion from M
or M∗ is 3-connected but does not expose any 3-separations.

While technical, Theorem 1.2 is a key ingredient in the proof of Theo-
rem 1.1. The proof is surprisingly long. In particular, Section 7 occupies
much of the space. This deals with a bounded-size case check on the 3-
separator A of Theorem 1.2. This case check is essential to verify Theo-
rem 1.2 and, while it could possibly be slightly streamlined, we see no way
of avoiding the bulk of the work.
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2. Preliminaries

Our terminology will follow Oxley [8] except that the simplification and
cosimplification of a matroid N will be denoted by si(N) and co(N), respec-

tively. We write x ∈ cl(∗)(Y ) to mean that x ∈ cl(Y ) or x ∈ cl∗(Y ). A quad
is a 4-element set in a matroid that is both a circuit and a cocircuit. The
set {1, 2, . . . , n} will be denoted by [n].

Let M be a matroid with ground set E and rank function r. The con-
nectivity function λM of M is defined on all subsets X of E by λM (X) =
r(X) + r(E − X) − r(M). A subset X or a partition (X,E − X) of E is
k-separating if λM (X) ≤ k − 1. A k-separating partition (X,E − X) is a
k-separation if |X|, |E − X| ≥ k. A k-separating set X, or a k-separating
partition (X,E−X), or a k-separation (X,E−X) is exact if λM (X) = k−1.
A k-separation (X,E − X) is minimal in min{|X|, |E − X|} = k.

A set X in a matroid M is fully closed if it is closed in both M and
M∗, that is, cl(X) = X and cl∗(X) = X. The full closure of X, denoted
fcl(X), is the intersection of all fully closed sets that contain X. Two exactly
3-separating partitions (A1, B1) and (A2, B2) of M are equivalent, written
(A1, B1) ∼= (A2, B2), if fcl(A1) = fcl(A2) and fcl(B1) = fcl(B2). If fcl(A1) or
fcl(B1) is E(M), then (A1, B1) is sequential. A 3-connected matroid M is
sequentially 4-connected if it has no non-sequential 3-separations.

Let e be an element of a matroid M such that both M and M\e are
3-connected. A 3-separation (X,Y ) of M\e is well blocked by e if, for all
exactly 3-separating partitions (X ′, Y ′) equivalent to (X,Y ), neither (X ′ ∪
e, Y ′) nor (X ′, Y ′ ∪ e) is exactly 3-separating in M . An element f of M
exposes a 3-separation (U, V ) if (U, V ) is a 3-separation of M\f that is
well blocked by f . Although (U, V ) is actually a 3-separation of M\f , we
often say that f exposes a 3-separation (U, V ) in M . Evidently, if e exposes
an exactly 3-separating partition (E1, E2), then e exposes all exactly 3-
separating partitions (E′

1, E
′
2) that are equivalent to (E1, E2). We remark

that implicit in the assertion that an element f exposes a 3-separation in M
is the requirement that M\f is 3-connected.

Let X be an exactly 3-separating set in a matroid M . If there is an
ordering (x1, x2, . . . , xn) of X such that {x1, x2, . . . , xi} is 3-separating for
all i in [n], then X is sequential and (x1, x2, . . . , xn) is a sequential ordering
of X. An exactly 3-separating partition (X,Y ) of M is sequential if X or Y
is a sequential 3-separating set. In a 3-connected matroid M , a 3-sequence
is an ordered partition (A,x1, x2, . . . , xn, B) of E(M) such that |A|, |B| ≥ 2
and (A∪{x1, x2, . . . , xi}, {xi+1, xi+2, . . . , xn}∪B) is exactly 3-separating for
all i in {0, 1, . . . , n}. If M has a 3-sequence in which |A| = |B| = 2, then M
is sequential.
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Let S be a subset of the ground set of a matroid M with |S| ≥ 3. Then S
is a segment if every 3-element subset of S is a triangle; and S is a cosegment
if every 3-element subset of S is a triad.

Let k be an integer exceeding one. A matroid M is (4, k)-connected if M
is 3-connected and, whenever (X,Y ) is a 3-separating partition of E(M),
either |X| ≤ k or |Y | ≤ k. Hall [4] called such a matroid 4-connected up to
separators of size k. Matroids that are (4, 3)-connected and (4, 4)-connected
are also called internally 4-connected and weakly 4-connected respectively. A
3-connected matroid M is (4, k, S)-connected if M is both (4, k)-connected
and sequentially 4-connected.

The next two lemmas are elementary properties of matroids. The second
is a restatement of the Mac Lane-Steinitz exchange property.

Lemma 2.1. Let e be an element of a matroid M , and X and Y be disjoint
sets whose union is E(M) − e. Then e ∈ cl(X) if and only if e 6∈ cl∗(Y ).

Lemma 2.2. Let e and f be elements of a matroid M and let X be a subset
of E(M) − {e, f}. If e 6∈ cl(X ∪ f) and f 6∈ cl(X), then f 6∈ clM/e(X).

The following lemma [2, Lemma 4.1], an important tool in the proof of
the main result of [2], will also be useful here.

Lemma 2.3. Let M be a 4-connected matroid and z be an element of M .
Then M\z or M/z is (4, 4)-connected.

The connectivity function λM of a matroid M has many attractive
properties. Clearly λM (X) = λM (E − X). Moreover, one easily checks
that λM (X) = r(X) + r∗(X) − |X| for all subsets X of E(M). Hence
λM (X) = λM∗(X). We often abbreviate λM as λ. This function is submod-
ular, that is, λ(X) + λ(Y ) ≥ λ(X ∩ Y ) + λ(X ∪ Y ) for all X,Y ⊆ E(M).
The next lemma is a consequence of this. We make frequent use of it here
and write by uncrossing to mean “by an application of Lemma 2.4.”

Lemma 2.4. Let M be a 3-connected matroid, and let X and Y be 3-
separating subsets of E(M).

(i) If |X ∩ Y | ≥ 2, then X ∪ Y is 3-separating.
(ii) If |E(M) − (X ∪ Y )| ≥ 2, then X ∩ Y is 3-separating.

Another consequence of the submodularity of λ is the following very useful
result for 3-connected matroids, known as Bixby’s Lemma [1].

Lemma 2.5. Let e be an element of a 3-connected matroid M . Then either
M\e or M/e has no non-minimal 2-separations. Moreover, in the first case,
co(M\e) is 3-connected while, in the second case, si(M/e) is 3-connected.
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A useful companion function to the connectivity function is the local con-
nectivity, ⊓(X,Y ), defined for sets X and Y in a matroid M , by

⊓(X,Y ) = r(X) + r(Y ) − r(X ∪ Y ).

Evidently, ⊓(X,E −X) = λM (X). For a field F, when M is F-representable
and hence essentially viewable as a subset of the vector space V (r(M), F),
the local connectivity ⊓(X,Y ) is precisely the rank of the intersection of
those subspaces in V (r(M), F) that are spanned by X and Y .

An attractive link between connectivity and local connectivity is provided
by the next result [9, Lemma 2.6], which follows immediately by substitution.

Lemma 2.6. Let X and Y be disjoint sets in a matroid M , then

λM (X ∪ Y ) = λM (X) + λM (Y ) −⊓M (X,Y ) − ⊓M∗(X,Y ).

The first part of the next lemma [9, Lemma 2.3] just restates [8, Lemma
8.2.10]. The second part, which follows from the first, is the well-known fact
that the connectivity function is monotone under taking minors.

Lemma 2.7. Let M be a matroid.

(i) Let X1,X2, Y1 and Y2 be subsets of E(M). If X1 ⊆ Y1 and X2 ⊆ Y2,
then ⊓(X1,X2) ≤ ⊓(Y1, Y2).

(ii) If N is a minor of M and X ⊆ E(M), then

λN (X ∩ E(N)) ≤ λM (X).

We shall use the following result of Lemos [6, Theorem 1] several times.

Lemma 2.8. Let M be a 3-connected matroid and C∗ be a cocircuit of M
such that M/e is not 3-connected for all e in C∗. Then C∗ meets at least
two triangles of M .

The following elementary lemma [9, Lemma 3.1] will be used repeatedly.

Lemma 2.9. For a positive integer k, let (A,B) be an exactly k-separating
partition in a matroid M .

(i) For e in E(M), the partition (A ∪ e,B − e) is k-separating if and

only if e ∈ cl(∗)(A).
(ii) For e in B, the partition (A∪ e,B − e) is exactly k-separating if and

only if e is in exactly one of cl(A)∩cl(B−e) and cl∗(A)∩cl∗(B−e).
(iii) The elements of fcl(A) − A can be ordered b1, b2, . . . , bn so that A ∪

{b1, b2, . . . , bi} is k-separating for all i in [n].

The next lemma is a consequence of Lemma 2.9.
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Lemma 2.10. Let M be a 3-connected matroid.

(i) If (X, e, Y ) is a 3-sequence of M and e ∈ cl∗(X), then ⊓(X,Y ) = 1.
(ii) If (X, e, f, Y ) is a 3-sequence of M , where e ∈ cl∗(X) and f ∈

cl∗(X ∪ e), then ⊓(X,Y ) = 0.

Proof. We prove (ii). The proof of (i) is similar. Since f ∈ cl∗(X ∪ e), it
follows by Lemma 2.9, that f ∈ cl∗(Y ) and so

r(X ∪ e) + r(Y ∪ f) − r(M) = r(X) + 1 + r(Y ) + 1 − r(M).

Therefore, as (X ∪ e, Y ∪ f) is a 3-separation, r(X) + r(Y ) = r(M). Since
M is 3-connected, r(X ∪ Y ) = r(M), so ⊓(X,Y ) = 0. �

Lemma 2.11. Let (X, {z}, Y ) be a partition of the ground set of a 3-
connected matroid M . Assume that (X, z ∪ Y ) and (X ∪ z, Y ) are 3-
separations of M . Then exactly one of the following holds:

(i) z ∈ cl(X) ∩ cl(Y ) and co(M\z) is 3-connected; or
(ii) z ∈ cl∗(X) ∩ cl∗(Y ) and si(M/z) is 3-connected.

Proof. The fact that z is in exactly one of cl(X)∩ cl(Y ) and cl∗(X)∩ cl∗(Y )
follows by (ii) of Lemma 2.9 By duality, we may suppose that z ∈ cl(X) ∩
cl(Y ). As M is 3-connected, M\z is 2-connected. By Lemma 2.5, we need
only show that M\z has no non-minimal 2-separations.

Let (A,B) be a non-minimal 2-separation of M\z. Neither (A∪ z,B) nor
(A,B ∪ z) is a 2-separation of M so each is a 3-separation. Hence z is in
neither cl(A) nor cl(B), so, by orthogonality, z is in both cl∗(B) and cl∗(A).

As z ∈ cl(X) ∩ cl(Y ) but z is in neither cl(A) nor cl(B), all of the sets
X ∩ A,X ∩ B,Y ∩ A, and Y ∩ B are non-empty. As A has at least three
elements, X∩A or Y ∩A has at least two elements. Without loss of generality,
assume the former. If |Y ∩ B| = 1, then both |X ∩ B| and |Y ∩ A| exceed
one. Thus, we have that either

(a) |X ∩ A| ≥ 2 and |Y ∩ B| ≥ 2; or
(a) |X ∩ B| ≥ 2 and |Y ∩ A| ≥ 2.

By symmetry, we may assume the former. Then, by Lemma 2.4, both X∪A
and X∪A∪z are 3-separating in M . Hence both (Y ∩B)∪z and Y ∩B are 3-
separating in M , so z is in cl(Y ∩B) or z is in cl∗(Y ∩B). Both possibilities
yield contradictions to orthogonality since z ∈ cl∗(A) ⊆ cl∗(X ∪ A) and
z ∈ cl(X) ⊆ cl(X ∪ A). �
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For two 3-separations (X1,X2) and (Y1, Y2) of a 3-connected matroid M ,
one easily checks that cl(X1) = cl(Y1) if and only if cl(X2) = cl(Y2). When
cl(Xi) = cl(Yi) for some i, we call (X1,X2) and (Y1, Y2) closure-equivalent.

Distinct elements α and β of a matroid M are clones if M has an auto-
morphism that interchanges α and β and fixes every other element. When
α and β are clones in M , we call {α, β} a clonal pair in M . Evidently if
{α, β} is a clonal pair in M , and N is a minor of M with {α, β} ⊆ E(N),
then {α, β} is a clonal pair in N .

Lemma 2.12. Let M be a 3-connected matroid, and let {α, β} be a clonal
pair in M . If M is not sequentially 4-connected, then M has a non-sequential
3-separation (U, V ) such that {α, β} ⊆ U or {α, β} ⊆ V .

Proof. Assume the lemma fails and let (X,Y ) be a non-sequential 3-
separation of M . Then |X|, |Y | ≥ 4. As neither X nor Y contains {α, β}, we
may assume that α ∈ X and β ∈ Y . If α ∈ clM (X−α), then β ∈ clM (X−α)
and so (X ∪ β, Y − β) is a 3-separation in M . Moreover, as (X,Y ) is non-
sequential, so is (X ∪ β, Y − β); a contradiction. Thus α 6∈ clM (X − α).
Then, by Lemma 2.1, α ∈ cl∗M (Y ). Hence (X − α, Y ∪ α) is a 3-separation
of M and so, by Lemma 2.9, α ∈ cl∗M (X −α). Thus β ∈ cl∗M (X −α) and so
(X ∪ β, Y − β) is a 3-separation in M ; a contradiction. �

Lemma 2.13. Let M be a 3-connected matroid with no triangles. Let
{z1, z2, z3, z4} be a circuit of M that contains a cocircuit C∗. If zi ∈ C∗,
then M/zi is 3-connected.

Proof. Suppose that M/zi is not 3-connected. Then M/zi has a 2-separation
(X,Y ). Since M has no triangles, rM/zi

(X), rM/zi
(Y ) ≥ 2. Thus, as

{z1, z2, z3, z4} − zi is a triangle in M/zi, we may assume without loss of
generality that {z1, z2, z3, z4} − zi ⊆ X. Since zi is in a cocircuit of M
contained in {z1, z2, z3, z4}, it follows that rM/zi

(Y ) = rM (Y ). Therefore

rM (X ∪ zi) + rM (Y ) − r(M) = rM/zi
(X) + 1 + rM/zi

(Y ) − (r(M/zi) + 1)

= 1,

contradicting the fact that M is 3-connected. �

Lemma 2.14. Let M be a 3-connected matroid with no triangles, and let
{α, β} be a clonal pair in M . If |E(M)| ≥ 4 and {α, β, z} is a triad of M ,
then M/z is 3-connected.

Proof. If M/z is not 3-connected, then M/z has a 2-separation (X,Y ). Since
M has no triangles, rM/z(X), rM/z(Y ) ≥ 2. Furthermore, |X|, |Y | ≥ 3;
otherwise X or Y is a 2-cocircuit in M/z. If α, β ∈ X, then rM/z(Y ) =
rM (Y ), and so

rM (X ∪ z) + rM (Y )− r(M) = rM/z(X) + 1 + rM/z(Y )− (r(M/z) + 1) = 1;
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a contradiction. It follows that we may assume that M/z has no 2-separation
in which {α, β} ⊆ X or {α, β} ⊆ Y and hence that α ∈ X and β ∈ Y . If
α ∈ clM/z(X − α), then β ∈ clM/z(X − α) and so (X ∪ β, Y − β) is a 2-
separation of M/z; a contradiction. Thus α 6∈ clM/z(X−α) so (X−α, Y ∪α)
is a 2-separation of M/z; a contradiction. Hence M/z is 3-connected. �

The next lemma is from [11, Lemma 2.4].

Lemma 2.15. Let M be a 3-connected matroid. If f exposes a 3-
separation (U, V ) in M , then (U, V ) is non-sequential. In particular,
|U |, |V | ≥ 4. Moreover, if |V | = 4, then V is a quad of M\f .

Lemma 2.16. Let {α, β, a, b} be a sequential 3-separating set in a 3-
connected matroid M . Suppose α and β are clones. Then (α, β, a, b) is
a sequential ordering of {α, β, a, b} for some permutation (x, y) of {a, b}.

Proof. Let (e1, e2, e3, e4) be a sequential ordering of {α, β, a, b}. If {α, β} ⊆
{e1, e2, e3}, then we can reorder e1, e2, and e3 so that the sequence begins
(α, β). We may now assume that e4 ∈ {α, β}. As α and β are clones, we
may suppose e4 = α. By reordering (e1, e2, e3), we may assume e3 = β. By
duality, we may assume {e1, e2, β} is a triangle. Thus so is {e1, e2, α}. Then
r({e1, e2, α, β}) = 2 and (α, β, a, b) is a sequential ordering of {α, β, a, b}. �

For a 3-connected matroid N , we shall be interested in 3-separations of N
that show that it is not (4, k, S)-connected. We call a 3-separation (X,Y )
of N a (4, k, S)-violator if either

(i) |X|, |Y | ≥ k + 1; or
(ii) (X,Y ) is non-sequential.

Observe that, when k = 3, condition (ii) implies condition (i). Hence (X,Y )
is a (4, 3, S)-violator of N if and only if |X|, |Y | ≥ 4.

The next lemma [12, Lemma 2.11] is used in proving the subsequent result.

Lemma 2.17. Let N be a 3-connected matroid. Then (X,Y ) is a (4, 4, S)-
violator if and only if

(i) |X|, |Y | ≥ 5; or
(ii) X and Y are non-sequential and at least one is a quad.

Lemma 2.18. Let M be a 4-connected matroid with a 5-point rank-3 set P .
If e ∈ cl∗(P ) − P , then M/e is (4, 4, S)-connected.

Proof. Certainly M/e is 3-connected. Let (R,G) be a (4, 4, S)-violator of
it. Without loss of generality, we may assume that |R ∩ P | ≥ 3. Thus
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R ∩ P spans P in M/e. Hence the 3-separating partition (R ∪ P,G − P )
of M/e is equivalent to (R,G). Now, by Lemma 2.17, either |G| ≥ 5 or G
is non-sequential. In the first case, |G − P | ≥ 3; in the second, G − P is
non-sequential so |G − P | ≥ 4. Hence, in both cases, (R ∪ P,G − P ) is a 3-
separation of M/e. But e ∈ cl∗(P ), so e ∈ cl∗(R∪P ). Hence (R∪P∪e,G−P )
is a 3-separation of the 4-connected matroid M ; a contradiction. �

Lemma 2.19. A 3-connected matroid M of rank at most three is sequen-
tially 4-connected.

Proof. Let (X,Y ) be a 3-separation of M . Then r(X) + r(Y ) = r(M) + 2
and |X|, |Y | ≥ 3. Thus r(X), r(Y ) ≥ 2. But r(M) ≤ 3. Hence X or Y
spans M , so (X,Y ) is sequential. �

Lemma 2.20. Let Q be a quad in a 3-connected matroid M with |E(M)| ≥
7. If {α, β} is a clonal pair in M that meets Q, then {α, β} ⊆ Q.

Proof. We may assume that α ∈ Q and β 6∈ Q. As Q is a quad of M and
{α, β} is a clonal pair, (Q − α) ∪ β is a quad of M . Hence

r(Q ∪ β) + r∗(Q ∪ β) − |Q ∪ β| ≤ (5 − 2) + (5 − 2) − 5 = 1.

Since |E(M)| ≥ 7, this contradicts the fact that M is 3-connected. �

The next two lemmas are repeatedly used in the last section of the paper.

Lemma 2.21. Let M be a 3-connected matroid and let (X,Y ) be a 3-
separation of M . If M\e is 3-connected, then e ∈ cl(X−e) or e ∈ cl(Y −e).

Proof. Since (X,Y ) is a 3-separation of M , we have |X|, |Y | ≥ 3. Therefore,
as M\e is 3-connected, rM\e(X − e) + rM\e(Y − e) − r(M\e) = 2. As
r(M) = r(M\e), it follows that

rM (X) + rM (Y ) = 2 + r(M) = rM\e(X − e) + rM\e(Y − e).

If e 6∈ Y , then rM (Y ) = rM\e(Y − e) and so e ∈ cl(X − e). Similarly, if
e 6∈ X, then e ∈ cl(Y − e). �

Lemma 2.22. Let N be a 4-connected matroid, and let a and e be distinct
elements of E(N). Let (X,Y ) be a 3-separation of N/a and suppose that
N/a\e is 3-connected. If X−e contains a triad of N/a\e, then e ∈ clN/a(X−
e), but e 6∈ clN/a(Y − e). In particular, there are no two triads TX and TY

in N\e/a such that TX ⊆ X − e and TY ⊆ Y − e.

Proof. Since N/a\e is 3-connected, it follows by Lemma 2.21 that either
e ∈ clN/a(X − e) or e ∈ clN/a(Y − e). Suppose that T is a triad of N/a\e
such that T ⊆ X−e. If e ∈ clN/a(Y −e), then T is a triad in N/a. But then
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T is a triad in N , contradicting the fact that N is 4-connected. Therefore
e 6∈ clN/a(Y − e) and e ∈ clN/a(X − e). The second part of the lemma is an
immediate consequence of the first part. �

We end this section with a brief outline of the strategy that we use in
the proof of Theorem 1.2. We extend M by a clonal pair of elements, α
and β, which are freely placed so that, in the resulting extension of M ,
these elements lie in the intersection of the closures of A and B. We then
delete the elements of B and denote the resulting matroid by N , calling it
the clonal replacement of B by {α, β}. We show in Lemma 4.12 that N
is 4-connected. We then show that N has an element e not in {α, β} such
that the deletion of e from M or M∗ is 3-connected but does not expose any
3-separations. For N having at least 13 elements, this is done in Section 6,
while for N having at most twelve elements this is done in Section 7.

3. Flowers

In this section, we recall some essential definitions from [9, 10]. Let
(P1, P2, . . . , Pn) be a flower Φ in a 3-connected matroid M , that is,
(P1, P2, . . . , Pn) is an ordered partition of E(M) such that λM (Pi) = 2 =
λM (Pi ∪ Pi+1) for all i in {1, 2, . . . , n}, where all subscripts are interpreted
modulo n. The sets P1, P2, . . . , Pn are the petals of Φ. Each has at least two
elements. It is shown in [9, Theorem 4.1] that every flower in a 3-connected
matroid is either an anemone or a daisy. In the first case, all unions of petals
are 3-separating; in the second, a union of petals is 3-separating if and only
if the petals are consecutive in the cyclic ordering (P1, P2, . . . , Pn).

The classes of anemones and daisies can be further refined using local
connectivity. Let (P1, P2, . . . , Pn) be a flower Φ with n ≥ 3. If Φ is
an anemone, then ⊓(Pi, Pj) takes a fixed value k in {0, 1, 2} for all dis-
tinct i, j in [n]. We call Φ a paddle if k = 2, a copaddle if k = 0, and
a spike-like flower if k = 1 and n ≥ 4. Similarly, if Φ is a daisy, then
⊓(Pi, Pj) = 1 for all consecutive i and j. We say Φ is swirl-like if n ≥ 4
and ⊓(Pi, Pj) = 0 for all non-consecutive i and j; and Φ is Vámos-like if
n = 4 and {⊓(P1, P3),⊓(P2, P4)} = {0, 1}. An element e of M is loose in Φ
if e ∈ fcl(Pi) − Pi for some petal Pi of Φ; otherwise e is tight.

If (P1, P2, P3) is a flower Φ and ⊓(Pi, Pj) = 1 for all distinct i and j,
we call Φ ambiguous if it has no loose elements, spike-like if there is an
element in cl(P1)∩cl(P2)∩cl(P3) or cl∗(P1)∩cl∗(P2)∩cl∗(P3), and swirl-like
otherwise. Every flower with at least three petals is of one of these six types:
a paddle, a copaddle, spike-like, swirl-like, Vámos-like, or ambiguous [9].
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Lemma 3.1. Let Φ be a flower ({α, β}, P1, P2) in a sequentially 4-connected
matroid M , where {α, β} is a clonal pair. If Φ is a paddle or a copaddle,
then either P1 or P2 are sequential. Moreover, if

⊓({α, β}, P1) = ⊓(P1, P2) = ⊓(P2, {α, β}) = 1

and P1, P2 6⊆ fcl({α, β}), then both P1 and P2 are sequential.

Proof. First suppose that Φ is a paddle. If P2 is not sequential, then, as
M is sequentially 4-connected, {α, β} ∪ P1 is sequential. Choose a sequen-
tial ordering (z1, z2, . . . , zk) of {α, β} ∪ P1 with the greatest j such that
{α, β} ⊆ {z1, z2, . . . , zj}. We may assume that {α, β} = {zj−1, zj}. If
j = k, then (z1, z2, . . . , zj−2) is a sequential ordering of P1 and so P1 is
sequential. Therefore, we may assume that j < k. Since Φ is a paddle,
⊓(P2, {α, β}) = 2 and so α, β ∈ cl(P2). It now follows by two applications of
Lemma 2.9 that (z1, z2, . . . , zj−2, zj+1, α, β, zj+2, . . . , zk) is a sequential or-
dering of {α, β}∪P1 , contradicting the maximality of the choice of j. Hence
P1 is sequential. Dually, if Φ is a copaddle, then either P1 or P2 is sequential.

Now suppose that

⊓({α, β}, P1) = ⊓(P1, P2) = ⊓(P2, {α, β}) = 1

and P1, P2 6⊆ fcl({α, β}. Assume that P2 is not sequential. Then both P1

and P1 ∪ {α, β} are sequential. Let (z1, z2, . . . , zk) be a sequential ordering
of P1 ∪{α, β}. Then, by repeated application of Lemma 2.4 (see [4, Lemma
4.3]), we may assume that (zk−1, zk) = (α, β). Then P1 ∪ α is 3-separating.
As α and β are clones and ⊓({α, β}, P1) = 1, we have α 6∈ cl(P1) and
β 6∈ cl(P1). Therefore,

2 = r(P1 ∪ α) + r(P2 ∪ β) − r(M)

= r(P1) + 1 + r(P2) + 1 − r(M)

= r({α, β} ∪ P1) + r(P2) + 1 − r(M).

But then r({α, β} ∪ P1) + r(P2) − r(M) = 1 and so ({α, β} ∪ P1, P2) is a
2-separation of M ; a contradiction as M is 3-connected. Therefore P2 is
sequential. By symmetry, so too is P1. �

4. Clonal replacements

Let M be a 3-connected matroid and (A,B) be a 3-separation of M . We
want to add a clonal pair {α, β} on the guts of (A,B) and then delete B,
thereby replacing B by the clonal pair {α, β}. In this section, we give a
formal description of this process and derive some of its properties. These
are then used to prove Lemma 4.12, the main result of the section. That
lemma shows that, under certain natural conditions, the matroid one derives
from this construction is 4-connected.
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The construction proceeds as follows. Use the principal modular cut of
M generated by {clM (B)} to adjoin the element α to M . In the resulting
matroid Mα, use the principal modular cut generated by {clMα

(B)} to adjoin
the element β and get the matroid M+.

The next lemma can be proved by determining all the flats of M+, which
can be done using [8, Corollary 7.2.4]. We omit the straightforward details.

Lemma 4.1. The elements α and β are clones in M+.

For disjoint sets X and Y of the ground set E of a matroid M ′, let
κM ′(X,Y ) = min{λM ′(S) : X ⊆ S ⊆ E − Y }. By Geelen, Gerards,
and Whittle’s extension of Tutte’s Linking Theorem [3, Theorem 4.2], M+

has a minor N with ground set A ∪ {α, β} and with κN (A, {α, β}) =
κM+(A, {α, β}) such that N |{α, β} = M+|{α, β} and N |A = M+|A = M |A.
Now M is 3-connected and α and β are not added as loops, coloops, or par-
allel elements, so M+ is 3-connected. Moreover, {α, β} ⊆ clM+(B), so

2 ≤ κM+(A, {α, β}) ≤ λM+(A) = λM (A) = 2.

Because α and β are clones in M+, they are also clones in N .

The matroid N is called the clonal replacement of B by {α, β}. We
shall show below that N is unique. Since N |A = M+|A and α and β are
clones in N , to determine N , we need only specify rN (X ∪ α), rN (X ∪ β),
and rN (X ∪ {α, β}) for all subsets X of A. Lemmas 4.3 and 4.4 do this.
Observe that, since κN (A, {α, β}) = κM+(A, {α, β}) = 2 and rN ({α, β}) =
rM+({α, β}) = 2, we have

r(N) = rN (A ∪ {α, β}) = rN (A) = rM+(A) = rM (A).

Since N is a minor of M+, there is an independent set CN and a coinde-
pendent set DN in M+ such that N = M+/CN\DN .

We omit the straightforward proof of the next result.

Lemma 4.2. The set CN is a basis of M/A.

Lemma 4.3. The following are equivalent for a subset X of A.

(i) clN (X) ∩ {α, β} 6= ∅;
(ii) {α, β} ⊆ clN (X);
(iii) ⊓M (B,X) = 2;
(iv) ⊓M (B,X) ≥ 2.

Proof. Since α and β are clones in N , (i) and (ii) are equivalent. Moreover,
by Lemma 2.7, ⊓M (B,X) ≤ ⊓M (B,A) = 2, so (iii) and (iv) are equivalent.
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As {α, β} is independent in N , the set CN ∪ {α, β} spans B ∪ {α, β} in
M+. Now {α, β} ⊆ clN (X) if and only if rN (X∪{α, β}) = rN (X) = rM (X).
But

rN (X ∪ {α, β}) = rM+/CN\DN
(X ∪ {α, β})

= rM+(X ∪ {α, β} ∪ CN ) − rM+(CN )

= rM+(X ∪ B) − (rM (B) − 2)

= rM (X ∪ B) − rM (B) + 2

= rM (X) + rM (B) − ⊓M(X,B) − rM (B) + 2

= rM (X) + (2 − ⊓M (X,B)).

We conclude that rN (X∪{α, β}) = rM (X) if and only if 2 = ⊓M (X,B). �

Lemma 4.4. For a subset X of A,

(i) α ∈ clN (X ∪ β) − clN (X) if and only if ⊓M(B,X) = 1; and
(ii) α 6∈ clN (X ∪ β) if and only if ⊓M (B,X) = 0.

Proof. For (i), we have that the following statements are equivalent, where
we note that, by Lemma 4.2, |CN | = rM (B) − 2.

(a) α ∈ clN (X ∪ β) − clN (X);
(b) rN (X ∪ β ∪ α) = rN (X) + 1;
(c) rM+(X ∪ CN ∪ β ∪ α) = rM+(X ∪ CN ) + 1;
(d) rM (X ∪ B) = rM+(X) + |CN | + 1;
(e) rM (X) + rM (B) − ⊓M (B,X) = rM (X) + (rM (B) − 2) + 1;
(f) ⊓M (B,X) = 1.

The equivalence of (a) and (b) follows because α and β are clones. The
equivalence of (c) and (d) relies on the fact that

rM+(X) = rM (X) = rN (X) = rM+(X ∪ CN ) − |CN |.

We conclude that (i) holds.

To prove (ii), note that, by Lemma 2.7,

0 ≤ ⊓M (B,X) ≤ ⊓M (B,A) ≤ 2.

By the previous lemma, ⊓M (B,X) = 2 if and only if α ∈ clN (X). By
(i), ⊓M (B,X) = 1 if and only if α ∈ clN (X ∪ β) − clN (X). The remaining
possibility, that ⊓M(B,X) = 0, must occur if and only if α 6∈ clN (X∪β). �

We now know that clonal replacement is uniquely defined. Next we use
the last two lemmas to give a more useful description of N .

Lemma 4.5. Let Z be an arbitrary basis of M/A and Y = B − Z. Then
N = M+/Z\Y.
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Proof. We shall prove that the rank functions of N and M+/Z\Y coincide.
Let X ⊆ A. Then

(1) rM+/Z\Y (X) = rM+(X ∪ Z) − |Z| = rM (X ∪ Z) − |Z|.

But |Z| = rM/A(Z) = rM (A ∪ Z) − rM (A), so rM (A ∪ Z) = rM (A) + |Z| =
rM (A) + rM (Z). Hence rM (X ∪ Z) = rM (X) + rM (Z) as X ⊆ A. Thus,
from (1), rM+/Z\Y (X) = rM (X), so (M+/Z\Y )|A = M |A = N |A.

Now ⊓M(B,X) ∈ {0, 1, 2}. Suppose ⊓M(B,X) = 2. Then, by
Lemma 4.3, {α, β} ⊆ clN (X). We have

(2) rM+(B ∪ X) = rM+(B) + rM+(X) − 2.

Since Z is a basis of M/A, the set Z is independent in M+|B and has r(B)−2
elements. Thus Z ∪ {α, β} has r(B) elements and this set is independent
since α and β were freely added to B. Hence Z ∪ {α, β} spans B in M+.
Therefore, from (2), rM+(Z ∪ {α, β} ∪ X) = rM (B) + rM (X) − 2, so

rM+/Z\Y (X ∪ {α, β}) = rM (B) + rM (X) − 2 − rM (Z) = rM+(X) = rN (X).

Thus rM+/Z\Y (X ∪ {α, β}) = rN (X) and so rM+/Z\Y (X ∪ α) = rN (X ∪ α)
and rM+/Z\Y (X ∪ β) = rN (X ∪ β).

Next suppose that ⊓M (B,X) = 0. Then, by Lemma 4.4, α 6∈ clN (X ∪β).
Thus β 6∈ clN (X) as α and β are clones. Hence rN (X∪{α, β}) = rN (X)+2.
Now rM (B ∪ X) = rM (B) + rM (X), so rM+(Z ∪ {α, β} ∪ X) = rM (B) +
rM (X). Hence

rM+/Z\Y (X ∪ {α, β}) = rM (B) + rM (X) − rM (Z)

= rM (X) + 2

= rM+/Z\Y (X) + 2.

Thus rN (X∪{α, β}) = rM+/Z\Y (X∪{α, β}) and rN (X∪γ) = rM+/Z\Y (X∪
γ) for each γ in {α, β}.

Finally, suppose that ⊓M(B,X) = 1. Then, by Lemma 4.4, rN (X ∪
{α, β}) = rN (X ∪ α) = rN (X ∪ β) = rN (X) + 1. Now

rM+(X ∪ Z ∪ β) ≥ rM+(X ∪ Z) = rM+(X) + rM+(Z).

On the other hand,

rM+(X ∪ Z ∪ β) ≤ rM+(X ∪ Z ∪ β ∪ α)

= rM+(X ∪ B)

= rM+(X) + rM+(B) − 1

= rM+(X) + rM+(Z) + 1.

If rM+(X ∪Z ∪β) = rM+(X ∪Z), then, as α and β are clones, rM+(X ∪Z ∪
β∪α) = rM+(X∪Z); a contradiction. Thus rM+(X∪Z∪β) > rM+(X∪Z),
so rM+(X ∪ Z ∪ β) = rM+(X) + rM+(Z) + 1. Hence rM+/Z\Y (X ∪ β) =
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rM+(X) + 1 = rM+/Z\Y (X) + 1. We conclude that the rank functions of N

and M+/Z\Y do indeed coincide, so these two matroids are equal. �

Lemma 4.6. Suppose Z ⊆ E(M).

(i) If Z ⊇ B, then

rM (Z) = rN ((Z − B) ∪ {α, β}) + rM (B) − 2.

(ii) If Z ⊆ A, then rM (Z) = rN (Z).

Proof. Part (ii) follows immediately from the fact that N |A = M |A. For
(i), we note that rM (Z) = rM+(Z ∪ {α, β}). Recall that N = M+/CN\DN

where |CN | = rM (B) − 2 and CN ∪ {α, β} spans B ∪ {α, β} in M+. Thus

rN ((Z − B) ∪ {α, β}) = rM+((Z − B) ∪ CN ∪ {α, β}) − rM (B) + 2

= rM+(Z ∪ {α, β}) − rM (B) + 2

= rM (Z) − rM (B) + 2.

Hence (i) holds. �

Lemma 4.7. Let (A,B) be a 3-separation in a 3-connected matroid M . Let
N be the clonal replacement of B by {α, β}. Suppose X ⊆ A and y ∈ A−X.
Then

(i) y ∈ clM (X) if and only if y ∈ clN (X); and
(ii) y ∈ cl∗M (X) if and only if y ∈ cl∗N (X).

Proof. Since M |(X ∪ y) = N |(X ∪ y), part (i) is immediate. For (ii), we
note that y ∈ cl∗M (X) if and only if y 6∈ clM (E(M) − (X ∪ y)). The latter
holds if and only if y 6∈ clM+(E(M+) − (X ∪ y)).

Now

cl∗N (X) = clN∗(X)

= cl(M+/CN\DN )∗(X)

= cl(M+)∗\CN /DN
(X)

= cl(M+)∗(X ∪ DN ) − (CN ∪ DN ).

Since y ∈ A−X, we have y ∈ cl∗N (X) if and only if y ∈ cl∗M+(X∪DN ). The
latter holds if and only if y 6∈ clM+(E(M+)−(X∪DN ∪y)). But CN ∪{α, β}
spans DN , so clM+(E(M+) − (X ∪ DN ∪ y)) = clM+(E(M+) − (X ∪ y)).
Hence y ∈ cl∗N (X) if and only if y 6∈ clM+(E(M+) − (X ∪ y)). By the first
paragraph, the latter holds if and only if y ∈ cl∗M (X). Thus (ii) holds. �

Lemma 4.8. Let (A,B) be a 3-separation in a 3-connected matroid M . Let
N be the clonal replacement of B by {α, β}. If e ∈ A and Z ⊆ A − e, then
λN\e(Z) = λM\e(Z).
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Proof. We have λN\e(Z) = rN\e(Z) + rN\e(E(N\e) − Z) − r(N\e), so

λN\e(Z) = rM\e(Z) + rM+\e/CN\DN
(E(N\e) − Z) − r(N)

= rM\e(Z) + rM+\e((E(N\e) ∪ CN ) − Z) − |CN | − r(M) + |CN |

= rM\e(Z) + rM\e(E(M\e) − Z) − r(M\e)

= λM\e(Z)

where the second-last equality holds because (E(N\e) − Z) ∪ CN contains
CN ∪ {α, β}, which spans CN ∪ DN ∪ {α, β} in M+\e. �

Corollary 4.9. Let (A,B) be a 3-separation in a 3-connected matroid M .
Let N be the clonal replacement of B by {α, β}. If e ∈ A and Z ⊆ A − e,
then Z is sequential in N\e if and only if Z is sequential in M\e.

Proof. Suppose that Z is sequential in N\e. Then there is a sequential
ordering (z1, z2, . . . , zn) of Z in N\e. Thus λN\e({z1, z2, . . . , zi}) = 2 for all
i in {2, 3, . . . , n}. Hence λM\e({z1, z2, . . . , zi}) = 2 for all such i, and Z is
sequential in M\e. The proof of the converse is similar. �

Lemma 4.10. Let (A,B) be a 3-separation in a 3-connected matroid M .
Let N1 and N2 be the clonal replacements of B by {α, β} in M and M∗,
respectively. Then N∗

1 = N2.

Proof. Let X, {y}, Z be disjoint sets whose union is A∪{α, β}. The matroids
N1 and N2 are dual to each other if and only if, for every such collection of
sets, y ∈ clN1

(X) if and only if y 6∈ clN2
(Z).

Suppose first that X ⊆ A and y ∈ A. By Lemma 4.7, the following
statements are equivalent:

(a) y ∈ clN1
(X);

(b) y ∈ clM (X);
(c) y ∈ cl∗M∗(X);
(d) y ∈ cl∗N2

(X);
(e) y ∈ clN∗

2
(X);

(f) y 6∈ clN2
(Z).

Next assume that X ⊆ A and y = α. Then the following are equivalent.

(a) α ∈ clN1
(X);

(b) ⊓M (B,X) = 2;
(c) ⊓M (B,Z − β) + λM (X) − λM (Z − β) = 2;
(d) ⊓M (B,Z − β) + λM (B ∪ (Z − β)) − λM (Z − β) = 2;
(e) λM (B) − ⊓M∗(B,Z − β) = 2;
(f) ⊓M∗(B,Z − β) = 0;
(g) α 6∈ clN2

(Z).
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The equivalence of (a) and (b) follows from Lemma 4.3; for (b) and (c),
use [9, Lemma 2.4(iv)]; for (d) and (e), use Lemma 2.6; for (f) and (g), use
Lemma 4.4.

Next suppose that {α, β} ⊆ X. Then Z ⊆ A and this case is symmetric
to the case when X ⊆ A and y ∈ A. Likewise, the case when α ∈ X and
y = β is symmetric to the case when X ⊆ A and y = α.

By symmetry, the only remaining case is when α ∈ X and β ∈ Z. Suppose
y ∈ clN1

(X). In particular, suppose y ∈ clN1
(X − α). Then, from above,

y ∈ clN∗

2
(X − α), so y 6∈ clN2

(Z ∪ α). Hence y 6∈ clN2
(Z). Now suppose

y 6∈ clN1
(X −α). Then, by the Mac Lane-Steinitz condition, α ∈ clN1

((X −
α)∪y). Thus α ∈ clN∗

2
((X−α)∪y). If α 6∈ clN∗

2
(X−α), then y ∈ clN∗

2
((X−

α)∪α) = clN∗

2
(X), so y 6∈ clN2

(Z). If α ∈ clN∗

2
(X−α), then α ∈ clN1

(X−α),
so clN1

(X) = clN1
(X−α) and y ∈ clN1

(X−α); a contradiction. We conclude
that, when α ∈ X and β ∈ Z, if y ∈ clN1

(X), then y 6∈ clN2
(Z).

Finally, when α ∈ X and β ∈ Z, assume that y 6∈ clN1
(X). Then y 6∈

clN1
(X − α), so y 6∈ clN∗

2
(X − α). Hence y ∈ clN2

(Z ∪α). If y ∈ clN2
(Z), we

have the desired result, so assume that y 6∈ clN2
(Z). Then α ∈ clN2

(Z ∪ y).
Moreover, α 6∈ clN2

(Z) otherwise clN2
(Z∪α) = clN2

(Z). Thus α ∈ clN∗

2
((X−

α)∪y), so, from above, α ∈ clN1
((X−α)∪y). Then α ∈ clN1

(X−α) otherwise
y ∈ clN1

(X). Thus α ∈ clN∗

2
(X −α) so α 6∈ clN2

(Z ∪ y); a contradiction. �

Having developed this theory of clonal replacements, we are now ready to
use it to prove the main result of the section, Lemma 4.12. We shall require
one more preliminary result.

Lemma 4.11. Let (S,E(M) − S) be a non-sequential 3-separation in a 3-
connected matroid M . Suppose that, for every non-sequential 3-separation
(U, V ) of M , either S ⊆ fcl(U) or S ⊆ fcl(V ). If X is a non-sequential 3-
separating set that is contained in S, then (X,E(M)−X) ∼= (S,E(M)−S).

Proof. Assume that (X,E(M) − X) 6∼= (S,E(M) − S). Since E(M) − X ⊇
E(M) − S and the latter is non-sequential, so too is the former. Thus
(X,E(M) − X) is non-sequential. Therefore either S ⊆ fcl(X) or S ⊆
fcl(E(M) − X). Thus either fcl(X) ⊆ fcl(S) ⊆ fcl(X), or fcl(X) ⊆ fcl(S) ⊆
fcl(E(M) − X). The latter case implies that X ⊆ fcl(E(M) − X), so X
is sequential; a contradiction. Hence fcl(X) = fcl(S). Since (S,E(M) −
S) is non-sequential, it follows, by [9, Lemma 3.3], that (S,E(M) − S) ∼=
(X,E(M) − X); a contradiction. �

Lemma 4.12. Let (S,E(M) − S) be a non-sequential 3-separation in a 3-
connected matroid M . Suppose that E(M) − S is fully closed, and that,
for every non-sequential 3-separation (U, V ) of M , either S ⊆ fcl(U) or
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S ⊆ fcl(V ). If S contains no triangles or triads of M , then the clonal
replacement, N , of E(M) − S by {α, β} is 4-connected.

Proof. We have rN (S ∪ {α, β}) = rN (S). Let (X,Y ) be a k-separation of
N for some k in {1, 2, 3}. We shall show that we can choose (X,Y ) so that
{α, β} ⊆ X or {α, β} ⊆ Y . Suppose, instead, that α ∈ X and β ∈ Y . Then
|X|, |Y | ≥ 2. We may suppose that |Y | ≥ |X|. Assume that α ∈ clN (X−α).
Then β ∈ clN (X−α) and (X∪β, Y −β) is a k-separating partition of N that
is a k-separation unless |Y | = k. In the exceptional case, |E(N)| = 2k. But
|E(N)| = |S| + 2 and S is non-sequential, so |E(N)| ≥ 6. Thus k = 3 and
Y is a triangle of N and hence of M ; a contradiction. We may now suppose
that α 6∈ clN (X − α). Then (X − α, Y ∪ α) is a k-separating partition of
N and α ∈ cl∗N (X − α), so β ∈ cl∗N (X − α). Hence (X ∪ β, Y − β) is a
k-separation of N unless |E(N)| = 6, and X and Y are triads of N . Since α
and β are clones in N , it is straightforward to show that N ∼= U4,6. Hence
S contains a triad of M ; a contradiction. Thus we may assume that the
k-separation (X,Y ) of N is chosen so that {α, β} ⊆ X.

Let R = E(M) − S. Then, since N = M+/CN\DN where |CN | =
rM (R) − 2 and CN ∪ {α, β} spans R in M+, we have

rM ((X − {α, β}) ∪ R) + rM (Y ) − r(M)

= rM+(X ∪ R) + rN (Y ) − r(N) − |CN |

= rN (X) + |CN | + rN (Y ) − r(N) − |CN | = λN (X).

Since M is 3-connected, we deduce that λN (X) = 2, that is, (X,Y ) is a
3-separation of M .

If Y is sequential in N , then, by Lemma 4.7, Y is sequential in M , so Y
contains a triangle or triad of M ; a contradiction. We conclude that Y is non-
sequential. Now suppose that X is sequential in N having (x1, x2, . . . , xk) as
a sequential ordering. As α and β are clones, we may assume that (α, β) =
(xi, xi+1) for some i. If i > 3, then {x1, x2, x3} is sequential in N and hence
in M , so {x1, x2, x3} is a triangle or triad of M ; a contradiction. Thus
i ≤ 3. If i ≤ 2, we may relabel so that i = 1. If i = 3, then {x1, x2, α, β}
has rank 2 in N or N∗ and again we may relabel so that i = 1. But,
when i = 1, we have x3 ∈ clN ({α, β}) or x3 ∈ clN∗({α, β}). In the first
case, by Lemma 4.4(i), x3 ∈ clM (R) contradicting the fact that R is fully
closed in M . By Lemma 4.10, N∗ can be constructed from M∗ by the clonal
replacement of S by {α, β}. Hence, when x3 ∈ clN∗({α, β}), we also obtain
a contradiction. We deduce that X is non-sequential.

We now know that (X,Y ) is non-sequential and that X contains {α, β}.
Suppose that {α, β} ⊆ fclN (Y ). Then, for some subset X ′ of X, there is a
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3-sequence (X ′, α, β, z3, . . . , zm, Y ) in N . As X is non-sequential in N , so
too is X ′. Hence X ′ is non-sequential in M . Let Y ′ = Y ∪ {z3, z4, . . . , zm}.
Then E(M) − X ′ = Y ′ ∪ R.

We show next that Y ′∪R is non-sequential in M . Assume it is sequential.
Then, since R is 3-separating, Y ′ ∪ R has a sequential ordering in M that
begins with all the elements of R. Hence Y ′ ∪ {α, β} is sequential in N
and therefore so is Y ; a contradiction. Thus E(M) − X ′ is indeed non-
sequential in M . As X ′ ⊆ S, it follows by Lemma 4.11 that (X ′, E(M) −
X ′) ∼= (S,E(M) − S) in M . Thus fclM (X ′) = fclM (S). Since S is 3-
separating, there is a 3-sequence (X ′, u1, u2, . . . , up, E(M)−S) in M . Thus,
for all j in [p], the set X ′ ∪ {u1, u2, . . . , uj} is 3-separating in N . Therefore
Y ′ ∩ (X ′ ∪ {u1, u2, . . . , uj}) is 3-separating in N . But Y ′ = {u1, u2, . . . , up},
so Y ′ is sequential in N . Hence so is Y ; a contradiction.

We may now assume that {α, β} 6⊆ fclN (Y ). Let fclN (Y ) = Z. Then
Z ⊆ S. As Z is non-sequential in N , it is non-sequential in M . By
Lemma 4.11, fclM (Z) = fclM (S). Thus fclN (Y ) ⊇ S, so fclN (Y ) ⊇ {α, β}; a
contradiction.

We conclude that N has no 3-separations, so N is 4-connected. �

5. Some technical results

Geelen and Whittle [2, Theorem 5.1] proved that a 4-connected matroid
has an element z whose deletion or contraction is sequentially 4-connected.
In this section, we shall extend this result by showing that the element z can
be chosen to avoid a specified clonal pair. In order to prove this extension,
we shall first extend Lemmas 5.3 and 5.4 from [2]. Our proofs of these results
will very closely follow the original proofs. We also close a small gap in the
original proof of [2, Lemma 5.3].

We shall use the following result [2, Lemma 5.2].

Lemma 5.1. Let {t1, t2, t3, a1, a2, a3, b1, b2, b3} be distinct elements of a 4-
connected matroid M . Suppose, for each k in {1, 2, 3}, that M\tk is (4, 4)-
connected and that {t1, t2, t3, ak, bk} − {tk} is a quad of M\tk. Then M/t1
is sequentially 4–connected.

Lemma 5.2. Let M be a 4-connected matroid with at most 11 elements
and let x, a, p, b1, b2, c1, c2 be distinct elements of M . Suppose that M\x is
(4, 4)-connected with a quad {a, p, b1, b2}, and that {b1, b2, c1, c2} is a quad
of M\p. Suppose that M/b1 is not sequentially 4-connected. Then

(i) M/b1 has a non-sequential 3-separation (R,G) with |R −
{x, a, p, b2, c1, c2}| = 2;
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(ii) M/c1,M/c2,M\c1, or M\c2 is sequentially 4-connected; and
(iii) if none of M/b2,M\b1, or M\b2 is sequentially 4-connected and

{c1, c2} is a clonal pair of M , then,
(a) for some permutation (i, j) of {1, 2}, there are elements e1 and

e2 of E(M) − {x, a, p, b1, b2, c1, c2} such that {bj , p, e1, e2} is a
quad of M\bi; and

(b) M/p,M/e1,M/e2,M\e1, or M\e2 is sequentially 4-connected.

Proof. Let D = E(M) − {x, a, p, b1, b2, c1, c2}, let P = {a, p, b1, b2}, and let
Q = {b1, b2, c1, c2}. The quads Q and P imply that

λM\x(Q ∪ P ) = rM\x(Q ∪ P ) + r∗M\x(Q ∪ P ) − |Q ∪ P | ≤ 4 + 4 − 6 = 2.

Thus equality holds here, so r(Q ∪ P ) = 4. But λM\x(Q ∪ P ) = r(D) +
r(Q ∪ P ) − r(M), so r(D) = r(M) − 2. Now D is 3-separating in M\x but
not in M , so x 6∈ cl(D). The cocircuits P ∪ x and Q ∪ p of M imply that
r(D ∪ a) = r(D) + 1 and r(D ∪ {a, x}) < r(M). Hence r(D ∪ {a, x}) =
r(D ∪ a) = r(D ∪ x), so x ∈ cl(D ∪ a) and a ∈ cl(D ∪ x).

Since M/b1 is not sequentially 4-connected, it has a non-sequential 3-
separation (R,G). As M is 4-connected, b1 ∈ clM (R) ∩ clM (G). Since
{a, p, b2} is a triangle of M/b1, we may assume that {a, p, b2} ⊆ R. Since
{b2, c1, c2} is also a triangle of M/b1, we may also assume that either
{c1, c2} ⊆ G, or {c1, c2} ⊆ R. In the latter case, G ⊆ D ∪ x. But the
cocircuit Q ∪ p of M implies that b1 6∈ cl(D ∪ x), so b1 6∈ cl(G); a contra-
diction. We conclude that {c1, c2} ⊆ G. Moreover, as b1 ∈ cl(G), we must
have that x ∈ G. Thus |R∩D| ≥ 2 otherwise (R,G) is sequential since R is
a 4-element 3-separating set containing a triangle.

Next we show that |R ∩ D| = 2, that is, that (i) holds. Suppose not.
Then R contains at least three elements of D. Then, as |G| ≥ 4, it follows
that |D| = 4, that |G| = 4, and that R contains exactly three elements of
D. Thus G is a quad of M/b1 so, by orthogonality, D is not a circuit of
M/b1. Moreover, b1 6∈ clM (D), so D is independent in M/b1 and hence in
M\x. As D is 3-separating in M\x, we deduce, since rM\x(D) = |D|, that
r∗M\x(D) = 2. Thus R ∩ D is a triad of M\x. The circuit G ∪ b1 of M

implies that x ∈ cl((G ∪ b1)− x), so R ∩D is a triad of M ; a contradiction.
We conclude that |R ∩ D| = 2.

We now show the following.

5.2.1. If r(M) ≥ 5, then r(M) = 5 and r(D) = 3.

Let R∩D = {d1, d2}. As b2 ∈ clM/b1(G), the 3-separation (R− b2, G∪ b2)
of M/b1 is equivalent to (R,G). Since (R,G) is not sequential and |R −
b2| = 4, we deduce that R − b2 is a quad of M/b1, that is, {a, p, d1, d2}
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is a quad in M/b1. Hence {a, p, d1, d2} is a cocircuit in M . Moreover,
r({a, p, d1, d2, b1, b2}) = 4. Since {b1, b2, c1, c2} is a circuit of M , we have
r({a, p, d1, d2, b1, b2, c1, c2}) ≤ 5. As M is 4-connected and r(M) ≥ 5, it
follows that r(M) = 5 = r({a, p, d1, d2, b1, b2, c1, c2}). Since r(D) = r(M) −
2, we deduce that r(D) = 3. Thus (5.2.1) holds.

Next we show that (ii) holds. This requires some case analysis. First
observe that, by Lemma 2.19 and duality, (ii) holds if r(M) ≤ 4 or r∗(M) ≤
4. Thus, we may assume r(M), r∗(M) ≥ 5. Hence r(M) = 5 and r(D) = 3.
Moreover, either |E(M)| = 10 and |D| = 3; or |E(M)| = 11 and |D| = 4.

If clM ({a, p, d1, d2}) contains {c1, c2}, then fclM/b1(R) = E(M/b1), so
(R,G) is a sequential 3-separation of M/b1; a contradiction. Thus, by
possibly interchanging the labels on c1 and c2, we may assume that c1 6∈
clM ({a, p, d1, d2}). As M has {a, p, d1, d2, b1} as a circuit, r({a, p, d1, d2}) =
4, so r({a, p, d1, d2, c1}) = 5. Now suppose that M/c1 is not sequen-
tially 4-connected, and has (J1,K1) as a non-sequential 3-separation. Then
c1 ∈ clM (J1) ∩ clM (K1). As r(M/c1) = 4, both J1 and K1 have rank 3 in
M/c1. Thus neither J1 nor K1 contains {a, p, d1, d2}. Also, as {a, p, d1, d2}
is a cocircuit of M/c1, we deduce that each of J1 and K1 contains two ele-
ments of {a, p, d1, d2}. Since {c2, b1, b2} is a circuit of M/c1, we may assume
that {c2, b1, b2} ⊆ J1. As c1 ∈ cl(K1) and {b1, b2, c1, c2, p} is a cocircuit of
M , it follows by orthogonality that p ∈ K1. Thus p 6∈ cl(J1) otherwise we
could move p into J1 to get a contradiction. The circuit {a, p, b1, b2} of M
now implies that a ∈ K1.

If at least one of d1 and d2 is in K1, then, since {a, p, d1, d2} is
a cocircuit of M , we may assume that both are. Then the cir-
cuits {a, p, d1, d2, b1}, {a, p, b1, b2}, and {b1, b2, c1, c2} of M imply that
fclM/c1(K1) ⊇ E(M/c1); a contradiction. Thus we may assume that
{d1, d2} ⊆ J1. As rM/c1(J1) = 3, we have rM (J1 ∪ c1) = 4, so
rM/b1((J1 − b1) ∪ c1) = 3.

Now rM/b1({a, p, d1, d2, b2}) = 3 and rM/b1({d1, d2, c1, c2, b2}) = 3.
If rM/b1({d1, d2, b2}) = 3, then rM/b1({a, p, d1, d2, c1, c2, b2}) = 3, so
clM/b1(R1) ⊇ {b2, c1, c2}. Hence (R,G) is a sequential 3-separation of
M/b1; a contradiction. We deduce that rM/b1({d1, d2, b2}) = 2, so M has
{d1, d2, b1, b2} as a circuit.

Next consider c2, supposing first that c2 ∈ clM ({a, p, d1, d2}). As
{a, p, d1, d2, b1}, {d1, d2, b1, b2}, and {b1, b2, c2, c1} are circuits of M , we de-
duce that |clM ({a, p, d1, d2})| ≥ 8. But M has rank 5 and at most eleven
elements. Hence M has a cocircuit with at most three elements. We
deduce that c2 6∈ clM ({a, p, d1, d2}). If we assume that M/c2 is not se-
quentially 4-connected and has (J2,K2) as a non-sequential 3-separation,
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then the argument given for c1 and (J1,K1) gives that we may assume that
{c1, b1, b2, d1, d2} ⊆ J2 and {a, p} ⊆ K2.

Now take i in {1, 2}. If Ji meets D−{d1, d2}, then, since D is either a 3-
element independent set or a 4-element circuit, we may assume that Ji ⊇ D.
Hence Ki ⊆ {a, p, x}; a contradiction. We deduce that Ji ∩ D = {d1, d2}.

Suppose that x is in K1 or K2, say K1. Then K2 ⊆ K1. But ci ∈
clM (Ki), so clM (K1) ⊇ {a, p, x, c1, c2} ∪ (D −{d1, d2}). But rM/c1(K1) = 3,
so rM (K1∪c1) = 4. Hence {b1, b2, d1, d2} contains and therefore is a cocircuit
of M . However, this set is also a circuit of M ; a contradiction.

We may now assume that x ∈ J1 ∩ J2. Then Ki is a quad of M/ci for
each i. Thus {a, p, d3, d4} is a cocircuit of M where {d3, d4} = D−{d1, d2}.
Recall that {a, p, d1, d2} is also a cocircuit of M . Then M has a cocircuit
C∗ contained in {p, d1, d2, d3, d4}. The circuit {a, p, b1, b2} of M implies
that C∗ ⊆ {d1, d2, d3, d4}. But r({d1, d2, d3, d4}) = 3, so {d1, d2, d3, d4} is
3-separating in M ; a contradiction. We conclude that (ii) holds.

Now assume that none of M/b2,M\b1, or M\b2 is sequentially 4-
connected and that {c1, c2} is a clonal pair of M . Then r(M) ≥ 5. Next we
observe that M\b1 and M\b2 are (4, 4)-connected. This is certainly true if
|E(M)| = 10, so suppose that |E(M)| = 11. Then the 3-separation (R,G)
of M/b1 has |R| = |G| = 5, so M/b1 is not (4, 4)-connected. Hence, by
Lemma 2.3, M\b1 is (4, 4)-connected. By symmetry, so is M\b2.

Since M\b1 is not sequentially 4-connected, it has a quad Db1 .

5.2.2. Db1 ∩ {c1, c2} = ∅.

Suppose Db1 meets {c1, c2}. Then, by Lemma 2.20, {c1, c2} ⊆ Db1 .
If {a, p, b2} ⊆ E(M\b1) − Db1 , then b1 ∈ cl(E(M\b1) − Db1), a contra-
diction. Hence Db1 meets {a, p, b2}. By orthogonality with the cocir-
cuit {a, p, b2, b1, x} of M , we deduce that |Db1 ∩ {a, p, b2, x}| ≥ 2. But
{c1, c2} ⊆ Db1 , so |Db1 ∩ {a, p, b2, x}| = 2. Now the circuit {b1, b2, c1, c2}
implies that b2 6∈ Db1 . Moreover, x 6∈ Db1 otherwise, as Db1 − x ⊆
{c1, c2, b1, b2, p, a} = E(M\x) − D, we have x ∈ cl(E(M\x) − D). But
λM\x(E(M\x)−D) = 2, so λM (E(M)−D) = 2 contradicting the fact that
M is 4-connected. Thus {x, b2} avoids Db1 , so Db1 = {c1, c2, a, p}. The
cocircuit Db1 ∪ b1 contradicts the fact that a ∈ cl(D ∪ x), so (5.2.2) holds.

By symmetry:

5.2.3. Db2 ∩ {c1, c2} = ∅.

We now establish (iii)(a) by showing the following.
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5.2.4. For some i in {1, 2}, the set D has a subset {e1, e2} so that Dbi
=

{bj , p} ∪ {e1, e2} where {i, j} = {1, 2}.

Assume that the assertion fails for i = 1. If b2 6∈ Db1 , then {c1, c2, b2} ⊆
E(M\b1) − Db1 , so b1 is in the closure of the last set; a contradiction.
Hence b2 ∈ Db1 . The cocircuit {b1, b2, c1, c2, p} of M implies that b2 6∈
cl(D ∪ {a, x}). Thus Db1 − b2 6⊆ D ∪ {a, x}, so p ∈ Db1 . Hence a 6∈ Db1

otherwise b1 ∈ cl(Db1). Since the assertion fails for i = 1, we deduce that
x ∈ Db1 . Thus, for some element d′ of D, we have Db1 = {b2, p, x, d′}.

By symmetry, if the assertion fails for i = 2, then Db2 = {b1, p, x, d′′}
for some element d′′ of D. Now d′ 6= d′′ otherwise b1 ∈ cl({p, x, d1}) ⊆
cl(Db1); a contradiction. The circuits Db1 ,Db2 , and {a, p, b1, b2} imply that
cl({b1, b2, p, x}) ⊇ {d′, d′′, a}. As r(M) ≥ 5, we deduce that {c1, c2} ∪ (D −
{d′, d′′}) contains a cocircuit of M . As M is 4-connected and |E(M)| ≤ 11,
we deduce that |D| = 4. By (5.2.1), r(D) = 3, so D is a circuit of M . But
D meets the cocircuit Db1 ∪ b1 of M in the single element d′, contradicting
orthogonality. We conclude that (5.2.4) holds.

By (5.2.4), after a possible relabelling, we may assume that Db1 =
{b2, p, e1, e2} where {e1, e2} ⊆ D. Then M\x is (4, 4)-connected with a
quad {a, b1, p, b2}, and {p, b2, e1, e2} is a quad of M\b1. Part (iii)(b) holds
if M/p is sequentially 4-connected so we may assume that it is not. Thus,
by (ii) applied with (x, a, b1, p, b2, e1, e2) replacing (x, a, p, b1, b2, c1, c2), we
deduce that M/e1,M/e2,M\e1, or M\e2 is sequentially 4-connected. �

Corollary 5.3. Let M be a 4-connected matroid with at most 11 elements
including x, a, p, b1, b2, c1, c2 where {c1, c2} is a clonal pair. If M\x is (4, 4)-
connected having {a, p, b1, b2} as a quad, and M\p has {b1, b2, c1, c2} as a
quad, then E(M) − {c1, c2} contains an element y such that M\y or M/y
is sequentially 4-connected.

Proof. The last lemma showed that there is such an element y in
{b1, b2, p, e1, e2}. �

Lemma 5.4. Let M be a 4-connected matroid with a clonal pair {α, β} and
suppose that x is an element of E(M) − {α, β} such that M\x is (4, 4)-
connected having a quad P that avoids {α, β}. Then at least one of the
following holds:

(i) M/x is sequentially 4-connected;
(ii) P contains an element z such that M\z is sequentially 4-connected;

or
(iii) |E(M)| ≤ 12 and there is an element y of E(M) − {α, β} such that

M\y or M/y is sequentially 4-connected.
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Proof. Let P = {p, a, b1, b2}, where p is chosen so that, if possible, M\p is
(4, 4)-connected. Suppose that the lemma fails for M . Neither M\p nor
M/x is sequentially 4-connected. Thus, by Lemma 2.19, M has rank and
corank at least 5, so |E(M)| ≥ 10.

Now M\p has a non-sequential 3-separation (X1 ∪ x,X2) where x 6∈ X1.

5.4.1. (X1,X2) is a 3-separation of M\p, x and r(X1 ∪ x) = r(X1).

Suppose not. Then x 6∈ cl(X1) and (X1,X2) is a 2-separation of M\p, x.
Hence X1 ∪ x is not a quad of M\p. Thus |X1| ≥ 4, so (X1 ∪ p,X2) or
(X1,X2∪p) is a 3-separation of M\x contradicting the fact that this matroid
is (4, 4)-connected. Hence (5.4.1) holds.

Now {a, x, b1, b2} is a cocircuit of M\p. If either X1 ∪x or X2 contains at
least three elements of this set, then M\p has a 3-separation (Y1, Y2) with
{a, x, b1, b2} contained in Y1 or Y2. But p ∈ cl({a, b1, b2}), so (Y1, Y2) induces
a 3-separation of M ; a contradiction. Thus we may assume that a ∈ X1 and
{b1, b2} ⊆ X2. Let C = X2 − {b1, b2} and D = X1 − a. The cocircuit P ∪ x
of M implies that clM (C) avoids P ∪ x. If clM (C) meets D in D′, say, then
we replace (C,D,X1,X2) by (C ∪ D′,D − D′,X1 − D,X2 − D). Thus we
may assume that C is closed.

We may also assume that:

5.4.2. Either {α, β} ⊆ C or {α, β} ∩ C = ∅.

If not, we may suppose that α ∈ C and β ∈ D. If α ∈ cl(X2 − α), then
β ∈ cl(X2−β) and we can move β from D into C. Thus we may assume that
α 6∈ cl(X2 − α). Then we can move α from C to D to get a 3-separation of
M\p equivalent to (X1 ∪ x,X2). Hence (5.4.2) holds.

5.4.3. λM\p,x(D) = 2 = λM\x(D) and |D| ≤ 4.

By Lemma 2.4, as both X2 and {a, b1, b2} are 3-separating in M\p, x,
so too is D, the complement of their union. But D avoids {a, b1, b2}, and
{a, p, b1, b2} is a circuit, so D is also 3-separating in M\x. As the last
matroid is (4, 4)-connected, |D| ≤ 4.

5.4.4. a ∈ cl∗M\p,x(X2) and a 6∈ cl(D).

The first assertion follows since {a, b1, b2} is a triad of M\p, x and
{b1, b2} ⊆ X2. The second assertion follows by orthogonality.

5.4.5. x ∈ cl(X1) − cl(D) and a ∈ cl(D ∪ x).

Since λM\x(D) = 2 and M is 4-connected, x 6∈ cl(D). By (5.4.1), x ∈
cl(X1) = cl(D ∪ a). Hence a ∈ cl(D ∪ x).
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5.4.6. λM (C) = λM\p(C) = λM\p,x(C) = 3.

As x ∈ cl(X1) and p ∈ cl({a, b1, b2}), we deduce that λM\p,x(C) =
λM\p(C) = λM (C). As |X2| ≥ 4, we have |C| ≥ 2, so λM\p,x(C) ≥
2. Now λM\p,x(X1) = 2 = λM\p,x({a, b1, b2}). Thus, by Lemma 2.4,
λM\p,x(X1 ∪ {a, b1, b2}) ≤ 3. But λM\p,x(X1 ∪ {a, b1, b2}) = λM\p,x(C),
so λM\p,x(C) ∈ {2, 3}. Assume that λM\p,x(C) = 2. Then λM (C) = 2,
so |C| = 2. Let C = {c1, c2}. Then {c1, c2, b1, b2} is a quad of M\p. But
|D| ≤ 4, so |E(M) ≤ 11. By Lemma 5.2(ii), one of M/b1,M/c1,M/c2,M\c1,
or M\c2 is sequentially 4-connected. Thus (iii) holds unless {c1, c2} meets
{α, β}. In the exceptional case, by (5.4.2), {α, β} = {c1, c2} and (ii) holds
by Lemma 5.2(iii). Since M is a counterexample to the lemma, we deduce
that λM\p,x(C) 6= 2. Hence (5.4.6) holds.

5.4.7. |D| ≤ 3.

Suppose not. Then, by (5.4.3), |D| = 4 and λM\x(D) = 2. Thus
λM (D ∪ x) = 3. As a ∈ clM (D ∪ x), it follows that (D ∪ x,X2 ∪ p) is a
3-separation of M/a. Hence the last matroid is not (4, 4)-connected. Thus,
by Lemma 2.3, M\a is (4, 4)-connected. The choice of p implies that M\p is
(4, 4)-connected. But, by (5.4.6), |C| ≥ 3, so |X2| ≥ 5 and the 3-separation
(X1 ∪ x,X2) shows that M\p is not (4, 4)-connected. Hence (5.4.7) holds.

5.4.8. b1 ∈ cl(C ∪ b2).

As P is a quad of M\x, neither b1 nor b2 is in cl(C). If b1 6∈ cl(C∪b2), then
(X1 ∪ x ∪ {b1, b2}, C) is an equivalent 3-separation of M\p to (X1 ∪ x,X2),
so λM\p(C) = 2, contradicting (5.4.6).

5.4.9. r(X1 ∪ {b1, b2}) = r(X1) + 2.

Assume not. Then r(X1 ∪ {b1, b2}) ≤ r(X1) + 1. As C = X2 − {b1, b2},
we have r(X2 − {b1, b2}) = r(X2) − 1. Thus λM\p(C) ≤ λM\p(X2) = 2; a
contradiction.

Consider any 3-separation (Q,Q′) of M\a.

5.4.10. Both Q and Q′ meet both D ∪ x and {p, b1, b2}.

This follows immediately from the facts that a ∈ cl(D∪x)∩ cl({p, b1, b2})
and M is 4-connected.

5.4.11. If C ⊆ Q′, then b1, b2 ∈ cl(Q′).

Suppose that b1 6∈ cl(Q′). Then, by (5.4.8), b2 6∈ cl(Q′). Thus {b1, b2} ⊆ Q
so, by (5.4.10), p ∈ Q′. Moreover, (Q ∪ p,Q′ − p) is not a 3-separation of
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M\a since Q ∪ p ⊇ {p, b1, b2}. Thus p ∈ cl(Q′ − p) and p 6∈ cl(Q). As
{p, b1, b2, x} is a cocircuit of M\a, it follows by orthogonality that x ∈ Q′.
Since r(X1∪{b1, b2}) = r(X1)+2, we have r(Q−{b1, b2}) = r(Q)−2. Hence
Q−{b1, b2} is 3-separating in M\a. As Q′∪{b1, b2} contains {p, b1, b2}, and
{a, p, b1, b2} is a circuit, we deduce that Q − {b1, b2} is 3-separating in M .
Thus |Q − {b1, b2}| ≤ 2. Hence Q is independent, so Q is a cosegment
of M\a. Choose d in Q − {b1, b2}. Then {d, b1, b2} is a triad of M\a, so
{a, d, b1, b2} is a cocircuit of M . Thus d ∈ cl∗M (P ), so d ∈ cl∗M\x(P ). Hence
(P ∪ d,E(M\x) − (P ∪ d)) is a 3-separation of the (4, 4)-connected matroid
M\x; a contradiction. Thus b1 is in cl(Q′) and, by symmetry, so is b2.

5.4.12. If C ⊆ Q′, then Q−{b1, b2} is a triad of M\a containing p and two
elements of D.

By (5.4.11), Q′∪{b1, b2} is 3-separating in M\a. As M\a has no triangles,
Q′ does not span M\a. Hence Q−{b1, b2} contains a cocircuit of M\a. Thus
(Q′∪{b1, b2}, Q−{b1, b2}) is a 3-separation of M\a. Hence p ∈ Q−{b1, b2}.
As Q−{p, b1, b2} ⊆ X1∪x and p 6∈ cl(X1∪x), we have p 6∈ cl(Q−{p, b1, b2}).
Thus Q − {p, b1, b2} is 3-separating in M\a. But a ∈ cl(Q′ ∪ {p, b1, b2}), so
Q − {p, b1, b2} is 3-separating in M . Hence |Q − {p, b1, b2}| ≤ 2. Thus
|Q − {b1, b2}| = 3. Hence Q − {b1, b2} is a triad of M\a containing p. It
remains to show that x 6∈ Q−{b1, b2} which will imply that Q−{p, b1, b2} ⊆
D. Suppose x ∈ Q − {b1, b2}. Then Q − {b1, b2} meets D in a single
element, say d. Now (Q − {b1, b2, x}) ∪ a is a triad {a, p, d} of M\x. Thus
(P ∪ d,E(M\x) − (P ∪ d)) is a 3-separation of M\x, contradicting the fact
that this matroid is (4, 4)-connected. Hence Q − {p, b1, b2} ⊆ D.

5.4.13. If C ⊆ Q′, then Q is a triad of M\a containing p and two elements
of D.

Assume that the assertion fails. Then Q meets {b1, b2} and avoids x.
Without loss of generality, assume b1 ∈ Q. Then, by (5.4.10), b2 ∈ Q′. Now
|Q| = 4 and λM (Q ∪ a) = 3. Thus λM\x(Q ∪ a) ≤ 3. Also λM\x(P ) = 2
and |P ∩ (Q ∪ a)| = 3, so λM\x(P ∩ (Q ∪ a)) = 3. The submodularity of λ
implies that λM\x(P ∪ Q ∪ a) ≤ 2, so λM\x(Q′ − (P ∪ x)) ≤ 2. As M\x is

(4, 4)-connected, it follows that |Q′− (P ∪x)| ≤ 4. By (5.4.6), λM\x(C) = 3,

so C 6= Q′ − (P ∪ x) and |C| ≥ 3. Thus C $ Q′ − (P ∪ x), so |C| = 3.
Since |E(M)| ≥ 10, it follows using (5.4.5) that |D| = 3 and |Q′ ∩ D| = 1.
Let d be the element of Q′ ∩ D. As C ∪ d = Q′ − (P ∪ x), we deduce that
λM\x(C ∪ d) = 2. But λM\x(C) = 3. Hence d ∈ cl(C) contradicting the fact
that C is closed.

5.4.14. If (R,R′) is a 3-separation of M\a with x in R, and |R|, |R′| ≥ 4,
then |R ∩ {p, b1, b2}| = 1 and |R ∩ C| ≤ 2. Moreover, if |R ∩ D| 6= 0, then
|R′ ∩ C| ≤ 2.
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By (5.4.10), both R and R′ meet {p, b1, b2}. Suppose that R′ ∩ {p, b1, b2}
contains a single element, t. Since (P ∪x)−a is a cocircuit of M\a and three
elements of it are in R, it follows that (R∪t, R′−t) is a 3-separation of M\a.
But {p, b1, b2} ⊆ R ∪ t, contradicting (5.4.10). Hence |R′ ∩ {p, b1, b2}| ≥ 2,
so |R ∩ {p, b1, b2}| = 1.

Now λM\a(R) = 2 and λM\a(C) ≤ 3. Thus, by submodularity, λM\a(R ∩
C) ≤ 2 or λM\a(R ∪ C) ≤ 2. We have |R′ − C| ≥ 2. If equality holds here,
then D∪x ⊆ R, so, by (5.4.5), a ∈ cl(R); a contradiction. Thus |R′−C| > 2.
Hence if λM\a(R ∪ C) ≤ 2, then (R ∪ C,R′ − C) is a 3-separation of M\a.
Therefore, by (5.4.13), R′−C is a triad of M\a containing p and two elements
of D; a contradiction as |R′ ∩ {p, b1, b2}| ≥ 2. Thus λM\a(R ∪ C) 6≤ 2, so
λM\a(R∩C) ≤ 2. But E(M\a)−(R∩C) contains {p, b1, b2}, and {a, p, b1, b2}
is a circuit of M , so λM (R ∩ C) ≤ 2. Hence |R ∩ C| ≤ 2.

Suppose we have chosen R so that |R ∩ D| 6= 0. Then |R − C| ≥ 3. As
λM\a(C) ≤ 3 and λM\a(R

′) = 2, either λM\a(R
′ ∩ C) ≤ 2 or λM\a(R

′ ∪
C) ≤ 2. By (5.4.13), the latter does not arise, so λM\a(R

′ ∩ C) ≤ 2.
As E(M\a) − (R ∩ C) ⊇ {p, b1, b2}, we deduce that λM (R′ ∩ C) ≤ 2, so
|R′ ∩ C| ≤ 2.

5.4.15. |C| ≤ 4 and |E(M)| ≤ 12.

Suppose that |C| ≥ 5. Let (R,R′) be an arbitrary 3-separation of M\a
with x in R and |R|, |R′| ≥ 4. By (5.4.14), |R ∩ C| ≤ 2, so |R′ ∩ C| ≥ 3 and
|R ∩ D| = 0. Also |R ∩ {p, b1, b2}| = 1, so |R| ≤ 4. Hence |R| = 4 and M\a
is (4, 4)-connected.

The choice of p implies that M\p is also (4, 4)-connected. Since (X1 ∪
x,X2) is a non-sequential 3-separation of M\p and |X2| = |C| + 2 ≥ 7,
it follows that |X1 ∪ x| = 4, so |D| = 2 and X1 ∪ x is a quad of M\p.
Also |E(M)| ≥ 12. Since the lemma fails for M , it follows that M\a is
not sequentially 4-connected. As M\a is (4, 4)-connected, it has a quad, R.
From the previous paragraph, x ∈ R otherwise x ∈ R′ and |E(M)| = 9. Let
t be the unique element of R ∩ {p, b1, b2}. If t 6= p, then R − x ⊆ X2 so
x ∈ cl(X2). But X1 ∪ x is a cocircuit of M\p, so we have a contradiction to
orthogonality. Thus t = p. We may now apply Lemma 5.1 with (t1, t2, t3) =
(x, a, p). By that lemma, M/x is sequentially 4-connected; a contradiction.
We conclude that |C| ≤ 4. Hence |E(M)| ≤ 12.

We now know that M has at most 12 elements and that the lemma fails
for it. Thus we may assume M\a has a non-sequential 3-separation (R,R′)
with x in R.

5.4.16. |R ∩ D| ≤ 1.
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Assume |R ∩ D| ≥ 2. Then |R′ ∩ D| ≤ 1. We have λM\a(R) = 2 and
λM\a(D ∪ x) ≤ 3. Hence λM\a((D ∩ R) ∪ x) ≤ 2 or λM\a(D ∪ R) ≤ 2.
But a ∈ cl(D ∪ x) ⊆ cl(D ∪ R) and |E(M\a) − (D ∪ R)| = |R′ − D| ≥ 3.
Hence λM\a(D ∪ R) 6≤ 2, so λM\a((D ∩ R) ∪ x) ≤ 2. As {p, b1, b2} avoids
(D∩R)∪x, and {a, p, b1, b2} is a circuit, we deduce that λM ((D∩R)∪x) ≤ 2;
a contradiction.

5.4.17. 1 ≤ |R′ ∩ D| ≤ 2.

Suppose |R′ ∩ D| ≥ 3. Hence D $ R′. Now λM\a(R
′) = 2 and λM\a(D ∪

x) ≤ 3, so λM\a(R
′∩(D∪x)) ≤ 2 or λM\a(R

′∪D∪x) ≤ 2. As a ∈ cl(D∪x),

the latter implies that λM (R′ ∪ D ∪ x ∪ a) ≤ 2, so |R − (D ∪ x)| ≤ 2.
But R ∩ D = ∅, so |R| ≤ 3; a contradiction. Thus we may assume that
λM\a(R

′ ∩ (D ∪ x)) ≤ 2, that is, λM\a(D) ≤ 2. As a ∈ cl(E(M\a) −D), we
deduce that λM (D) ≤ 2; a contradiction since |D| ≥ 3. Thus |R′ ∩ D| ≤ 2.
Finally, R′ ∩ D 6= ∅ otherwise D ∪ x ⊆ R, so a ∈ cl(R) and (R,R′) is a
3-separation of the 4-connected matroid M .

5.4.18. If |D| = 2, then |E(M)| ≥ 11 and M\a is (4, 4)-connected.

Observe that D ∪ {x, a} is a circuit of M . As M is a counterexample to
the lemma, M/a has a non-sequential 3-separation (S, S′′) where we may
assume that S contains the triangle D ∪ x of M/a. We may also suppose
that the triangle {p, b1, b2} of M/a is contained in S or S′. As M is 4-
connected, a ∈ clM (S′). Orthogonality using the cocircuit {p, a, b1, b2, x}
of M implies that {p, b1, b2} ⊆ S′. Thus both S and S′ contain triangles,
so neither is a quad. Hence |S|, |S′| ≥ 5 and M/a is not (4, 4)-connected.
Thus, by Lemma 2.3, M\a is (4, 4)-connected.

5.4.19. |R′ ∩ D| = 2.

Suppose, to the contrary, that |R′ ∩ D| = 1. Then, by (5.4.16), |D| ≤ 2.
Now D ∪ {a, x} = X1 ∪ x and |X1 ∪ x| ≥ 4, we deduce that |D| = 2,
that D ∪ {a, x} is a quad of M\p, and that |D ∩ R| = 1. By (5.4.14), the
last equation implies that |R|, |R′| ≤ 5, so |E(M)| ≤ 11. But, by (5.4.18),
|E(M)| ≥ 11 and M\a is (4, 4)-connected. This is a contradiction since we
must have |E(M)| = 11, so |R| = 5 = |R′| and (R,R′) is a 3-separation of
M\a. We conclude that |R′ ∩ D| = 2.

5.4.20. |D| = 3.

Assume, to the contrary, that |D| = 2. Then |R ∩ D| = 0. Also, by
(5.4.18), M\a is (4, 4)-connected. The choice of p implies that M\p is (4, 4)-
connected. Now P is a quad of M\x and D ∪ {a, x} is a quad of M\p.
Moreover, by (5.4.14), |R| = 4, so R is a quad of M\a. The cocircuit
D∪{a, x, p} of M implies, by orthogonality, that p ∈ R. We may now apply
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Lemma 5.1 with (t1, t2, t3) = (x, a, p) to get that M/x is sequentially 4-
connected, contradicting the fact that M is a counterexample to the lemma.

5.4.21. r(M) > r∗(M).

Assume that r(M) ≤ r∗(M). By (5.4.20), |D| = 3. As {a, p, b1, b2} is
a cocircuit of M\x, we deduce that r(D ∪ a) = r(D) + 1 = 4. By (5.4.9),
r(D ∪ {a, b1, b2}) = r(D ∪ a) + 2. Hence r(M) ≥ 6. As |E(M)| ≤ 12, we
deduce that r∗(M) = 6 = r(M) and |E(M)| = 12. Thus |C| = 4. Hence,
by (5.4.14), |R ∩ C| = 2 = |R′ ∩ C|. Since λM (C) = 3, we deduce that C is
a circuit or a cocircuit of M . But r(D ∪ {a, b1, b2}) = r(M), so C is not a
cocircuit. Thus C is a circuit.

As |(R − C) ∩ D| = |R ∩ D| ≤ 1, (5.4.13) implies that λM\a(R − C) 6≤ 2.

Since C is a circuit, r(R′ ∪ C) ≤ r(R) + 1. Thus r(R − C) = r(R). But
|R − C| ≤ 3, so r(R) = 3 = |R − C|. Therefore R − P is a circuit of M
containing x, so x ∈ cl(E(M\x)−P ) and (P,E(M)−P ) is a 3-separation of
M ; a contradiction.

5.4.22. If z ∈ P , then M\z is not (4, 4)-connected.

By (5.4.20) and (5.4.6), |D| = 3 and |C| ≥ 3. Thus |X1 ∪ x|, |X2| ≥ 5,
so M\p is not (4, 4)-connected. The choice of M now implies that none of
M\a,M\b1, or M\b2 is (4, 4)-connected.

By (5.4.22) and Lemma 2.3, M/z is (4, 4)-connected for all z in P . But
M/z is not sequentially 4-connected, so it has a quad Dz. Moreover, Dz is
fully closed in M/z otherwise M/z is not (4, 4)-connected.

5.4.23. For each z in P , the quad Dz contains {α, β, x} and avoids P .

By Lemma 2.20, either {α, β} ⊆ Dz or {α, β} ∩ Dz = ∅. Assume that
the latter holds and consider M∗\z. It is (4, 4)-connected having Dz as a
quad. By (5.4.21), r(M∗) < r∗(M∗). Thus M∗ is not a counterexample to
the lemma. Hence neither is M ; a contradiction. Thus {α, β} ⊆ Dz.

Since P − z is a triangle of M/z, and Dz is a fully closed quad, we have
(P − z) ∩ Dz = ∅. Thus Dz ⊆ C ∪ D ∪ x. Now z ∈ clM (Dz) and P ∪ x is a
cocircuit of M containing z. Hence x ∈ Dz.

5.4.24. Dp = Db1 = Db2 .

Since each of Dp,Db1 , and Db2 is a cocircuit of M and all three contain
{α, β, x}, if two of these sets, say Dz1

and Dz2
, are distinct, then Dz2

⊆
fclM/z1

(Dz1
), contradicting the fact that Dz1

is fully closed in M/z1.
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By the last observation, cl(Dp) contains {x, p, b1, b2} and hence also con-
tains a. In addition, it contains at least three elements of D ∪ C. Thus
cl(Dp) avoids at most four elements of E(M), so 4 = r(Dp) ≥ r(M) − 1.
Hence r(M) ≤ 5. But r(M) > r∗(M) ≥ 5 and this contradiction completes
the proof of Lemma 5.4. �

Next is the main result of this section.

Theorem 5.5. Let M be a 4-connected matroid having a clonal pair {α, β}.
Then M has an element x not in {α, β} such that M\x or M/x is sequen-
tially 4-connected.

Proof. Let M be a counterexample to the theorem. First we show:

5.5.1. If x ∈ E(M) − {α, β} and M\x is (4, 4)-connected, then M\x has a
unique quad Dx, this quad contains {α, β}, and |E(M)| ≥ 10.

By Lemma 5.4, M has no quad avoiding {α, β}. Now, since M\x is not
sequentially 4-connected, it has a 3-separation (X,Y ) such that neither X
nor Y is sequential. But M\x is (4, 4)-connected, so |X| ≤ 4 or |Y | ≤ 4. We
may assume the former. As X is non-sequential, X is a quad. Therefore,
as noted above, {α, β} meets X. Thus, by Lemma 2.20, X contains {α, β}.
Hence |Y | ≥ 5 and |E(M)| ≥ 10. Furthermore, X is the unique quad of
M\x containing {α, β} since, by Lemma 2.4, the union of two such quads is
3-separating. Hence (5.5.1) holds.

Now choose e in E(M) − {α, β}. Then, by Lemma 2.3 and duality, we
may assume that M\e is (4, 4)-connected. Let De = {α, β, f, g}.

5.5.2. Both M\f and M\g are (4, 4)-connected.

Assume that M\f is not (4, 4)-connected. Then |E(M)| ≥ 11 and, by
Lemma 2.3, M/f is (4, 4)-connected. By (5.5.1), M/f has a quad P contain-
ing {α, β}. But M/f has {α, β, g} as a circuit. Hence P ∪ g is 3-separating
in M/f , contradicting the fact that this matroid is (4, 4)-connected. We
conclude that M\f is (4, 4)-connected. By symmetry, so is M\g.

5.5.3. Df ∩ Dg = {α, β}.

Assume this assertion fails. Suppose first that Df 6= Dg. Then |Df∩Dg| =
3. As Dg is a circuit, we deduce that Dg ⊆ clM\f (Df ). Hence Df ∪ Dg is
3-separating in M\f , contradicting the fact that it is (4, 4)-connected. We
may now assume that Df = Dg.

Certainly (Df , E(M) − (Df ∪ f)) is exactly 3-separating in M\f . If
(Df , E(M) − (Df ∪ f ∪ g)) is not exactly 3-separating in M\f, g, then g
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is a coloop of M |(E(M) − (Df ∪ f)) so g ∈ cl∗M\f (Df ). Hence Df ∪ g
is 3-separating in M\f ; a contradiction. Thus λM\f,g(Df ) = 2. Since
λM\f (Df ) = 2 = λM\g(Df ), it follows that {f, g} ⊆ cl(E(M)−(Df∪{f, g})).
Hence λM (Df ) = 2; a contradiction. Thus (5.5.3) holds.

Let Df = {α, β, f1, f2} and Dg = {α, β, g1, g2}. By (5.5.3), the elements
α, β, f1, f2, g1, and g2 are distinct.

5.5.4. M\e, f is 3-connected.

Suppose not. Let (X,Y ) be a 2-separation of M\e, f . As De is a circuit,
we may assume that |De ∩ X| = 2 and |De ∩ Y | = 1. But De − f is a triad
of M\e, f . Hence we obtain the contradiction that (X ∪ De, Y − De) is a
2-separation of M\e unless |Y − De| = 1, that is, unless |Y | = 2. In the
exceptional case, Y is a cocircuit of M\e, f , so Y ∪ f is a triad T ∗ of M\e.
Thus |T ∗ ∩ De| = 2, so De ∪ T ∗ is 3-separating in M\e contradicting the
fact that this matroid is (4, 4)-connected. Hence (5.5.4) holds.

5.5.5. The set {f1, f2, g1, g2} is a quad of M\e.

We know that the circuits of M include {α, β, f, g}, {α, β, f1 , f2}, and
{α, β, g1, g2}. Also, since M has no quads, the cocircuits of M in-
clude {α, β, f, g, e}, {α, β, f1 , f2, f}, and {α, β, g1, g2, g}. Now ({α, β, f1, f2}∪
{α, β, g1, g2}) − α contains a circuit C. By orthogonality with the cocircuit
{α, β, f, g, e}, we deduce that β 6∈ C, so C ⊆ {f1, f2, g1, g2}. Then, as M is
4-connected, C = {f1, f2, g1, g2}, that is, {f1, f2, g1, g2} is a circuit of M .

Now M has a cocircuit C∗ contained in ({α, β, f, g, e}∪{α, β, f1 , f2, f})−α
and containing e. By orthogonality with the circuit {α, β, g1, g2}, we deduce
that β 6∈ C∗. Thus C∗ ⊆ {e, f, g, f1, f2}. Orthogonality with the circuits
{α, β, f, g} and {α, β, f1, f2} implies that C∗ contains an even number of
elements of each of {f, g} and {f1, f2}. If C∗ avoids {f, g} or {f1, f2}, then
|C∗| ≤ 3 ; a contradiction. Thus C∗ = {e, f, g, f1, f2}. Hence {f, g, f1, f2}
is a cocircuit of M\e. By symmetry, {f, g, g1, g2} is a cocircuit of M\e.
By elimination, M\e has a cocircuit D∗ contained in {g, f1, f2, g1, g2}. By
orthogonality with {α, β, f, g}, we deduce that D∗ = {f1, f2, g1, g2}. Hence
(5.5.5) holds. As (5.5.5) contradicts (5.5.1), Theorem 5.5 must hold. �

6. Proof of Theorem 1.2 when |A| ≥ 11

Lemma 4.12 leads us to consider 4-connected matroids with a clonal pair.
The goal of this section is to prove Theorem 1.2 when |A| ≥ 11. This proof
is given at the end of this section following a sequence of preliminary results.
The proof of Theorem 1.2 for |A| ≤ 10 is given in the next section.
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Lemma 6.1. Let M be a 4-connected matroid with a clonal pair {α, β}.
Assume that |E(M)| ≥ 13. Then there is an element e of E(M) − {α, β}
such that, for some M1 in {M,M∗},

(i) M1\e is (4, 4, S)-connected; or
(ii) M1\e is sequentially 4-connected and if Z1 is a sequential 3-

separating set of M1\e with |Z1| ≥ 5, then there is a sequential order-
ing of Z1 that begins (α, β, z3, z4, z5) where M1\e has {α, β, z3} as a
triad and {α, β, z3, z4} as a circuit, and z5 ∈ cl∗M1\e({α, β, z3, z4})−
cl∗M1\e({α, β}).

Proof. Assume that (i) does not hold. By Theorem 5.5, there is an element e
of E(M)−{α, β} such that, up to duality, M\e is sequentially 4-connected.
Then M\e is not (4, 4)-connected. Thus, by Lemma 2.3, M/e is (4, 4)-
connected. Hence M/e is not sequentially 4-connected. Let Z1 be a 3-
separating set in M\e with at least 5 elements and having a sequential
ordering that begins (z1, z2, z3, z4, z5). Let Z = {z1, z2, z3, z4, z5}. Then,
by Lemma 2.16, we may assume that either (z1, z2) = (α, β), or |{α, β} ∩
{z1, z2, z3, z4}| ≤ 1.

Now {z1, z2, z3} is a triad of M\e. Clearly z4 ∈ cl
(∗)
M\e

({z1, z2, z3}). We

show next that

6.1.1. |{α, β} ∩ {z1, z2, z3}| 6= 1.

Assume that |{α, β} ∩ {z1, z2, z3}| = 1. Then, from above, |{α, β} ∩
{z1, z2, z3, z4}| = 1. By symmetry, we may assume that z1 = α. Thus
{α, z2, z3} is a triad of M\e. Hence {β, z2, z3} is also a triad of M\e. Sup-
pose z4 ∈ clM\e({α, z2, z3}). Then {α, z2, z3, z4}) and {β, z2, z3, z4}) are
circuits of M\e. Thus M\e has {α, β, z2, z3} as a circuit, so

rM\e({α, β, z2, z3}) + r∗M\e({α, β, z2, z3}) − |{α, β, z2, z3}| ≤ 3 + 2 − 4 = 1,

that is, λM\e({α, β, z2, z3}) ≤ 1; a contradiction. Hence z4 ∈
cl∗M\e({α, z2, z3}). Thus M∗|{α, β, z2, z3, z4, e} ∼= U3,6. Hence, by [12, Theo-
rem 1.6], as M∗|{β, z2, z3, z4, e} ∼= U3,5, there is an element f of {z2, z3, z4, e}
such that M∗\f is internally 4-connected. Hence M/f is (4, 4, S)-connected;
a contradiction. We conclude that (6.1.1) holds.

6.1.2. (z1, z2) = (α, β).

Assume this does not hold. Then, by (6.1.1), {α, β} ∩ {z1, z2, z3} = ∅.
If z4 ∈ cl∗M\e({z1, z2, z3}), then M∗|{z1, z2, z3, z4, e} ∼= U3,5 and so, by
[12, Theorem 1.6], there is an element f of E(M) − {α, β} such that
M/f is (4, 4, S)-connected; a contradiction. We may now assume that
z4 ∈ clM\e({z1, z2, z3}). Then, by [12, Theorem 5.1], for some x in
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{z1, z2, z3}, the matroid M/x is (4, 4, S)-connected. This contradiction es-
tablishes that (6.1.2) holds.

Now consider the sequential ordering (α, β, z3, z4, z5) of Z1. Certainly
{α, β, z3} is a triad of M\e.

6.1.3. z4 6∈ cl∗M\e({α, β, z3}).

Assume that z4 ∈ cl∗M\e({α, β, z3}). Then {α, β, z3, z4} has rank 2
in M∗/e. Hence {α, β, z3, z4, e} is a rank-3 set P in M∗. Suppose
z5 ∈ clM\e({α, β, z3, z4}). Then z5 ∈ cl∗M∗/e({α, β, z3, z4}), so z5 ∈
cl∗M∗({α, β, z3, z4, e}). Hence z5 ∈ cl∗M∗(P ) − P . Thus, by Lemma 2.18,
M∗/z5 is (4, 4, S)-connected, so M\z5 is (4, 4, S)-connected and (i) holds; a
contradiction. We may now assume that z5 ∈ cl∗M\e({α, β, z3, z4}). Then
{α, β, z3, z4, z5} has rank 2 in M∗/e, so M∗|{α, β, z3, z4, z5, e} ∼= U3,6. By
[12, Theorem 1.6], for some f in {z3, z4, z5, e}, the matroid M/f is (4, 4, S)-
connected; a contradiction. We conclude that (6.1.3) holds.

By (6.1.3), z4 ∈ clM\e({α, β, z3}) and, since M has no triangles,
{α, β, z3, z4} is a circuit of M .

6.1.4. z5 ∈ cl∗M\e({α, β, z3, z4}) − cl∗M\e({α, β}).

Assume that z5 ∈ clM\e({α, β, z3, z4}). Then M |{α, β, z3, z4, z5} ∼= U3,5.
As {α, β, z3, e} is a cocircuit of M , we have e ∈ cl∗M ({α, β, z3, z4, z5}). Thus,
by Lemma 2.18, M/e is (4, 4, S)-connected; a contradiction. We deduce
that z5 6∈ clM\e({α, β, z3, z4}). Hence z5 ∈ cl∗M\e({α, β, z3, z4}). If z5 ∈
cl∗M\e({α, β}), then (α, β, z3, z5, z4) is a sequential ordering of Z. Thus we
can interchange the labels on z4 and z5 and thereby obtain a contradiction
to (6.1.3). We deduce that (6.1.4) holds and, hence, so does the lemma. �

As well as being used to establish Theorem 1.2 when |A| ≥ 11, the next
lemma is frequently used in the proof of Theorem 1.2 for |A| ≤ 10.

Lemma 6.2. Let M be a 3-connected matroid having a 3-separation (A,B).
Assume that there is no triangle or triad of M that contains two or more
elements of A. Let N be the clonal replacement of B by {α, β} and assume
that N is 4-connected having at least seven elements. Let e be an element
of A. Then M\e is 3-connected and rN (A − e) = rN (A). Furthermore:

(i) If e exposes a 3-separation in M\e and N\e is sequentially 4-
connected, then there is a flower Φ = ({α, β}, A1, A2) in N\e, where
A1 6⊆ fclN\e({α, β}) and A2 6⊆ fclN\e({α, β}).

(ii) If e exposes a 3-separation in M∗\e and r(N) = 4, then there
is a flower ({α, β}, A1, A2) in N/e for some A1 and A2, where
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rN/e(A1) = 2, rN/e(A2) = 2, A1 6⊆ fclN/e({α, β}), A2 6⊆
fclN/e({α, β}), and

⊓N/e({α, β}, A1) = ⊓N/e(A1, A2) = ⊓N/e(A2, {α, β}) = 1.

(iii) If e exposes a 3-separation in M∗\e, and r(N) ≥ 5 and |E(N)| ≥ 10,
then one of the following holds.
(a) Some element x of E(N)−{α, β} does not expose a 3-separation

in M1\x for some M1 ∈ {M,M∗}.
(b) There is a 3-separation (U, V ) in N/e, where rN/e(U) ≥ 3,

rN/e(V ) ≥ 3, and either {α, β} ⊆ U or {α, β} ⊆ V .
(c) |E(N)| = 10 and there is a copaddle ({α, β}, A1, A2) in N/e for

some A1 and A2, where rN/e(A1) = 2, rN/e(A2) = 2, |A1| = 3,
and |A2| = 4.

Proof. First observe that, as N is 4-connected, rN (A− e) = rN (A) = r(N),
otherwise {e, α, β} is a triad of N . We show next that M\e is 3-connected.
Assume it has a 2-separation (X,Y ). Then, without loss of generality, |X| ≥
|Y ∪ e| ≥ 3. Thus (X,Y ∪ e) is a 3-separation of M and r(Y ∪ e) = r(Y )+1.
Moreover, r(X ∪ e) = r(X) + 1. This is immediate if |Y | ≥ 3; if |Y | = 2,
then Y ∪ e is a triad and again it holds.

Now assume that |(Y ∪ e) ∩A| = 1. Then A− e ⊆ X. Now N |A = M |A,
so rM (A − e) = rM (A). Thus rM (X) = rM (X ∪ e); a contradiction. Hence
|(Y ∪ e) ∩ A| ≥ 2.

Suppose B ∩ X = ∅. Then X ⊆ A, so Y ∪ e ⊇ B. By the construction of
N , we have rN ({α, β} ∪ (A∩ (Y ∪ e))) + rN (X)− r(N) = rM (B ∪ (A∩ (Y ∪
e))) + rM (X) − r(M) = λM (X) = 2; a contradiction to the fact that N is
4-connected.

Next let |B∩X| = 1. Then, by Lemma 2.4, λM (Y ∪e∪B) = 2. Replacing
(X,Y ∪ e) by (X − B,Y ∪ e ∪ B) and using the previous paragraph, we get
that λM (X − B) = 2. This is a contradiction since |X| ≥ |Y ∪ e|, so

|X| ≥ ⌈ |E(M)|
2 ⌉ ≥ 4 and |X − B| ≥ 3.

We may now assume that |B ∩ X| ≥ 2. As |A ∩ (Y ∪ e)| ≥ 2, Lemma 2.4
implies that λM (B ∪ X) = 2. Then, replacing (X,Y ∪ e) by (X ∪ B, (Y ∪
e) − B), we get the contradiction that ({α, β} ∪ (X ∩ A), A ∩ (Y ∪ e)) is a
3-separation of N unless |A ∩ (Y ∪ e)| = 2. Consider the exceptional case.
We have |A ∩ X| = |A| − 2 ≥ 3. If |B ∩ (Y ∪ e)| ≥ 2, then, by Lemma 2.4,
λM (B∪Y ∪ e) = 2. Replacing (X,Y ∪ e) by (X −B,B∪Y ∪ e) and arguing
similarly to the above, we get that N has a 3-separation; a contradiction.
Now suppose |B ∩ (Y ∪ e)| = 1. Then Y ∪ e is a triad of M containing two
elements of A; a contradiction. We conclude that M\e is 3-connected.
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Let M1 ∈ {M,M∗}. By Lemma 4.10, we may assume that the clonal
replacement of B by {α, β} in M∗ is N∗. If M1 = M , set N1 = N , while if
M1 = M∗, set N1 = N∗. Now suppose that M1\e has a 3-separation that is
exposed by e. Choose such a 3-separation (R,G) to minimize

min{|(A − e) ∩ R|, |(A − e) ∩ G|, |B ∩ R|, |B ∩ G|}.

Suppose first that this minimum is 0. If R or G, say R, contains A − e,
then, by Lemma 4.6, e ∈ clM1

(R), so (R ∪ e,G) is a 3-separation of M1; a
contradiction. Hence |R ∩ (A − e)| and |G ∩ (A − e)| are positive. Suppose
R or G, say R, contains B. Then G ⊆ A − e and so, by Lemma 4.8,
λN1\e(G) = λM1\e(G) = 2. Hence (G, (R ∩ A) ∪ {α, β}) is a 3-separating
partition of N1\e. Now |R ∩ A| > 1, otherwise (G,R) ∼= (A − e,B) and
(G,R) is not exposed. Thus (G, (R∩A)∪ {α, β}) is a 3-separation of N1\e.

Assume that (G, (R ∩ A) ∪ {α, β}) is a sequential 3-separation of N1\e.
Then either G or (R∩A)∪{α, β} is sequential in N1\e. In the first case, by
Corollary 4.9, G is sequential in M1\e, contradicting Lemma 2.15. Thus G is
not sequential in N1\e, and so (R∩A)∪{α, β} is sequential in N1\e. Choose
a sequential ordering (z1, z2, . . . , zk) of (R∩A)∪{α, β} with the least j such
that {z1, z2, . . . , zj} ⊇ {α, β}. We may assume that {α, β} = {zj−1, zj}.
Suppose first that j ≤ 3. The choice of j then implies that j = 2. Thus, by
Lemma 4.8, for all i in {3, 4, . . . , k}, we have

2 = λN1\e(G ∪ {zi, zi+1, . . . , zk}) = λM1\e(G ∪ {zi, zi+1, . . . , zk}).

Thus (G,R) ∼= (A − e,B); a contradiction. Hence we may assume that
j ≥ 4, in which case, R ∩ A is not a subset of fcl({α, β}). If M1 = M , then
({z1, z2, . . . , zj−2}, {α, β}, {zj+1 , zj+2, . . . , zk}∪G) is a flower in N\e and (i)
holds.

Next assume that M1 = M∗ and r(N) ≥ 4. As G is not sequential in
N∗\e, it is not sequential in N/e, so rN/e(G) ≥ 3. Thus if r(N) = 4, then
rN/e((R ∩ A) ∪ {α, β}) = 2, so {α, β} = {z1, z2}; a contradiction. Hence we
may assume that r(N) ≥ 5. As R∩A is not a subset of fcl({α, β}), we have
rN/e((R ∩ A) ∪ {α, β}) ≥ 3 and so (iii)(b) holds.

Now assume that (G, (R ∩ A) ∪ {α, β}) is not sequential in N1\e. Then
N1\e is not sequentially 4-connected, so we may assume that M1 = M∗.
Furthermore, rN/e(G) ≥ 3 and rN/e((R ∩ A) ∪ {α, β}) ≥ 3, so r(N) ≥ 5
and (iii)(b) holds. Hence we may suppose that min{|(A− e)∩R|, |(A− e)∩
G|, |B ∩ R|, |B ∩ G|} is positive.

Assume next that min{|(A − e) ∩R|, |(A − e) ∩G|, |B ∩R|, |B ∩G|} = 1.
Suppose |B∩R| = 1. Then |(A−e)∩R|, |B∩G| ≥ 2, so λM\e((A−e)∩R) = 2
and ((A− e)∩R,B ∪G) ∼= (R,G). But (A− e)∩R avoids B, contradicting
the choice of (R,G). Hence |B ∩ R| > 1. By symmetry, |B ∩ G| > 1, and
then |(A − e) ∩ R|, |(A − e) ∩ G| > 1.
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We may now assume that

min{|(A − e) ∩ R|, |(A − e) ∩ G|, |B ∩ R|, |B ∩ G|} ≥ 2.

Let A1 = (A − e) ∩ R and A2 = (A − e) ∩ G. Then, by Lemma 2.4, each
of A1 and A2 is 3-separating in M1\e and hence, by Lemma 4.8, in N1\e.
Thus Φ = ({α, β}, A1, A2) is a flower in N1\e.

If A1 ⊆ fclN1\e({α, β}), then there is a sequential ordering
(α, β, z1, z2, . . . , zl) of A1 ∪ {α, β}. Therefore, by Lemma 4.8, for all
i ∈ {1, 2, . . . , l}, we have

2 = λN1\e(A2 ∪ {zi, zi+1, . . . , zl}) = λM1\e(A2 ∪ {zi, zi+1, . . . , zl}).

Since |A2| ≥ 2, it follows by Lemma 2.4 that G ∪ (A2 ∪ {zi, zi+1, . . . , zl}) =
G∪{zi, zi+1, . . . , zl} is 3-separating in M1\e. Thus (G,R) ∼= (A−e,B); a con-
tradiction. So A1 6⊆ fclN1\e({α, β}) and, by symmetry, A2 6⊆ fclN1\e({α, β}).
We conclude that if M1 = M , then (i) holds. This finishes the proof of (i).

We may now assume that M1 = M∗ and r(N) ≥ 4. Without loss of
generality, we may also assume that |A1| ≤ |A2|. Since A1 6⊆ fclN/e({α, β}),
we have rN/e({α, β} ∪ A1) ≥ 3. If rN/e(A2) ≥ 3, then r(N) ≥ 5 and (iii)(b)
holds. Therefore we may assume that rN/e(A2) = 2. If r(N) = 4, then
a symmetrical argument shows that rN/e(A1) = 2. Furthermore, if Φ is a
paddle or copaddle in N/e, then r(N/e) ∈ {2, 4}. But r(N/e) = 3. Thus
⊓N/e({α, β}, A1) = ⊓N/e(A1, A2) = ⊓N/e(A2, {α, β}) = 1, and (ii) holds.

Now assume that r(N) ≥ 5 and |E(N)| ≥ 10. Suppose |E(N)| ≥ 11.
Then, as rN (A2 ∪ e) = 3 and A2 ∪ e avoids α and β, it follows by [12,
Theorem 1.6] that there is an element y of A2∪e such that N\y is internally
and hence sequentially 4-connected. If y does not expose a 3-separation of
M\y, then (iii)(a) holds. If y does expose a 3-separation of M\y, then, by
applying (i) with y = e, we get that N\y has a flower ({α, β}, Y1, Y2) with
|Y1| ≥ |Y2|. As |E(N\y)| ≥ 10, we have |Y1| ≥ 4. Then the 3-separation
(Y1, {α, β} ∪ Y2) contradicts the fact that N\y is internally 4-connected.

We may now suppose that |E(N)| = 10. Then |A1| ∈ {2, 3} as |A1| ≤ |A2|.
Since N has no triads, rN/e(A1) = 2. Thus, as r(N) ≥ 5, the flower Φ is
a copaddle in N/e. If |A1| = 2, then r∗N/e({α, β} ∪ A1) = 2 and so A1 ⊆

fclN1\e({α, β}); a contradiction. Thus |A1| = 3 and so (iii)(c) holds. �

Corollary 6.3. Let M be a 3-connected matroid having a 3-
separation (A,B). Assume that there is no triangle or triad of M that
contains two or more elements of A. Let N be the clonal replacement of B
by {α, β} and assume that N is 4-connected. Let e be an element of A such
that either

(i) N\e is internally 4-connected and |E(N)| ≥ 10; or
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(ii) N\e is (4, 4, S)-connected and |E(N)| ≥ 13; or
(iii) N\e is sequentially 4-connected, |E(N)| ≥ 13, and every 5-

element sequential 3-separating set Z of N\e contains {α, β} and
has a sequential ordering (α, β, z3, z4, z5) with {α, β, z3} as a triad
and {α, β, z3, z4} as a circuit, and z5 ∈ cl∗N\e({α, β, z3, z4}) −
cl∗N\e({α, β}).

Then e does not expose any 3-separations in M\e.

Proof. In each of (i)–(iii), N\e is sequentially 4-connected and |E(N)| ≥ 10.
Thus, by the last lemma, M\e is 3-connected and rN (A − e) = rN (A).
Assume that e exposes a 3-separation of M\e. Then, by the last lemma
again, N\e has a flower ({α, β)}, A1 , A2) for some A1 and A2 where neither
A1 nor A2 is contained in fclN\e({α, β}). We may assume that |A2| ≥ |A1|.
Then |A2| ≥ 4. Thus (A1 ∪ {α, β}, A2) is a 3-separation of N\e. Hence if
N\e is internally 4-connected, we obtain a contradiction. We deduce that
the corollary holds when (i) occurs. Now assume (ii) or (iii) holds. Then
|E(N)| ≥ 13. As |A2| ≥ |A1|, we deduce that |A2| ≥ 5. We show next that

6.3.1. |A1| ≥ 3.

Assume the contrary. Then |A1| = 2 and |A2| ≥ 8. If A2 is sequential,
then, for some element z of A2, we have (A1 ∪ {α, β} ∪ z,A2 − z) as a 3-
separation of N\e with |A1 ∪ {α, β} ∪ z|, |A2 − z| ≥ 5 and A2 − z sequential
avoiding {α, β}. This contradicts the hypothesis governing N\e. Thus A2 is
non-sequential. Hence A1∪{α, β} is sequential. By Lemma 2.16, A1∪{α, β}
has a sequential ordering of the form (α, β, x, y) so A1 ⊆ fclN\e({α, β}); a
contradiction. Thus (6.3.1) holds.

As |A1| ≥ 3, we have |A2|, |A1 ∪ {α, β}| ≥ 5. Since A2 avoids {α, β}, the
choice of N\e means that A2 is non-sequential. Thus A1∪{α, β} is sequential
in N\e having a sequential ordering of the form (α, β, z3, z4, . . . , zn) for some
n ≥ 5. Again we obtain the contradiction that A1 ⊆ fclN\e({α, β}). �

Theorem 6.4. Let (A,B) be a non-sequential 3-separation in a 3-connected
matroid M . Suppose that B is fully closed, A meets no triangle or triad of
M , and if (X,Y ) is a non-sequential 3-separation of M , then either A ⊆
fcl(X) or A ⊆ fcl(Y ). If |A| ≥ 11, then A contains an element whose
deletion from M or M∗ is 3-connected but does not expose any 3-separations.

Proof. By Lemma 4.12, the clonal replacement, N , of B by {α, β} is 4-
connected. Since |A| ≥ 11, we have |E(N)| ≥ 13. Thus, by Lemma 6.1,
N has an element e not in {α, β} such that, for some M1 in {M,M∗},
the matroid M1\e satisfies one of the connectivity conditions 6.1(i) or (ii).
Because M has no triangles or triads having at least two elements in A, it



EXPOSING 3-SEPARATIONS 37

follows by Corollary 6.3 that e does not expose any 3-separations in M1\e.
�

7. Proof of Theorem 1.2 when |A| ≤ 10.

The proof of Theorem 1.2 for |A| ≤ 10 is given at the end of this section,
and is an amalgamation of three lemmas. The third of these lemmas requires
one additional preliminary which we state and prove first.

Lemma 7.1. Let M be a 3-connected matroid having a 3-separation (A,B).
Assume that there is no triangle or triad of M that contains two or more
elements of A. Let N be the clonal replacement of B by {α, β} and assume
that N is 4-connected. If |E(N)| ≥ 11 and X is a 5-element rank-3 subset
of E(N) that avoids at least one element in {α, β}, then there is an element
x of X − {α, β} such that x does not expose any 3-separation in M\x. In
particular, if e ∈ E(N) − {α, β} and Y is a 4-element cosegment of N\e
that avoids at least one element in {α, β}, then there is an element y in
(Y − {α, β}) ∪ e such that y does not expose any 3-separation in M∗\y.

Proof. By [12, Theorem 1.6], there is an element x in X − {α, β} such that
N\x is internally 4-connected. It follows by Corollary 6.3(i) that x does not
expose any 3-separation in M\x. �

Lemma 7.2. Let (S,E(M) − S) be a non-sequential 3-separation in a 3-
connected matroid M . Suppose no triangle or triad of M contains more
than one element of S. If r(S) ≤ 3, then S contains an element e such that
M∗\e is 3-connected and e does not expose any 3-separations of M∗.

Proof. Clearly rM (S) = 3. Moreover, cl(E(M) − S) 6= E(M). Take e
in S − cl(E(M) − S). Then M has no triangle containing e. Let (X,Y )
be a non-minimal 2-separation or an exposed 3-separation of M/e. Then,
without loss of generality, we may assume that |X ∩ (S − e)| ≥ 2. Hence
X spans S − e in M/e, so we may assume that X contains S − e. Thus
Y ⊆ cl(E(M) − S), so rM (Y ∪ e) = rM (Y ) + 1. Hence (X ∪ e, Y ) is a 2- or
3-separation of M . This contradiction establishes the lemma. �

Lemma 7.3. Let M be a 3-connected matroid having a 3-separation (A,B).
Suppose that there is no triangle or triad of M that contains two or more
elements of A. Let N be the clonal replacement of B by {α, β} and assume
that N is 4-connected. If |E(N)| ≥ 8, and either r(N) = 4 or r∗(N) = 4,
then there is an element in E(N) − {α, β} whose deletion from M or M∗

does not expose any 3-separations.

Proof. By Lemma 4.10, we may assume that r(A) = 4. Suppose that ev-
ery element f of E(N)− {α, β} exposes a 3-separation in each of M\f and
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M∗\f . Since N is 4-connected, N\{α, β} is connected. Assume first that
N\{α, β} is 3-connected. If there is no element y ∈ E(N)−{α, β} such that
N\{α, β}/y is 3-connected, then, by [7, Theorem 2.5], N\{α, β} has a trian-
gle; a contradiction. Therefore there is such an element y. By Lemma 6.2(ii),
there is a flower ({α, β}, P1 , P2) in N/y where ⊓N/y(P1, P2) = 1. Hence
(P1, P2) is a 2-separation in N\{α, β}/y, contradicting the choice of y. Thus
N\{α, β} is not 3-connected.

We may now assume that N\{α, β} is not 3-connected. Suppose first
|E(N)| ≥ 9. Then N\{α, β} has a 2-separation (X,Y ). Since r(N) = 4, we
may assume that r(X) = 2 and r(Y ) = 3. Since N has no triangles, X is a
series pair in N\{α, β}. Let X = {y, z}. By Lemma 6.2(ii), there is a flower
({α, β}, P1, P2) in N/y, where rN/y(P1) = 2 = rN/y(P2), and

⊓N/y({α, β}, P1) = ⊓N/y(P1, P2) = ⊓N/y(P2, {α, β}) = 1.

As z 6∈ clN ((P1 ∪ P2) − z) and N has no triangles, |(P1 ∪ P2) − z| ≤ 4 and
so |E(N)| ≤ 8; a contradiction. Thus if r(N) = 4 and |E(N)| ≥ 9, then the
lemma holds.

Now suppose that |E(N)| = 8. Since N\{α, β} has rank 4 and 6 elements,
its dual N∗/{α, β} has rank 2 and 6 elements. Therefore, as N\{α, β} is
connected, but not 3-connected, and it contains no triangles, it is easily
checked that N∗/{α, β} has at least one non-trivial parallel class and any
such parallel class has exactly two elements. If N∗/{α, β} has exactly one
non-trivial parallel class {z, z′}, then N∗/{α, β}\z is isomorphic to U2,5

and so N\{α, β}/z is isomorphic to U3,5. But, by Lemma 6.2(ii), E(N) −
{α, β, z} is the union of two segments in N\{α, β}/z; a contradiction. Since
r∗(N) = 4, it now follows by Lemma 4.10 that, up to isomorphism, N/{α, β}
is either (a) the 6-element rank-2 matroid with exactly three non-trivial
parallel classes, {x, x′}, {y, y′}, and {z, z′}, or (b) the 6-element rank-2
matroid with exactly two non-trivial parallel classes, {y, y′} and {z, z′},
where E(N) − {α, β} = {x, x′, y, y′, z, z′}. In the analysis of (a) and (b),
we freely use the consequence of the following observation. If N contains a
5-element rank-3 subset, then N is not 4-connected and so, for all a ∈ E(N),
the matroid N/a contains no 4-element segment.

First assume that (a) holds. Then, as N has no triangles, {α, β, x, x′},
{α, β, y, y′}, and {α, β, z, z′} are circuits in N . Furthermore, as N
is 4-connected, this implies that none of {y, y′, z, z′}, {x, x′, z, z′}, and
{x, x′, y, y′} are circuits in N . Consider N/z. By Lemma 6.2(ii), there
is a flower ({α, β}, P1 , P2) in N/z, where rN/z(P1) = 2 = rN/z(P2) and nei-

ther P1 nor P2 is contained in fclN/z({α, β}). If |clN/z(P1) − z′| = 3, then
z′ ∈ P2 and so, as z′ ∈ clN/z({α, β}), it follows that P2 ⊆ fclN/z({α, β}); a
contradiction. Thus |clN/z(P1) − z′| 6= 3 and, similarly, |clN/z(P2) − z′| 6= 3.

Hence, without loss of generality, we may assume that |P1| = 3 with z′ ∈ P1,
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and |P2| = 2 with clN/z(P2) ∩ (P1 − z′) empty. If P1 = {x, x′, z′}, then, as
N has no triangles, {x, x′, z, z′} is a circuit in N ; a contradiction. Thus
|P1 ∩{x, x′}| ≤ 1 and, similarly, |P1 ∩{y, y′}| ≤ 1. So, without loss of gener-
ality, we may assume that P1 = {x, y, z′}. Then {x, y, z, z′} is a circuit in N .
Now consider N/x. In N/x, both {x′, α, β} and {y, z, z′} are both triangles.
Therefore, (α, β, x′, y′, y, z, z′) is a sequential ordering of E(N) − x in N/x.
But then N/x has no flower ({α, β}, P ′

1, P
′
2), where P ′

1 6⊆ fclN/x({α, β}) and
P ′

2 6⊆ fclN/x({α, β}), contradicting Lemma 6.2(ii). Thus (a) does not hold.

Now assume that (b) holds. Since N has no triangles, {α, β, y, y′}
and {α, β, z, z′} are circuits in N . Therefore, as N is 4-connected, nei-
ther {x, x′, z, z′} nor {x, x′, y, y′} is a circuit in N . Consider N/x. By
Lemma 6.2(ii), there is a flower ({α, β}, P1, P2) in N/x, where rN/x(P1) = 2,
rN/x(P2) = 2, P1 6⊆ fclN/x({α, β}), and P2 6⊆ fclN/x({α, β}). Therefore,
as either |P1| = 3 or |P2| = 3, N/x has a triangle T ⊆ {x′, y, y′, z, z′}.
Since neither {x, x′, z, z′} nor {x, x′, y, y′} is a circuit in N , this trian-
gle is neither {x′, z, z′} nor {x′, y, y′}. Furthermore, if {x, y, y′, z} is a
circuit in N , then {x, y, y′} is a triangle in N/z. But {α, β, z′} is also
a triangle in N/z and so (α, β, z′, x′, x, y, y′) is a sequential ordering of
E(N) − z in N/z. Thus there is no flower ({α, β}, P ′

1, P
′
2) in N/z, where

P ′
1 6⊆ fclN/z({α, β}) and P ′

2 6⊆ fclN/z({α, β}), contradicting Lemma 6.2(ii).
Hence {x, y, y′, z} is not a circuit in N and so T 6= {y, y′, z}. Similarly,
T 6∈ {{y, y′, z′}, {y, z, z′}, {y′, z, z′}}. Therefore x′ ∈ T and, without loss of
generality, we may assume that T = {x′, y, z} and so {x, x′, y, z} is a circuit
in N . But then (α, β, z′, y′, x, x′, y) is a sequential ordering E(N)−z in N/z
and so there is no flower ({α, β}, P ′

1, P
′
2), where P ′

1 6⊆ fclN/z({α, β}) and
P ′

2 6⊆ fclN/z({α, β}). This last contradiction to Lemma 6.2(ii) implies that
(b) does not hold. This completes the proof of the lemma. �

Lemma 7.4. Let M be a 3-connected matroid having a 3-separation (A,B).
Suppose that there is no triangle or triad of M that contains two or more
elements of A. Let N be the clonal replacement of B by {α, β} and assume
that N is 4-connected. Let e be an element of E(N)−{α, β} such that N\e
is sequentially 4-connected. If

(I) r(N) = 5 and |E(N)| ∈ {10, 11, 12}, or
(II) r(N) = 6 and |E(N)| ∈ {11, 12}, or

(III) r(N) = 7 and |E(N)| = 12,

then there is an element in E(N) − {α, β} whose deletion from M or M∗

does not expose any 3-separations.

Proof. Suppose that |E(N)| ≥ 10 and every element f of E(N) − {α, β}
exposes a 3-separation in each of M\f and M∗\f . By Lemma 6.2, there is a
flower Φ = ({α, β}, P1, P2) in N\e with the property that neither P1 nor P2
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is a subset of fclN\e({α, β}). The proof of the lemma is partitioned into three
parts depending on which of (I), (II), and (III) holds. Furthermore, each
part is partitioned into three cases depending on whether Φ is (i) a paddle,
(ii) a copaddle, or (iii) ⊓({α, β}, P1) = ⊓(P1, P2) = ⊓(P2, {α, β}) = 1.

(I) r(N) = 5 and |E(N)| ∈ {10, 11, 12}.

(i) Φ is a paddle. Since Φ is a paddle,

5 = r(N\e) = r({α, β}) + r(P1) + r(P2) − 4.

Therefore, r(P1) + r(P2) = 7. Since neither P1 nor P2 is contained in
fclN\e({α, β}), it follows that r(P1) ≥ 3 and r(P2) ≥ 3. Thus we may
assume that r(P1) = 3 and r(P2) = 4. Since e 6∈ cl(P1 ∪ {α, β}), the set
cl(P1 ∪ {α, β, e}) has rank 4, so its complement is a cocircuit of N . In N\e,
this complement contains a cocircuit C∗. Since N has no triangles and N\e
is 3-connected, it follows by Lemma 2.8 that C∗ contains an element y ∈ P2

such that y 6∈ cl(P1 ∪ {α, β, e}) and N\e/y is 3-connected.

Consider N/y. By Lemma 6.2(iii), either (a) N/y has a 3-separation
(R,G), where rN/y(R), rN/y(G) ≥ 3, and, without loss of generality,
{α, β} ⊆ R; or (b) |E(N)| = 10 and there is a copaddle ({α, β}, A1, A2)
in N/y, where rN/y(A1) = 2 = rN/y(A2), and |A1| = 3, and |A2| = 4.

Since y 6∈ cl(P1 ∪ {α, β}), we have rN/y(P1 ∪ {α, β}) = 3 and P1 ∪ {α, β}
contains no triangles in N/y. If (b) holds, then rN/y({α, β} ∪ A1) = 4 =
rN/y({α, β} ∪ A2), and so, as either |P1 ∩ A1| ≥ 2 or |P1 ∩ A2| ≥ 2, we
have rN/y(P1 ∪ {α, β}) = 4; a contradiction. Thus we may assume that
(a) holds. As r(N/y) = 4, it follows that rN/y(R) = rN/y(G) = 3. Since
rN/y(P1 ∪ {α, β}) = 3 = rN/y(P2 − y), it follows that (P1 ∪ {α, β}, P2 − y)
is a 3-separation in N\e/y. Moreover, as {α, β} ⊆ cl(P2), we have that
{α, β} ⊆ clN\e/y(P2 − y). If |R ∩ P1| ≥ 1, then, by replacing (R,G) by a
closure-equivalent 3-separation, we may assume that P1 ∪ {α, β} ⊆ R. If
|R∩P1| = 0, then, by replacing (R,G) by a closure-equivalent 3-separation,
we may assume that P1 ∪ {α, β} ⊆ G. We deduce that, by interchanging
R and G if needed, we may assume that P1 ∪ {α, β} ⊆ R. As N/y\e is 3-
connected, it follows by Lemma 2.21 that e ∈ clN/y(R−e) or e ∈ clN/y(G−e).
Now y 6∈ cl(P1 ∪ {α, β, e}) and e 6∈ cl(P1 ∪ {α, β}) so, by Lemma 2.2, e 6∈
clN/y(P1∪{α, β}). But clN/y(P1∪{α, β}) = clN/y(R−e) so e 6∈ clN/y(R−e).
Hence e ∈ clN/y(G − e) so e ∈ clN/y(P2 − y) and therefore e ∈ clN (P2); a
contradiction. It now follows that Φ is not a paddle.

(ii) Φ is a copaddle. If |P1| = 2, then P1 ⊆ fcl({α, β}); a contradiction.
Therefore, as N contains no triangles, it follows by symmetry that r(P1) ≥ 3
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and r(P2) ≥ 3, so r(P1) + r(P2) ≥ 6. But, as Φ is a copaddle,

5 = r(N\e) = r({α, β}) + r(P1) + r(P2) − 2

= r(P1) + r(P2).

This contradiction implies that Φ is not a copaddle.

(iii) ⊓({α, β}, P1) = ⊓(P1, P2) = ⊓(P2, {α, β}) = 1. Since P1 6⊆
fcl({α, β}) and P2 6⊆ fcl({α, β}), it follows by Lemma 3.1 that P1 and P2 are
both sequential. Furthermore, as

5 = r(N\e) = r({α, β}) + r(P1) + r(P2) − 3,

we have r(P1) + r(P2) = 6. Without loss of generality, we may assume
that r(P2) ∈ {2, 3}. The analysis of (iii) is partitioned into two subcases
depending on the rank of P2.

In the analysis of the two subcases, we constantly consider matroids ob-
tained from N by contracting an element. The next result helps us avoid con-
sidering of the possibility arising via Lemma 6.2(iii)(c) when |E(N)| = 10.

7.4.1. Suppose that |E(N)| = 10. Let a be an element of E(N)−{α, β} such
that N\e/a contains a triad avoiding α and β. Then there is no copaddle
of the form ({α, β}, A1, A2) in N/a, where rN/a(A1) = 2, rN/a(A2) = 2,
|A1| = 3, and |A2| = 4.

If there were such a copaddle, then, as N\e/a contains a triad T , the
complement of T in N\e/a has rank 3. But a simple check shows that either
|A1 − (T ∪ e)| ≥ 2 or |A2 − (T ∪ e)| ≥ 2, and so, as ⊓N/a({α, β}, A1) = 0 =
⊓N/a({α, β}, A2), the complement of T in N\e/a has rank 4; a contradiction.
Thus (7.4.1) holds.

(iii)(a) r(P2) = 2. As N has no triangles, it follows that |P2| = 2 and
r(P1) = 4. The next result is used frequently in this subcase.

7.4.2. Let a ∈ P1 such that either

(i) a 6∈ cl({α, β, e} ∪ P2) or
(ii) a 6∈ cl({α, β} ∪ P2) and P1 − a contains a triad in N\e/a.

Suppose that N/a\e is 3-connected. If N/a contains a 3-separation (R,G),
where rN/a(R) = 3 = rN/a(G), and {α, β} ⊆ R, then P2 ⊆ G.

Suppose that N/a has such a 3-separation (R,G) and assume that it is
chosen to maximize |P2 ∩ R|. If |P2 ∩ R| = 0, then (7.4.2) holds, so we may
assume that |P2∩R| ≥ 1. Then, as N has no triangles and a 6∈ cl(P2∪{α, β}),
it follows that rN/a({α, β} ∪ (R ∩ P2)) = 3. The choice of (R,G) now
implies that {α, β} ∪ P2 ⊆ R. As 3 = rN/a({α, β} ∪ P2) ≤ rN/a(R − e) ≤
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rN/a(R) = 3, it follows that ({α, β}∪P2 , P1−a) and (R−e,G∪e) are closure-
equivalent 3-separations of N/a\e. By Lemma 2.21, e ∈ clN/a({α, β} ∪ P2)
or e ∈ clN/a(P1 − a). The latter does not occur as e 6∈ cl(P1). Thus e ∈
clN/a({α, β} ∪P2) so e ∈ cl({α, β} ∪P2 ∪ a). But e 6∈ cl({α, β} ∪P2). Hence
a ∈ cl({α, β}∪P2∪e). As this contradicts (7.4.2)(i), it follows that (7.4.2)(ii)
holds. Then, since P1 − a contains a triad of N\e/a, Lemma 2.22 implies
that e ∈ clN/a(P1 − a), which we already eliminated. Thus (7.4.2) holds.

Let (z1, z2, . . . , zk) be a sequential ordering of P1 in N\e, where k ≥ 5 as
|E(N)| ≥ 10. Since N has no triangles, {z1, z2, z3} is a triad.

7.4.3. z4 ∈ cl({z1, z2, z3}).

Assume the contrary. Then z4 ∈ cl∗({z1, z2, z3}) and so z5 ∈
cl({z1, z2, z3, z4}) since r(P1) = 4. If |E(N)| ≥ 11, then, as {z1, z2, z3, z4}
is a 4-element cosegment in N\e avoiding α and β, the lemma holds by
Lemma 7.1. Thus |E(N)| = 10 and so k = 5. Since e 6∈ cl(P2 ∪ {α, β}), the
set cl(P2∪{α, β, e}) has rank 4, so its complement is a cocircuit of N . In N\e,
this complement contains a cocircuit C∗. Since N has no triangles, it follows
by Lemma 2.8 that C∗ contains an element a such that a 6∈ cl(P2∪{α, β, e})
and N\e/a is 3-connected. Then z5 6= a since z5 ∈ cl(P2 ∪ {α, β, e}).

Consider N/a. Since {z1, z2, z3, z4} − a is a triad in N\e/a, it follows by
Lemma 6.2(iii) and (7.4.1) that N/a contains a 3-separation (R,G), where
rN/a(R) = 3 = rN/a(G), and {α, β} ⊆ R. By (7.4.2), we may assume that
P2 ⊆ G. Since rN ((P1 − z5) ∪ {α, β}) = 5, we have rN/a((P1 − {z5, a}) ∪
{α, β}) = 4. As rN/a(R) = 3, it follows that |G ∩ (P1 − {z5, a})| ≥ 1.
Similarly, |R ∩ (P1 − {z5, a})| ≥ 1.

Now consider z5, which is in cl({z1, z2, z3, z4}). By closure-equivalence,
z5 ∈ clN ({α, β} ∪ P2). As N has no triangles, it follows by the choice of a
that rN/a({α, β, z5}) = 3 = rN/a(P2 ∪ z5). Hence as z5 ∈ Z for some Z in
{R,G}, we get rN/a(Z) ≥ 4; a contradiction. Thus (7.4.3) holds.

Now suppose that z5 ∈ cl({z1, z2, z3, z4}). Since r(P1) = 4, we have
k ≥ 6 and so |E(N)| ≥ 11. Thus, by Lemma 7.1, there is an element x
in {z1, z2, z3, z4, z5} such that x does not expose any 3-separation in M\x.
Thus z5 6∈ cl({z1, z2, z3, z4}), so z5 ∈ cl∗({z1, z2, z3, z4}). If z6 or z7 exists,
then z6, z7 ∈ cl({z1, z2, z3, z4, z5}) as r(P1) = 4.

The next result is used twice in the rest of the analysis of this subcase.

7.4.4. Suppose that |E(N)| = 10. Let a be an element of {z1, z2, z3}. Then
there is no copaddle of the form ({α, β}, A1, A2) in N/a, where rN/a(A1) =
2 = rN/a(A2), |A1| = 3, and |A2| = 4.
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Assume such a copaddle exists. Since {z1, z2, z3, z4} − a is a triangle in
N/a, this set is contained in A1 or A2. Now e, z5 6∈ clN/a({z1, z2, z3, z4}−a).
Furthermore, if clN/a({z1, z2, z3, z4} − a) contains an element p of P2, then
p ∈ clN\e(P1), so fclN\e({α, β}) ⊇ P2; a contradiction. Hence P2 ∪ {z5, e}
avoids clN/a({z1, z2, z3, z4}−a) and so is contained in A2. But rN/a(P2∪z5) =
3; a contradiction. Thus (7.4.4) holds.

7.4.5. There is an element a of {z1, z2, z3} such that a 6∈ cl({α, β, e}∪P2).

By Lemma 2.10, ⊓({α, β} ∪ P2, P1) = 1 and so ⊓({α, β, e} ∪ P2, P1) ≤ 2.
Thus such an element certainly exists.

For the element a just found, by Lemma 2.13, N\e/a is 3-connected. By
Lemma 6.2(iii) and (7.4.4), N/a has a 3-separation (R,G), where rN/a(R) =
3 = rN/a(G).

Suppose that z6 exists. Then z6 ∈ clN\e({α, β} ∪ P2). Since N has
no triangles and a is in a triad in N\e avoiding {α, β, z6} ∪ P2, it follows
that z6 6∈ clN/a({α, β}) and z6 6∈ clN/a(P2). By closure-equivalence and
(7.4.2), we may assume that {α, β} ⊆ R and P2 ⊆ G. Now the rank of
(P1−a)−clN/a({α, β}∪P2) in N/a is 3. If [(P1−a)−clN/a({α, β}∪P2)] ⊆ R,
then rN/a(R) ≥ 4; a contradiction. So |[(P1−a)−clN/a({α, β}∪P2)]∩G| ≥ 1.
Similarly, |[(P1 − a)− clN/a({α, β} ∪P2)]∩R| ≥ 1. But then neither z6 ∈ G
nor z6 ∈ R; otherwise rN/a(G) ≥ 4 and rN/a(R) ≥ 4, respectively. Thus z6

does not exist, in which case, |P1| = 5 and so |E(N)| = 10.

To preserve symmetry, we now let {Q1, Q2} = {{α, β}, P2}.

7.4.6. ⊓(Q1, P1 − z5) = 1 and rN (Q1 ∪ (P1 − z5)) = 4.

By Lemma 6.2(iii) and (7.4.2), we may assume that Q1 ⊆ R and Q2 ⊆ G.
Either |({z1, z2, z3, z4} − a) ∩R| ≥ 2 or |({z1, z2, z3, z4} − a) ∩G| ≥ 2, so we
may assume that |({z1, z2, z3, z4}−a)∩R| ≥ 2. Therefore, as rN/a(R) = 3, it
follows that rN/a(Q1∪({z1, z2, z3, z4}−a)) = 3 and so rN (Q1∪(P1−z5)) = 4.
Thus ⊓(Q1, P1 − z5) = 1. Hence (7.4.6) holds.

Since r(Q1 ∪ (P1 − z5)) = 4 and N\e is 3-connected, Q2 ∪ z5 is a triad
in N\e. We now consider N/z5. Since (Q1 ∪ Q2, P1 − z5) is a 2-separation
in N\{e, z5} and N has no triangles, it follows by Lemma 2.5 that N\e/z5

is 3-connected. Now, since {z1, z2, z3} is a triad in N\e/z5, we may assume
by Lemma 6.2(iii), (7.4.1), and (7.4.2) that N/z5 has a 3-separation (X,Y ),
where rN/z5

(X) = 3 = rN/z5
(Y ); Q2 ⊆ X; and Q1 ⊆ Y . If {z1, z2, z3} ⊆ X,

then rN/z5
(X) ≥ 4; a contradiction. So |{z1, z2, z3} ∩ Y | ≥ 1. Similarly,

|{z1, z2, z3}∩X| ≥ 1. Since Q2∪z5 is a triad in N\e and N has no triangles,
z4 6∈ clN/z5

(Q1). Therefore z4 6∈ Y , otherwise rN/z5
(Y ) ≥ 4. Thus z4 ∈ X
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and so z4 ∈ clN/z5
(Q2) otherwise rN/z5

(Q2 ∪ z4) = 3 and we obtain the con-
tradiction that rN/z5

(X) > 3 since X also meets the cocircuit {z1, z2, z3, e}
of N/z5. Noting that ⊓N (Q2, P1 − z5) ∈ {0, 1}, we break the rest of the
analysis into two parts depending on the value of ⊓N (Q2, P1 − z5).

First assume that ⊓N (Q2, P1 − z5) = 1. Then rN (Q2 ∪ (P1 − z5)) = 4.
Since N\e is 3-connected, Q1 ∪ z5 is a triad in N\e. Therefore, as N has no
triangles, z4 6∈ clN/z5

(Q2); a contradiction. Thus ⊓N (Q2, P1 − z5) 6= 1.

Now assume that ⊓N (Q2, P1−z5) = 0. Then, as rN/z5
(X) = 3 and N has

no triangles, we have |{z1, z2, z3}∩X| = 1 and |{z1, z2, z3}∩Y | = 2. Letting
{u, u′} = {z1, z2, z3} ∩ Y , we have rN (Q1 ∪ {u, u′}) = 3 since rN/z5

(Y ) = 3
and Q2 ∪ {z5, e} is a cocircuit of N . Let w = {z1, z2, z3} − {u, u′}. If
u ∈ clN (Q1 ∪ Q2 ∪ e), then, as rN (Q1 ∪ {u, u′}) = 3, it follows that u′ ∈
clN (Q1 ∪ Q2 ∪ e). But then {w, z4, z5} is a triad in N ; a contradiction. So
u 6∈ clN (Q1 ∪ Q2 ∪ e) and, similarly, u′ 6∈ clN (Q1 ∪ Q2 ∪ e).

For {v, v′} = {u, u′}, consider N/v. By Lemma 2.13, N\e/v is 3-
connected. By Lemma 6.2(iii) and (7.4.4), N/v has a 3-separation (U, V ),
where rN/v(U) = 3 = rN/v(V ). Since v 6∈ clN (Q1 ∪ Q2 ∪ e), it follows by
(7.4.2) that we may assume Q2 ⊆ U and Q1 ⊆ V . Say |U ∩ {v′, w, z4}| ≥ 2.
Then r((U ∩ {v′, w, z4}) ∪ v) ≥ 3. Since ⊓(Q2, P1 − z5) = 0, it fol-
lows that r(U ∪ v) ≥ 5, so rN/v(U) ≥ 4; a contradiction. Therefore
|V ∩ {v′, w, z4}| ≥ 2. But {v′, w, z4} is a triangle of M/v, so we may as-
sume that {v′, w, z4} ⊆ V . If z5 ∈ V , then rN/v(V ) ≥ 4; a contradiction.
Thus z5 ∈ U and Q2 ∪ z5 = U − e. Since N\e/v is 3-connected and since
Q2∪z5 is a triad in N\e and therefore in N\e/v, it follows, by Lemma 2.22,
that e ∈ clN/v(U − e). Thus e ∈ clN (Q2 ∪{v, z5}). As v was arbitrarily cho-
sen in {u, u′}, we have that e ∈ clN (Q2 ∪{u, z5}) and e ∈ clN (Q2 ∪{u′, z5}).
If e ∈ clN (Q2 ∪ z5), then Q2 ∪ {e, z5} is 3-separating in N ; a contradiction.
Thus e 6∈ clN (Q2∪z5) and so u ∈ clN (Q2∪{e, z5}) and u′ ∈ clN (Q2∪{e, z5}).
Therefore rN (Q2 ∪ (P1 − w) ∪ e) = 4 as z4 ∈ clN/z5

(Q2). But then Q1 ∪ w
is a triad in N ; a contradiction. This completes the analysis of (iii)(a).

(iii)(b) r(P2) = 3. Since r(P1) = 3, we may assume without loss of
generality that |P1| ≥ |P2|. As |E(N)| ∈ {10, 11, 12}, this implies that
|P1| ≥ 4. Let (z1, z2, . . . , zk) be a sequential ordering of P1 in N\e. Since
N has no triangles and r(P1) = 3, it follows that {z1, z2, z3} is a triad of
N\e and z4 ∈ clN\e({z1, z2, z3}). If k ≥ 5, then, as r(P1) = 3, we have
z5 ∈ clN\e({z1, z2, z3, z4}). But then |E(N)| ≥ 11 and so, by Lemma 7.1,
there is an element x in {z1, z2, z3, z4, z5} such that x does not expose any 3-
separation in M\x; a contradiction. Thus k = 4. Similarly, if (y1, y2, . . . , yl)
is a sequential ordering of P2 in N\e, then {y1, y2, y3} is a triad, 3 ≤ l ≤ 4,
and y4 ∈ clN\e({y1, y2, y3}) when l = 4.
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7.4.7. There is an element a of {z1, z2, z3} such that a 6∈ cl(P2 ∪ e).

Since ⊓(P1, P2) = 1, it follows that ⊓(P1, P2 ∪ e) ≤ 2. Thus such an
element a certainly exists.

For this element a, by Lemma 2.13, N\e/a is 3-connected. By Lemma 6.2,
either N/a has a 3-separation (R,G), where rN/a(R), rN/a(G) ≥ 3, and,
without loss of generality, {α, β} ⊆ R; or |E(N)| = 10 and there is a copad-
dle ({α, β}, A1, A2) in N/a, where rN/a(A1) = 2 = rN/a(A1), |A1| = 3,
and |A2| = 4. By (7.4.1), since {y1, y2, y3} is a triad of N\e/a avoid-
ing {α, β}, the second possibility does not occur. Thus r(N/a) = 4, so
rN/a(R) = 3 = rN/a(G).

By our choice of a, if X ⊆ P2 ∪ {α, β}, then rN/a(X) = r(X). If
{y1, y2, y3} ⊆ R, then rN/a(R) ≥ 4; a contradiction. If {y1, y2, y3} ⊆ G,
then, as {y1, y2, y3} is a triad in N\e/a, it follows by Lemma 2.22 that
e ∈ clN/a(G−e). Since P2 ⊆ clN/a(G), it follows by (7.4.7) that rN/a(G) ≥ 4;
a contradiction. Thus |R ∩ {y1, y2, y3}| ≥ 1 and |G ∩ {y1, y2, y3}| ≥ 1. If
|R ∩ (P1 − a)| ≥ 2, then, as rN/a({α, β} ∪ (P1 − a)) = 3 and {y1, y2, y3} is
a triad in N\e/a, we have rN/a(R) ≥ 4. Thus |G ∩ (P1 − a)| ≥ 2 and, by
closure-equivalence, we may assume that P1 − a ⊆ G.

7.4.8. The element y4 does not exist.

If y4 exists, then, as P2∪{α, β} contains no triangles in N/a, it follows that
y4 ∈ G; otherwise, rN/a(R) ≥ 4. If y4 6∈ cl(P1), then y4 6∈ clN/a(P1 − a). As
{y1, y2, y3} is a triad of N\e/a, it follows that rN/a(G) ≥ 4; a contradiction.
Thus y4 ∈ cl(P1). But y4 and z4 are distinct, and so P1 ∪ y4 is a 5-element
rank-3 set in N , contradicting Lemma 7.1. Hence (7.4.8) holds.

Assume that |R ∩ {y1, y2, y3}| = 2 and consider N\e. By our choice
of a, as rN/a({α, β} ∪ (R ∩ {y1, y2, y3})) = 3, we have rN\e({α, β} ∪ (R ∩
{y1, y2, y3})) = 3. Since rN (cl(P1) ∪ (G ∩ {y1, y2, y3})) = 4, it follows that
{α, β} ∪ (R ∩ {y1, y2, y3}) is 3-separating in N\e. In particular,

({α, β}, cl(P1) ∪ (G ∩ {y1, y2, y3}), R ∩ {y1, y2, y3})

is a flower in N\e. Also ⊓N ({α, β}, R ∩ {y1, y2, y3}) = 1. Thus
({α, β}, cl(P1) ∪ (G ∩ {y1, y2, y3}), R ∩ {y1, y2, y3}) is a flower in N\e of the
formed analyzed in (iii)(a).

We may now assume that |G∩{y1, y2, y3}| = 2. Let R∩{y1, y2, y3} = {v}
and G ∩ {y1, y2, y3} = {u, u′}. Since rN\e/a(G − e) = 3, it follows that
{α, β, v} is a triad in N\e/a, and therefore a triad in N\e. Furthermore, as

3 = rN/a((P1 − a) ∪ {u, u′}) = rN (P1 ∪ {u, u′}) − 1,
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rN (P1 ∪ {u, u′}) = 4 and so ⊓N (P1, {u, u′}) = 1. Since |clN ({α, β, v) ∩
{u, u′}| ≤ 1, we may assume that u 6∈ cl({α, β, v}).

Consider N/u and note that u′ ∈ clN/u(P1). Since {z1, z2, z3} is a triad in
N\e/u, it follows by Lemma 6.2(iii) and (7.4.1) that there is a 3-separation
(U, V ) in N/u where rN/u(U) = 3 = rN/u(V ), and {α, β} ⊆ U .

We show next that

7.4.9. {α, β, v} is a not a triangle in N/u, the element e 6∈
clN/u({α, β, v, u′}), and e 6∈ clN/u(P1 ∪ u′).

Since u 6∈ clN ({α, β, v}) and N has no triangles, {α, β, v} is not a triangle
in N/u. If e ∈ clN/u({α, β, v, u′}), then e ∈ clN ({α, β, v, u, u′}). This implies
that e ∈ clN ({α, β} ∪P2) and so, as {α, β} ∪P2 is 3-separating in N\e, it is
3-separating in N ; a contradiction. Thus e 6∈ clN/u({α, β, v, u′}). Lastly, if
e ∈ clN/u(P1 ∪ u′), then e ∈ clN (P1 ∪ {u, u′}). But then {α, β, v} is a triad
in N ; a contradiction. Thus e 6∈ clN/u(P1 ∪ u′) and (7.4.9) holds.

If v ∈ U , then, as rN/u(U) = 3, we have U ⊆ clN/u({α, β, v}). Therefore
{z1, z2, z3} ⊆ V . By (7.4.9), e 6∈ clN/u({α, β, v}), so e 6∈ U . Thus e ∈
V . But then, by (7.4.9), e 6∈ clN/u(P1), so rN/u(V ) ≥ 4; a contradiction.
Hence v ∈ V . If {z1, z2, z3} ⊆ U , then rN/u(U) ≥ 4; a contradiction.
Also, if {z1, z2, z3} ⊆ V , then, as {α, β, v} is a triad in N\e, we have that
v 6∈ clN/u(P1), so rN/u(V ) ≥ 4; a contradiction. It now follows that |U ∩
{z1, z2, z3}| ≥ 1 and |V ∩ {z1, z2, z3}| ≥ 1. Since {v, u, u′} is a triad in
N\e, we have rN/u({α, β, z4}) = rN ({α, β, z4}). As N has no triangles,
this implies that rN/u({α, β, z4}) = 3, so z4 6∈ U ; otherwise, rN/u(U) ≥ 4.
Therefore z4 ∈ V . If u′ ∈ V , then rN/u(V ) ≥ 4 as rN ((P1∩V )∪{u, u′, v}) =
5. This contradiction implies that u′ ∈ U .

Assume |V ∩ {z1, z2, z3}| = 2. Then rN/u(V ∩P1) = 3 as rN (V ∩P1) = 3,
and so rN/u(V ) ≥ 4; a contradiction. Thus |V ∩{z1, z2, z3}| = 1 and so |U ∩
{z1, z2, z3}| = 2. If u′ 6∈ clN/u({α, β}), then rN/u(U) ≥ 4; a contradiction.
Therefore u′ ∈ clN/u({α, β}). Consider N\e. Since N has no triangles, it
follows that

⊓({α, β}, {u, u′}) = r({α, β}) + r({u, u′}) − r({α, β, u, u′})

= 2 + 2 − 3 = 1.

Furthermore, r(P1 ∪ v) = 4 and so {α, β, u, u′} is a 3-separation in N\e.
It now follows that ({α, β}, {u, u′}, P1 ∪ v) is a flower in N\e of the form
analyzed in (iii)(a). This completes the analysis of (iii)(b) and therefore
completes the analysis of (I).

(II) r(N) = 6 and |E(N)| ∈ {11, 12}.
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(i) Φ is a paddle. Since Φ is a paddle,

6 = r(N\e) = r({α, β}) + r(P1) + r(P2) − 4.

Thus 8 = r(P1) + r(P2) ≤ |P1|+ |P2| ≤ 9, so either P1 or P2 is independent.
Also, as neither P1 ⊆ fcl({α, β}) nor P2 ⊆ fcl({α, β}), we have r(P1) ≥ 3
and r(P2) ≥ 3. Without loss of generality, there are two possibilities to
consider: either r(P1) = 3 and r(P2) = 5; or r(P1) = r(P2) = 4.

If r(P1) = r(P2) = 4, then we may assume that P1 is independent. Then,
as α, β ∈ cl(P2),

r∗N\e(P1) = |P1| − r(N\e) + r(P2 ∪ {α, β}) = 2.

Thus P1 is a 4-element cosegment of N\e that avoids α and β. Hence, by
Lemma 7.1, that there is an element y in P1 ∪ e such that y does not expose
any 3-separation in M∗\y; a contradiction.

We may now assume that r(P1) = 3 and r(P2) = 5. Consider N/e. By
Lemma 6.2(iii), N/e has a 3-separation (R,G), where rN/e(R), rN/e(G) ≥ 3,
and R or G contains {α, β}. Since e 6∈ cl(P1 ∪ {α, β}), we have rN/e(P1 ∪
{α, β}) = 3 and P1 ∪ {α, β} contains no triangles in N/e. Therefore, as
|P1 ∪ {α, β}| ≥ 5, we may also assume by switching to a closure-equivalent
3-separation that P1 ∪ {α, β} ⊆ R and so G ⊆ P2. Since N is 4-connected,
e 6∈ cl∗(R). Therefore, by Lemma 2.1, e ∈ cl(G). Then e ∈ cl(P2), so P2 is
3-separating in N ; a contradiction. We conclude that Φ is not a paddle.

(ii) Φ is a copaddle. Since neither P1 nor P2 is a subset of fcl({α, β}), we
have |P1|, |P2| ≥ 3. Also, as N has no triangles, r(P1), r(P2) ≥ 3. Thus, as

6 = r(N\e) = r({α, β}) + r(P1) + r(P2) − 2,

r(P1) = r(P2) = 3. If |P1| ≥ 5, then, by Lemma 7.1, there is an element
x ∈ P1 such that x does not expose any 3-separation in M\x. Thus, by
symmetry, we may assume that |P1|, |P2| ≤ 4. But |E(N)| ∈ {11, 12} and so
|P1| = |P2| = 4. Now, by Lemma 3.1, either P1 or P2 is sequential. Without
loss of generality, we may assume that P2 is sequential. Let (y1, y2, y3, y4) be
a sequential ordering of P2. Since N has no triangles, {y1, y2, y3} is a triad
in N\e. Now, as ⊓(P1, P2) = 0, we have ⊓(P1, P2 ∪ e) ≤ 1, and so there is
an element a ∈ P1 − cl({α, β} ∪ P2) such that a 6∈ cl(P2 ∪ e).

Consider N/a and note that, as a is either in a triad or a quad of N\e, it
follows by Lemma 2.13 that N\e/a is 3-connected. Furthermore, we have

⊓N/a({α, β}, P1 − a) = ⊓N/a(P1 − a, P2) = ⊓N/a(P2, {α, β}) = 0.

By Lemma 6.2(iii), we may assume that N/a has a 3-separation (R,G),
where rN/a(R), rN/a(G) ≥ 3, and {α, β} ⊆ R. As P1−a is a triangle of N/a,
we may also assume that either P1 − a ⊆ R or P1 − a ⊆ G. Suppose that
P1 − a ⊆ R. Then rN/a(R) = 4, and so R ∩ {y1, y2, y3} is empty; otherwise,
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rN/a(R) ≥ 5 and so rN/a(G) ≤ 2; a contradiction. Thus {y1, y2, y3} ⊆ G so
{y1, y2, y3} spans G in N/a. By our choice of a, we have that e 6∈ clN/a(G−e).
Therefore, as N/a\e is 3-connected, it follows by Lemma 2.21 that e ∈
clN/a(R − e). Hence {y1, y2, y3} is a triad in N ; a contradiction. Thus
P1 − a ⊆ G. If |R ∩ P2| = |G ∩ P2| = 2, then rN/a(R), rN/a(G) ≥ 4; a
contradiction as (R,G) is a 3-separation in N/a. Therefore either |R∩P2| ≥
3 or |G ∩ P2| ≥ 3. But, as N has no triangles and a 6∈ cl(P2), any 3-
element subset of P2 is independent in N/a. Therefore either rN/a(R) ≥ 5
or rN/a(G) ≥ 5; a contradiction. Thus Φ is not a copaddle.

(iii) ⊓({α, β}, P1) = ⊓(P1, P2) = ⊓(P2, {α, β}) = 1. By Lemma 3.1,
both P1 and P2 are sequential. Furthermore, as

6 = r(N\e) = r({α, β}) + r(P1) + r(P2) − 3,

r(P1) + r(P2) = 7, and so we may assume that r(P2) ∈ {2, 3}.

Before partitioning (iii) into two subcases depending on the rank of P2,
consider Pi, where i ∈ {1, 2}. Let |Pi| = k, and suppose that 3 ≤ k ≤ 5.
Let (z1, z2, . . . , zk) be a sequential ordering of Pi. Since N has no triangles,
it follows that {z1, z2, z3} is a triad in N\e. If z4 ∈ cl∗N\e({z1, z2, z3}), then

{z1, z2, z3, z4} is a 4-element cosegment in N\e avoiding α and β, so the
lemma holds by Lemma 7.1. Thus, if k ≥ 4, then z4 ∈ clN\e({z1, z2, z3}).
If z5 ∈ clN\e({z1, z2, z3, z4}), then {z1, z2, z3, z4, z5} is a 5-element rank-3
subset of E(N) avoiding α and β, and so the lemma holds by Lemma 7.1.
Therefore, if k = 5, then z5 ∈ cl∗N\e({z1, z2, z3, z4}).

(iii)(a) r(P2) = 2. Since N has no triangles, |P2| = 2 and so |P1| ∈
{6, 7}. Let (z1, z2, . . . , zk) be a sequential ordering of P1. Then, from
above, {z1, z2, z3} is a triad in N\e, the element z4 ∈ clN\e({z1, z2, z3}),
and z5 ∈ cl∗N\e({z1, z2, z3, z4}). Now rN\e(P1) = 5. Thus if k =

6, then z6 ∈ cl∗N\e({z1, z2, z3, z4, z5}). Moreover, if k = 7, then ei-

ther z6 ∈ cl∗N\e({z1, z2, z3, z4, z5}) and z7 ∈ clN\e(P1 − z7); or z6 ∈

clN\e({z1, z2, z3, z4, z5}) and z7 ∈ cl∗N\e(P1 − z7).

To maintain symmetry, let {Q1, Q2} = {{α, β}, P2}. First suppose that
k = 6. Then |E(N)| = 11 and so, by (I) of the lemma, which we have already
proved, it suffices to show that there is an element a of E(N)− {α, β} such
that N/a is sequentially 4-connected. We assume no such element exists.

7.4.10. Let k ∈ {1, 2}. If Qk ∪zi is a triad in N\e for some i ∈ {5, 6}, then
Qk ∪ zj is not a triad in N\e, where j ∈ {5, 6} − i.

To show this, suppose that Qk∪zi is a triad for some k and i. Let p ∈ Qk.
If Qk∪zj is a triad in N\e where i 6= j, then, by circuit elimination, {p, z5, z6}
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is a triad in N\e. But Q1∪Q2 is a circuit of N\e and |(Q1∪Q2)∩{p, z5, z6}| =
1, contradicting orthogonality. Hence (7.4.10) holds.

7.4.11. There is an element a of {z1, z2, z3} such that a 6∈ clN (Q1 ∪ Q2 ∪
{zi, e}), where i is chosen in {5, 6} so that if a triad of the type described in
(7.4.10) exists in N\e, then Q1 ∪ zi or Q2 ∪ zi is a triad of N\e.

By Lemma 2.10(ii), ⊓({z1, z2, z3}, Q1 ∪ Q2) = 0, so ⊓({z1, z2, z3}, Q1 ∪
Q2 ∪ {zi, e}) ≤ 2. Hence there is such an element a in {z1, z2, z3}.

Consider N/a and note that, by Lemma 2.13, N\e/a is 3-connected. As
N/a is not sequentially 4-connected, it has a non-sequential 3-separation
(R,G). Since N/a has {z1, z2, z3, z4} − a as a circuit, we may assume that
either {z1, z2, z3, z4} − a ⊆ R or {z1, z2, z3, z4} − a ⊆ G.

7.4.12. Neither Q1 ∪ Q2 ⊆ R nor Q1 ∪ Q2 ⊆ G.

Assume that Q1 ∪ Q2 ⊆ R. Then G− e ⊆ P1 − a. If {z1, z2, z3, z4} − a ⊆
R, then |G| ≤ 3; a contradiction as (R,G) is non-sequential. Therefore
{z1, z2, z3, z4} − a ⊆ G. By Lemma 2.21, either e ∈ clN/a(R − e) or e ∈
clN/a(G − e). If e ∈ clN/a(G − e), then e ∈ cl(P1), and so (P1, {α, β} ∪ P2)
is a 3-separation of N ; a contradiction. Therefore e ∈ clN/a(R − e) so (R ∪
e,G − e) is a non-sequential 3-separation of N/a. Since (z1, z2, z3, z4, z5, z6)
is a sequential ordering of P1 in N\e, it follows that

({z1, z2, z3, z4} − a, z5, z6, {α, β} ∪ P2)

is a 3-sequence in N/a\e. By [5, Lemma 5.8], ({z1, z2, z3, z4} −
a, z6, z5, {α, β} ∪ P2) is also a 3-sequence of N/a\e. Thus G − e is sequen-
tial in N/a\e and therefore, as e ∈ clN/a(R − e), we deduce that G − e is
sequential in N/a; a contradiction. So Q1 ∪ Q2 6⊆ R and, by symmetry,
Q1 ∪ Q2 6⊆ G; that is, (7.4.12) holds.

By Lemma 2.12 and (7.4.12), we may now assume that Q1 ⊆ R and
Q2 ⊆ G. Furthermore, without loss of generality, we may also assume
that {z1, z2, z3, z4} − a ⊆ R. Then, by Lemma 2.10, rN/a(R) ≥ 4. Since
|G| ≥ 4, we have |G ∩ {z5, z6}| ≥ 1. If |G ∩ {z5, z6}| = 2, then rN/a(G) ≥ 4,
contradicting the fact that (R,G) is a 3-separation of N/a. So |G∩{z5, z6}| =
1, and G − e is a triad in N\e/a and therefore a triad in N\e. Let {s} =
R ∩ {z5, z6} and {g} = G ∩ {z5, z6}.

By Lemma 2.21, either e ∈ clN/a(R − e) or e ∈ clN/a(G − e). If e ∈
clN/a(R − e), then, arguing as in the proof of (7.4.12), we get that G − e is
sequential; a contradiction. So e ∈ clN/a(G− e). If Q1 ∪ s is a triad in N\e,
then, as e ∈ clN/a(G − e), we have Q1 ∪ s is a triad in N ; a contradiction.
Therefore, Q1 ∪ s is not a triad in N\e. Since Q2 ∪ g is a triad in N\e, it
follows by (7.4.10) that Q2 ∪ s is not a triad in N\e. Thus, by the choice
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of a in (7.4.11), a 6∈ clN (Q1 ∪ Q2 ∪ {g, e}). Since e 6∈ clN (Q2 ∪ g), it follows
that e 6∈ clN/a(Q2 ∪ g); a contradiction as Q2 ∪ g = G − e. It now follows
that we may suppose that k = 7.

Assume that z6 ∈ cl∗N\e({z1, z2, z3, z4, z5}) and z7 ∈ clN\e(P1 − z7). Con-

sider N/z5 and note that, by Lemma 2.11, N\e/z5 is 3-connected. By
Lemma 6.2(iii), N/z5 has a 3-separation (R,G), where rN/z5

(R), rN/z5
(G) ≥

3, and R or G contains {α, β}. Furthermore, as rN/z5
(Q1 ∪Q2 ∪ z7) = 3, we

may assume that Q1∪Q2∪z7 ⊆ R. By Lemma 2.21, either e ∈ clN/z5
(R−e)

or e ∈ clN/z5
(G − e). If e ∈ clN/z5

(G − e), then Q1 ∪ Q2 is 3-separating
in N ; a contradiction. Therefore e ∈ clN/z5

(R − e). As {z1, z2, z3} is
a triad in N\e/z5, it follows by Lemma 2.22 that |{z1, z2, z3} ∩ R| ≥ 1
and so rN/z5

(R) ≥ 4. If z6 ∈ R, then rN/z5
(R) ≥ 5; a contradiction

as rN/z5
(G) ≥ 3 and (R,G) is a 3-separation of N/z5. Thus z6 ∈ G.

Now |G ∩ {z1, z2, z3, z4}| ≤ 2, otherwise rN/z5
(G) ≥ 4; a contradiction as

rN/z5
(R) ≥ 4. But this implies that G − e is a triad in N\e/z5 and so, by

Lemma 2.22, e ∈ clN/z5
(G − e); a contradiction.

Now assume that z6 ∈ clN\e({z1, z2, z3, z4, z5}) and z7 ∈ cl∗N\e(P1 − z7).

If z6 ∈ cl(Q1 ∪ Q2), then, by interchanging the roles of z6 and z7 in the
analysis of the previous paragraph, we deduce that z5 does not expose any
3-separation of M∗\z5. Thus we may assume that z6 6∈ cl(Q1 ∪ Q2). Fur-
thermore, z6 6∈ cl({z1, z2, z3, z4}); otherwise N has a 5-element rank-3 set
that avoids α and β, and so the lemma holds by Lemma 7.1.

The next assertion holds because ⊓({z1, z2, z3}, Q1 ∪ Q2 ∪ {z7, e}) ≤ 2.

7.4.13. There is an element a of {z1, z2, z3} such that a 6∈ clN (Q1 ∪ Q2 ∪
{z7, e}).

For the element a just found, by Lemma 2.13, N\e/a is 3-connected.
By Lemma 6.2(iii), there is a 3-separation (R,G) of N/a such that
rN/a(R), rN/a(G) ≥ 3, and R or G contains {α, β}. Furthermore, we may
assume that either {z1, z2, z3, z4} − a ⊆ R or {z1, z2, z3, z4} − a ⊆ G.

7.4.14. Neither Q1 ∪ Q2 ⊆ R nor Q1 ∪ Q2 ⊆ G.

Assume that Q1 ∪ Q2 ⊆ R. By Lemma 2.21, e ∈ clN/a(R − e) or e ∈
clN/a(G − e). If e ∈ clN/a(G − e), then, as G − e ⊆ P1 − a, we have that
Q1 ∪ Q2 is 3-separating in N ; a contradiction. Thus e ∈ clN/a(R − e). If
{z1, z2, z3, z4}−a ⊆ R, then {z5, z6, z7} = G−e, so G−e is a triad in N\e/a.
But e ∈ clN/a(R − e). Thus G is a triad in N/a, and therefore a triad in
N ; a contradiction. So {z1, z2, z3, z4} − a ⊆ G. If z5 ∈ G or z6 ∈ G, then
z6 ∈ clN/a(G) or z5 ∈ clN/a(G), respectively, and so we may assume that
{z5, z6} ⊆ G. In this instance, R− e ⊆ Q1 ∪Q2 ∪ z7 and so, by (7.4.13) and
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Lemma 2.2, e 6∈ clN/a(R − e). This contradiction implies that z5, z6 ∈ R.
But then, as z6 6∈ cl(Q1 ∪ Q2), we have rN/a(R) ≥ 5; a contradiction as
rN/a(G) ≥ 3. Hence Q1 ∪ Q2 6⊆ R and so, by symmetry, (7.4.32) holds.

By Lemma 2.12 and (7.4.14), we may now assume that Q1 ⊆ R and
Q2 ⊆ G. Furthermore, we may also assume that {z1, z2, z3, z4} − a ⊆ G.
Thus, by Lemma 2.10, rN/a(G) ≥ 4. If z5 ∈ G or z6 ∈ G, then z6 ∈ clN/a(G)
or z5 ∈ clN/a(G), respectively, and so we may assume that {z5, z6} ⊆ G.
In this instance, z7 ∈ R; otherwise rN/a(G) ≥ 5, contradicting the fact
that rN/a(R) ≥ 3. Therefore R − e ⊆ Q1 ∪ Q2 ∪ z7 and so, by (7.4.13),
e 6∈ clN/a(R− e). By Lemma 2.21, this implies that e ∈ clN/a(G− e) which,
in turn implies that Q1 ∪ z7 is a triad in N/a and therefore a triad in N ;
a contradiction. Thus z5, z6 ∈ R. As z6 6∈ cl(Q1 ∪ Q2) and {z1, z2, z3, e} is
a cocircuit of N containing a, it follows that z5, z6 6∈ clN/a(Q1 ∪ Q2) and
z5 6∈ clN/a(Q1∪Q2∪z6). Thus rN/a(R) ≥ 4; a contradiction as rN/a(G) ≥ 4.
This completes the subcase when r(P2) = 2.

(iii)(b) r(P2) = 3. Let (z1, z2, . . . , zk) be a sequential ordering of P1.
Since r(P2) = 3, it follows that |P2| ≥ 3 and r(P1) = 4. Therefore, by
the set-up prior to (iii)(a), k ∈ {5, 6}, and {z1, z2, z3} is a triad in N\e;
z4 ∈ clN\e({z1, z2, z3}); and z5 ∈ cl∗N\e({z1, z2, z3, z4}). Moreover, if k = 6,

then z6 ∈ clN\e(P1 − z6). Now let (y1, y2, . . . , yl) be a sequential ordering of
P2. By the set-up prior to (iii)(a), l ∈ {3, 4}, and {y1, y2, y3} is a triad in
N\e. Also y4 ∈ clN\e({y1, y2, y3}) if l = 4. Without loss of generality, we
may assume that P1 is closed. Thus if y4 exists and belongs to cl(P1), then
k = 5 and we relabel y4 as z6. Hence we may assume that y4 6∈ cl(P1).

Noting that ⊓({α, β}, {z1, z2, z3, z4}) ∈ {0, 1}, we partition (iii)(b) into
cases depending on the value of ⊓({α, β}, {z1, z2, z3, z4}). First assume that

⊓({α, β}, {z1, z2, z3, z4}) = 1.

Then r({α, β, z1, z2, z3, z4}) = 4. Consider N/z5 and note that, by
Lemma 2.11, N\e/z5 is 3-connected. Furthermore, observe that, as N has
no triangles, {z1, z2, z3, z4} contains no triangles in N/z5 and, if y4 exists,
{y1, y2, y3, y4} contains no triangles in N/z5. By Lemma 6.2(iii), N/z5 has
a 3-separation (R,G), where rN/z5

(R), rN/z5
(G) ≥ 3 and α, β ∈ R.

7.4.15. |{y1, y2, y3} ∩ R| 6= 3.

If |{y1, y2, y3} ∩ R| = 3, then, by closure-equivalence, we may assume
that E(N) − {e, z1, z2, z3, z5} ⊆ R. Thus rN/z5

(R) ≥ 4, so {z1, z2, z3} ⊆ G,
otherwise rN/z5

(R) ≥ 5; a contradiction. But then both R − e and G − e
contain a triad in N\e/z5, contradicting Lemma 2.22. Hence (7.4.15) holds.

7.4.16. |{y1, y2, y3} ∩ R| 6= 2.
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Suppose that |{y1, y2, y3} ∩ R| = 2. If |{z1, z2, z3, z4} ∩ R| ≥ 3, then, by
closure-equivalence, we may assume that P1−z5 ⊆ R, and so rN/z5

(R) ≥ 5; a
contradiction. Thus |{z1, z2, z3, z4}∩G| ≥ 2. Therefore, as R and {α, β}∪P2

are 3-separating sets in N/z5\e, it follows by Lemma 2.4 that R∩({α, β}∪P2)
is a 3-separating set R′ in N/z5\e. Let G′ = E(N)−(R′∪z5). Then (R′, G′)
is a 3-separation of N/z5\e. Since rN/z5

(R′) ≥ 3 and rN/z5
(G′) ≥ 4, it follows

that rN/z5
(R′) = 3 and rN/z5

(G′) = 4.

If y4 exists, then y4 ∈ G′, otherwise y4 ∈ R′ and rN/z5
(R′) ≥ 4. But

then, as y4 6∈ cl(P1), we have that y4 6∈ clN/z5
(P1) and so rN/z5

(G′) ≥ 5; a
contradiction. Thus we may assume that y4 does not exist.

Since y4 does not exist, |R′| = 4. Furthermore, as z5 6∈ clN (R′), we have
that R′ is 3-separating in N\e and ⊓N (R′ ∩ P2, {α, β}) = 1. It now follows
that ({α, β}, (G′∪z5)−e,R′−{α, β}) is a flower in N\e of the form analyzed
in (iii)(a). Hence |{y1, y2, y3} ∩ R| 6= 2; that is, (7.4.16) holds.

7.4.17. |{y1, y2, y3} ∩ R| 6= 1.

Suppose that |{y1, y2, y3} ∩ R| = 1. If |{z1, z2, z3, z4} ∩ R| ≥ 3,
then, by closure-equivalence, we may assume that {z1, z2, z3, z4} ⊆ R
and so rN/z5

(R) ≥ 5; a contradiction. So |{z1, z2, z3, z4} ∩ R| ≤ 2. If
|{z1, z2, z3, z4} ∩ G| ≥ 3, then, by closure-equivalence, we may assume that
{z1, z2, z3, z4} ⊆ G and z6 ∈ G if z6 exists. Assume that y4 does not ex-
ist or if it exists, then y4 ∈ G. If R − e = {α, β} ∪ ({y1, y2, y3} ∩ R),
then R − e is a triad in N\e/z5. But {z1, z2, z3} is a triad in N\e/z5 and
{z1, z2, z3} ⊆ G. This contradiction to Lemma 2.22 implies that y4 exists and
y4 ∈ R. But {α, β, y4} is not a triangle in N/z5, and so rN/z5

(R) ≥ 4. Since
rN/z5

(G) ≥ 4, we have another contradiction. Thus |{z1, z2, z3, z4}∩G| ≤ 2,
so |{z1, z2, z3, z4}∩R| = 2 = |{z1, z2, z3, z4}∩G|, in which case, rN/z5

(R) = 4
and rN/z5

(G) = 3.

If z4 ∈ R, then, {α, β, z4} is a triangle in N/z5 and so {α, β, z4, z5} is a
circuit in N . But this implies that rN ({z1, z2, z3, z4, α, β}) = 5; a contra-
diction as, by assumption, rN ({z1, z2, z3, z4, α, β}) = 4. Thus z4 ∈ G. Since
rN/z5

(G) = 3, it follows that (G ∩ {y1, y2, y3}) ∪ z4 is a triangle in N/z5. If
y4 exists, then, as {α, β, y4} is not a triangle in N/z5, it follows that y4 ∈ G,
otherwise y4 ∈ R and rN/z5

(R) ≥ 5. But then rN/z5
(G) ≥ 4; a contradiction.

So y4 does not exist and, similarly, z6 does not exist. It now follows that

({α, β} ∪ (R ∩ {z1, z2, z3}), (G ∩ {z1, z2, z3, z4}) ∪ {y1, y2, y3})

is a 3-separation of N\e/z5. If z5 ∈ clN ({α, β} ∪ (R ∩ {z1, z2, z3})), then
cl({α, β}∪ (P1−z5)) is a hyperplane in N . But rN ({α, β}∪ (P1−z5)) = 4; a
contradiction. Thus z5 6∈ clN ({α, β}∪ (R∩{z1 , z2, z3})), so rN ({α, β}∪ (R∩
{z1, z2, z3})) = 3. In particular, {α, β} ∪ (R ∩ {z1, z2, z3}) is 3-separating in
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N\e. Since ⊓N ({α, β}, R ∩{z1, z2, z3}) = 1, it now follows that ({α, β}, R ∩
{z1, z2, z3}, (G ∩ {z1, z2, z3, z4}) ∪ {y1, y2, y3, z5}) is a flower in N\e of the
form analyzed in (iii)(a). Hence |{y1, y2, y3}| 6= 1; that is, (7.4.17) holds.

7.4.18. |{y1, y2, y3} ∩ R| 6= 0.

Suppose that |{y1, y2, y3}∩R| = 0. If {z1, z2, z3} ⊆ G, then rN/z5
(G) ≥ 5;

a contradiction. Thus |{z1, z2, z3} ∩ R| ≥ 1. If {z1, z2, z3} ⊆ R, then each
of R − e and G − e contain a triad in N\e/z5, contradicting Lemma 2.22.
Therefore |{z1, z2, z3} ∩ G| ≥ 1, and so rN/z5

(R) = 3 and rN/z5
(G) = 4.

If z4 ∈ R, then, as rN/z5
(R) = 3 and {z1, z2, z3} is a triad in N/z5, we

have z4 ∈ clN/z5
({α, β}). Since {α, β, z4} is not a triangle in N , it follows

that {α, β, z4, z5} is a circuit in N . But rN ({α, β, z1, z2, z3, z4}) = 4 and so
rN ({α, β} ∪ P1) = 4; a contradiction. Thus z4 6∈ R, and so z4 ∈ G. Since
rN/z5

(G) = 4, we have z4 ∈ clN/z5
({y1, y2, y3}).

Assume that z6 exists. If z6 ∈ clN/z5
({α, β}), then z6 ∈ clN ({α, β, z5}).

But z6 6∈ clN ({α, β}), so z5 ∈ clN ({α, β, z6}); a contradiction. Thus
z6 6∈ clN/z5

({α, β}). Therefore, if z6 ∈ R, then rN/z5
(R) ≥ 4; a contra-

diction. So z6 ∈ G. But then either rN/z5
(G) ≥ 5 or rN/z5

({z4, z6}) = 2; a
contradiction. Therefore z6 does not exist. On the other hand, if y4 exists,
then, as {y1, y2, y3} ⊆ G, we may assume that y4 ∈ G.

If |{z1, z2, z3}∩G| = 2, then R−e is a triad in N\e/z5. But {y1, y2, y3} is
also a triad in N\e/z5 and {y1, y2, y3} ⊆ G − e, contradicting Lemma 2.22.
Thus |{z1, z2, z3}∩R| = 2. Since z5 6∈ clN ({α, β}∪ (P1 − z5)), it follows that
rN ({α, β} ∪ (R ∩ {z1, z2, z3}) = 3. Therefore, {α, β} ∪ (R ∩ {z1, z2, z3}) is
3-separating in N\e. Since ⊓N ({α, β}, R ∩ {z1, z2, z3}) = 1, it now follows
that ({α, β}, R ∩ {z1, z2, z3}, G∪ z5) is a flower in N\e of the form analyzed
in (iii)(a). Hence (7.4.18) holds.

It follows from (7.4.15)–(7.4.18) that ⊓({α, β}, {z1, z2, z3, z4}) 6= 1.

Now assume that ⊓({α, β}, {z1, z2, z3, z4}) = 0. By Lemma 2.10(i), we
have the following result.

7.4.19. There is an element a of {z1, z2, z3} such that a 6∈ clN ({α, β, e}∪P2).

Consider N/a. By Lemma 2.13, N\e/a is 3-connected and so,
by Lemma 6.2(iii), there is a 3-separation (R,G) of N/a such that
rN/a(R), rN/a(G) ≥ 3 and α, β ∈ R. We may assume that either
{z1, z2, z3, z4} − a ⊆ R or {z1, z2, z3, z4} − a ⊆ G. Suppose that
{z1, z2, z3, z4} − a ⊆ R. Then, as ⊓({α, β}, {z1, z2, z3, z4}) = 0, we have
rN/a(R) ≥ 4. Therefore rN/a(R) = 4 and rN/a(G) = 3. If |{y1, y2, y3} ∩
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R| ≥ 1, then rN/a(R) ≥ 5; a contradiction. Thus {y1, y2, y3} ⊆ G. If
z5 ∈ G, then rN/a(G) ≥ 4; a contradiction. Therefore z5 ∈ R, and so
G − e ⊆ clN/a(P2 ∪ {α, β}). By Lemma 2.21, either e ∈ clN/a(R − e) or
e ∈ clN/a(G − e). If e ∈ clN/a(G − e), then e ∈ clN/a({α, β} ∪ P2). But
then e ∈ clN ({α, β, a} ∪ P2), and so, as e 6∈ clN ({α, β} ∪ P2), we have
a ∈ clN ({α, β, e} ∪ P2), contradicting (7.4.19). Thus e ∈ clN/a(R − e), and
so {y1, y2, y3} is a triad in N/a and therefore a triad in N ; a contradiction.
Therefore {z1, z2, z3, z4} − a ⊆ G.

7.4.20. |R ∩ {y1, y2, y3}| 6= 3.

Suppose |R ∩ {y1, y2, y3}| = 3. Then rN/a(R) = 4 and so z5 ∈ G. By
Lemma 2.21, either e ∈ clN/a(R−e) or e ∈ clN/a(G−e). If e ∈ clN/a(R−e),
then e ∈ clN/a({α, β}∪P2), contradicting our choice of a. Thus e ∈ clN/a(G−
e). But then {y1, y2, y3} is a triad in N/a and therefore a triad in N ; a
contradiction. Hence |R ∩ {y1, y2, y3}| 6= 3; that is, (7.4.20) holds.

7.4.21. |R ∩ {y1, y2, y3}| 6= 2.

Suppose |R ∩ {y1, y2, y3}| = 2. If y4 exists, then y4 ∈ G otherwise, by
closure-equivalence, we may assume that {y1, y2, y3} ⊆ R; a contradiction.
Therefore, as P2∪{α, β} and R−e are 3-separating sets in N\e/a, it follows
by Lemma 2.4 that {α, β}∪ (R∩{y1, y2, y3}) is a 3-separating set in N\e/a.
Since the complement of {α, β} ∪ (R ∩ {y1, y2, y3}) has rank at least 4, it
follows that rN\e/a({α, β} ∪ (R ∩ {y1, y2, y3})) = 3, which in turn implies
that rN\e({α, β} ∪ (R ∩ {y1, y2, y3})) = 3. Thus {α, β} ∪ (R ∩ {y1, y2, y3})
is 3-separating in N\e, and so ({α, β}, P1 ∪G,R∩ {y1, y2, y3}) is a flower in
N\e. Moreover, ⊓N ({α, β}, R∩{y1, y2, y3}) = 1, so it is a flower of the form
analyzed in (iii)(a). Hence |R ∩ {y1, y2, y3}| 6= 2; that is, (7.4.21) holds.

7.4.22. |R ∩ {y1, y2, y3}| 6= 0.

Suppose |R ∩ {y1, y2, y3}| = 0. Then {y1, y2, y3} ⊆ G, and so we may
assume that y4 ∈ G if y4 exists. Moreover, rN/a(G) = 4 and rN/a(R) = 3.
If z5 ∈ G, then rN/a(G) ≥ 5; a contradiction. So z5 ∈ R. Also, if z6 exists,
then z6 6∈ R, otherwise rN/a(R) ≥ 4 as z6 6∈ clN/a({α, β}). Thus if z6 exists,
then z6 ∈ G. It now follows that R − e is a triad in N\e/a. But {y1, y2, y3}
is also a triad in N\e/a and {y1, y2, y3} ⊆ G− e, contradicting Lemma 2.22.
Hence (7.4.22) holds.

It follows from (7.4.20)-(7.4.22) that we may assume |R∩{y1, y2, y3}| = 1.
Suppose ⊓N/a(G ∩ {y1, y2, y3}, P1 − a) = 0. Then rN/a(G) ≥ 4, and so
rN/a(G) = 4 and rN/a(R) = 3. If z5 ∈ R, then rN/a(R) ≥ 4; a con-
tradiction. If z5 ∈ G, then rN/a(G) ≥ 5; a contradiction. Therefore
⊓N/a(G ∩ {y1, y2, y3}, P1 − a) ≥ 1.
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Assume that z5 ∈ G. Then, by closure-equivalence, we may assume that
if z6 exists, it is in G. Suppose that either y4 does not exist, or y4 exists
and y4 ∈ G. Then {α, β} ∪ (R ∩ {y1, y2, y3}) is a triad in N\e/a. Now, by
Lemma 2.21, either e ∈ clN/a(R − e), or e ∈ clN/a(G − e). Our choice of a
implies that e ∈ clN/a(G − e) and so {α, β} ∪ (R ∩ {y1, y2, y3}) is a triad in
N/a and therefore a triad in N ; a contradiction. Thus we may assume that
y4 exists and y4 ∈ R. But then rN/a(R) ≥ 4; a contradiction as rN/a(G) ≥ 4.
Hence z5 ∈ R and so rN/a(R) = 4 and rN/a(G) = 3.

7.4.23. Neither z6 nor y4 exists.

If z6 exists, then z6 ∈ G; otherwise rN/a(R) ≥ 5 as {α, β, z6} is a not a
triangle in N . But then z6 ∈ clN/a(G ∩ {z1, z2, z3, z4}) as rN/a(G) = 3. So
{z1, z2, z3, z4, z6} is a 5-element rank-3 subset of E(N) in N avoiding α and
β, contradicting Lemma 7.1. Thus z6 does not exist.

If y4 exists, then y4 ∈ G; otherwise rN/a(R) ≥ 5. But then, as rN/a(G) =
3, it follows that (G ∩ {y1, y2, y3}) ∪ y4 is a triangle in N/a and so, by our
choice of a, is a triangle in N ; a contradiction. So y4 does not exist, and
(7.4.23) holds.

Since the element of R ∩ {y1, y2, y3} is a coloop of R in N\e/a, it follows
that {α, β, z5} is a triad in N\e/a. Thus {α, β, z5} is a triad in N\e. Since
N is 4-connected, this implies that

7.4.24. {α, β, z5, e} is a cocircuit in N .

7.4.25. In N , there is no 4-element rank-3 subset of {α, β} ∪ {y1, y2, y3}
that includes α and β.

Suppose that C is such a subset. Then C is a circuit in N and hence
in N\e/a. The element of {α, β, y1, y2, y3} − C is a coloop of this set in
N\e/a. Thus C is 3-separating in N\e/a. The choice of a implies that C
is 3-separating in N\e. Let C − {α, β} = {c1, c2} and P2 − {c1, c2} = d.
Suppose C is not a cocircuit in N\e. Then clN\e(P1 ∪ d) ∩ C is non-empty.
If α ∈ clN\e(P1 ∪ d), then β ∈ clN\e(P1 ∪ d) and so, as N\e is 3-connected,
it follows that C ⊆ clN\e(P1 ∪ d); a contradiction. Thus, without loss of
generality, we may assume that c2 ∈ clN\e(P1∪d). Since N\e is 3-connected,
c1 6∈ clN\e(P1∪d). It now follows that (α, β, c1, c2, d) is a sequential ordering
of P2∪{α, β} in N\e. But then P2 ⊆ fclN\e({α, β}); a contradiction. Hence
C is a cocircuit in N\e and hence in N\e/a.

If |C ∩ (G ∩ P2)| = 1, then rN/a(G) ≥ 4; a contradiction. So C =
{α, β}∪ (G∩P2). But then, as rN/a(G) = 3, it follows that (G− e)∪{α, β}
has rank 4 in N\e/a and so ((R∩P2)∪z5, (G−e)∪{α, β}) is a 2-separation
of the 3-connected matroid N\e/a; a contradiction. Thus (7.4.25) holds.
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It follows from (7.4.23) and (7.4.25) that |E(N)| = 11 and r({α, β} ∪
{p, q}) = 4 for all distinct p, q ∈ {y1, y2, y3}. Now consider N/z5. We
show next that N/z5 is sequentially 4-connected. As |E(N)| = 11, it will
follow by the dual of (I) of this lemma, which we have already proved, that
E(N)−{α, β} contains an element x that does not expose any 3-separation
in M ′\x for some M ′ in {M,M∗} thereby completing the proof of the lemma.

Assume that (U, V ) is a non-sequential 3-separation of N/z5. Then
|U |, |V | ≥ 4 and rN/z5

(U), rN/z5
(V ) ≥ 3. Without loss of generality, we may

assume that α, β ∈ U . Note that, by Lemma 2.11, N\e/z5 is 3-connected.

7.4.26. |U ∩ {y1, y2, y3}| 6= 3.

Suppose |U ∩ {y1, y2, y3}| = 3. Since |V | ≥ 4, we may assume that
{z1, z2, z3, z4} ⊆ V . But then each of U − e and V − e contains a triad in
N\e/z5, contradicting Lemma 2.22. Thus (7.4.26) holds.

7.4.27. |U ∩ {y1, y2, y3}| 6= 2.

Suppose |U ∩ {y1, y2, y3}| = 2. Then, as rN/z5
({α, β, y1, y2, y3}) = 4 and

rN/z5
({α, β} ∪ {p, q}) = 4 for all distinct p, q ∈ {y1, y2, y3}, it follows that

(U ∪P2, V −P2) is a non-sequential 3-separation of N/z5. But, by (7.4.26),
there is no such 3-separation, and so (7.4.27) holds.

7.4.28. |U ∩ {y1, y2, y3}| 6= 1.

Suppose that |U∩{y1, y2, y3}| = 1. Let {f} = U∩{y1, y2, y3} and {g, h} =
V ∩ {y1, y2, y3}. Assume that ⊓N/z5

({g, h}, P1 − z5) = 0. If P1 ⊆ U , then
|V | ≤ 3; a contradiction. If P1 ⊆ V , then, as ⊓N/z5

({g, h}, P1 − z5) = 0,
we have rN/z5

(V ) ≥ 5 and so rN/z5
(U) ≤ 2; a contradiction. Thus we may

assume that P1 is not spanned by P1 ∩ U or P1 ∩ V in N/z5 so |P1 ∩ U | =
2 = |P1 ∩ V |. Thus rN/z5

(U) ≥ 4. Moreover, as ⊓N/z5
({g, h}, P1 − z5) = 0,

we have rN/z5
(V ) = 4; a contradiction.

We may now assume that ⊓N/z5
({g, h}, P1 − z5) = 1. Then {α, β, f} is

a triad in N\e/z5. Since {α, β, f} ⊆ U , it follows by Lemma 2.22 that
e ∈ clN/z5

(U − e). Now P1 6⊆ U , otherwise |V | ≤ 3. If P1 ⊆ V , then V − e
and U −e both contain a triad in N\e/z5, contradicting Lemma 2.22. Thus,
as in the last paragraph, we may assume that |P1 ∩U | = 2 = |P1 ∩V |. Then
rN/z5

(U) ≥ 4 and so rN/z5
(U) = 4 and rN/z5

(V ) = 3.

Consider z4. If z4 ∈ V , then, as rN/z5
(V ) = 3, we have that {g, h, z4} is a

triangle in N/z5. Since e ∈ clN/z5
(U −e), it now follows that V is sequential

in N/z5; a contradiction. Therefore z4 ∈ U and {α, β, z4} is a triangle in
N/z5 as rN/z5

(U) = 4. Since (U ∪ e, V − e) is a 3-separation in N/z5 and N
is 4-connected, (U ∪ {e, z5}, V − e) is not a 3-separation in N . This implies
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that z5 ∈ clN (V − e). But then N has a circuit D containing z5 such that
D − z5 ⊆ V − e. But, by (7.4.24), {α, β, z5, e} is a cocircuit in N . This
contradiction to orthogonality implies that (7.4.28) holds.

7.4.29. |U ∩ {y1, y2, y3}| 6= 0.

Suppose that |U ∩ {y1, y2, y3}| = 0. If {z1, z2, z3} ⊆ V , then we may
assume that z4 ∈ V , so |U | ≤ 3; a contradiction. Therefore |{z1, z2, z3} ∩
U | ≥ 1. If {z1, z2, z3} ⊆ U , then both U − e and V − e contain a triad in
N\e/z5, contradicting Lemma 2.22. Therefore |{z1, z2, z3} ∩ V | ≥ 1 and so
rN/z5

(U) = 3 and rN/z5
(V ) = 4.

Suppose z4 ∈ V . Then z4 ∈ clN/z5
({y1, y2, y3}); otherwise rN/z5

(V ) ≥ 5.
Therefore z4 ∈ clN ({y1, y2, y3, z5}). If z4 6∈ clN ({y1, y2, y3}), then z5 ∈
clN ({y1, y2, y3, z4}) and so N has a circuit consisting of z5 and a subset of
{y1, y2, y3, z4}. But, by (7.4.24), {α, β, z5, e} is a cocircuit of N , contradict-
ing orthogonality. Thus z4 ∈ clN ({y1, y2, y3}) and so r∗N\e({z1, z2, z3, z5}) =

2. Hence rN∗({z1, z2, z3, z5, e}) = 3. By Lemma 7.1, there is an element
x in this subset such that x does not expose any 3-separation of M∗\x;
a contradiction. Thus we may assume that z4 ∈ U , in which case, as
rN/z5

(U) = 3, we have that {α, β, z4} is a triangle in N/z5. Furthermore,
|U ∩ {z1, z2, z3}| = 1; otherwise N contains a triangle as rN/z5

(U) = 3.

Since {y1, y2, y3} is a triad of N\e/z5 and {y1, y2, y3} ⊆ V , it follows by
Lemma 2.22 that e ∈ clN/z5

(V − e) and e 6∈ clN/z5
(U − e). Thus e ∈ V and

(α, β, z4, u) is a sequential ordering of U , where {u} = U ∩ {z1, z2, z3}; a
contradiction. Hence (7.4.29) holds.

It now follows by (7.4.26)–(7.4.29) that there is no non-sequential 3-
separation (U, V ) of N/z5, thereby completing analysis of (II).

(III) r(N) = 7 and |E(N)| = 12.

It follows from (I) that we may assume that N/f is not sequentially 4-
connected for all f ∈ E(N) − {α, β}.

(i) Φ is a paddle. Since Φ is a paddle,

7 = r(N\e) = r({α, β}) + r(P1) + r(P2) − 4

≤ 2 + |P1| + |P2| − 4

= 11 − 4 = 7.

Therefore P1 and P2 are independent sets and so, as each is 3-separating in
N\e, we have r∗N\e(P1) = 2 = r∗N\e(P2). Without loss of generality, we may

assume that |P2| ≥ |P1|. In particular, |P2| ∈ {5, 6} and so, by Lemma 7.1,
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there is an element y in P2 ∪ e such that y does not expose any 3-separation
in M∗\y; a contradiction. Hence Φ is not a paddle.

(ii) Φ is a copaddle. Since neither P1 nor P2 is a subset of fcl({α, β}), we
have |P1|, |P2| ≥ 3. Also, as N has no triangles, r(P1), r(P2) ≥ 3. Thus, as

7 = r(N\e) = r({α, β}) + r(P1) + r(P2) − 2,

we have r(P1)+r(P2) = 7, and so, without loss of generality, we may assume
that r(P1) = 4 and r(P2) = 3. If |P2| = 3, then r∗N\e(P2 ∪ {α, β}) = 2, and

so P2 ⊆ fclN\e({α, β}); a contradiction. Thus |P2| ≥ 4. If |P2| = 5, then,
by Lemma 7.1, there is an element x ∈ P2 such that x does not expose any
3-separation in M\x. Therefore |P2| = 4, so |P1| = 5. We partition (ii) into
two subcases depending on whether or not P1 contains a 4-element circuit.

First suppose that P1 contains such a 4-circuit Q, and let z be the element
in P1 − Q. Since r(Q) = 3 and r(P1) = 4, it follows that z 6∈ clN\e(Q) and
so, by Lemma 2.1, z ∈ cl∗N\e(P2 ∪ {α, β}). Therefore Q is 3-separating in

N\e. Moreover, as Φ is a copaddle, z ∈ cl∗N\e({α, β}). Thus

7.4.30. {α, β, z} is a triad in N\e. In particular, ({α, β, z}, Q, P2) and
({α, β}, Q, P2 ∪ z) are copaddles in N\e.

Next we show the following.

7.4.31. There is an element a ∈ Q − clN ({α, β, z} ∪ P2) such that a 6∈
clN (P2 ∪ {z, e}) and a 6∈ clN ({α, β} ∪ {z, e}).

Since N\e has ({α, β, z}, Q, P2) as a copaddle, ⊓({α, β, z}, Q) = 0. Thus
⊓({α, β, z, e}, Q) ≤ 1. Similarly, as ({α, β}, Q, P2 ∪ z) is a copaddle, ⊓(P2 ∪
{z, e}), Q) ≤ 1. Moreover, clN ({α, β, z} ∪ P2) contains at most one element
of Q. Hence the desired element a exists.

Consider N/a. As a is in a cocircuit of N\e contained in Q, it follows by
Lemma 2.13 that N\e/a is 3-connected. Furthermore,

⊓N/a({α, β, z}, Q − a) = ⊓N/a(Q − a, P2) = ⊓N/a(P2, {α, β, z}) = 0.

Since N/a is not sequentially 4-connected, it has a non-sequential 3-
separation (R,G). By Lemma 2.12, we may assume that α, β ∈ R. As Q−a
is a triangle of N/a, we may also assume that Q − a ⊆ R or Q − a ⊆ G.

7.4.32. Q − a 6⊆ R.

Suppose that Q−a ⊆ R. Then G−e ⊆ P2∪z. Since N\e/a is 3-connected,
it follows by Lemma 2.21 that either e ∈ clN/a(R− e) or e ∈ clN/a(G− e). If
e ∈ clN/a(G − e), then e ∈ clN ((G − e) ∪ a). But e 6∈ clN (G − e); otherwise
Q is 3-separating in N . Therefore a ∈ clN (G ∪ e), so a ∈ clN (P2 ∪ {e, z}),
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contradicting (7.4.31). Thus e ∈ clN/a(R−e). Since (R,G) is non-sequential,
it now follows that |G ∩ P2| ≥ 3 and so, as P2 contains no triangles in N/a,
we may assume that P2 ⊆ G. But then, as e ∈ clN/a(R − e), we have
e ∈ clN (P1 ∪ {α, β}), so P2 is 3-separating in N ; a contradiction. Thus
(7.4.32) holds.

7.4.33. Q − a 6⊆ G.

Suppose that Q−a ⊆ G. Suppose also that |P2∩R| ≥ 3. Then, by closure-
equivalence, we may assume that P2 ⊆ R. If z ∈ R, then, as |G| ≥ 4, it
follows that G = (Q − a) ∪ e, in which case, G is sequential as Q − a is a
triangle in N/a; a contradiction. Therefore z ∈ G. If e ∈ clN/a(G− e), then
e ∈ clN (P1) and so P2 is 3-separating in N ; a contradiction. Therefore, by
Lemma 2.21, e ∈ clN/a(R − e) and e ∈ G. Thus G = (P1 − a) ∪ e and, as
Q1 − a is a triangle of N/a, and P1 − a is 3-separating in N/a, it follows
that G is sequential; a contradiction. Thus |P2 ∩ G| ≥ 2.

Suppose |P2 ∩G| ≥ 3. Then, by closure-equivalence, we may assume that
P2 ⊆ G, and so z ∈ R as |R| ≥ 4. By Lemma 2.21, either e ∈ clN/a(R − e)
or e ∈ clN/a(G − e). If e ∈ clN/a(R − e), then e ∈ clN ({α, β} ∪ P1), and so
P2 is 3-separating in N ; a contradiction. If e ∈ clN/a(G − e), then {α, β, z}
is a triad in N/a and therefore in N ; a contradiction. Thus we may assume
that |P2∩R| = 2 = |P2∩G|, which implies that rN/a(R), rN/a(G) ≥ 4. Since
r(N/a) = 6, we deduce that rN/a(R) = 4 = rN/a(G). By (7.4.30), {α, β, z}
is a triad in N\e, so it is a triad in N\e/a. Therefore rN/a(G) ≥ 5 if z ∈ G;
a contradiction. Thus z ∈ R. But then, as ⊓N/a(P2, {α, β, z}) = 0, we have
rN/a(R) = 5; a contradiction. Thus (7.4.33) holds.

It now follows that we may suppose P1 contains no 4-element rank-3
subset. In particular, every 4-element subset of P1 is independent. Since
r({α, β} ∪ P2) = 5 and e 6∈ cl({α, β} ∪ P2), the set cl({α, β, e} ∪ P2) has
rank 6, and so its complement is a cocircuit C∗ of N contained in P1. Since
N has no triangles, it follows by Lemma 2.8 that C∗ contains an element
a ∈ P1 such that a 6∈ cl({α, β, e} ∪ P2) and N\e/a is 3-connected.

Consider N/a. Since P1 contains no 4-element rank-3 subset, P1 − a is a
circuit in N/a. Moreover,

⊓N/a({α, β}, P1 − a) = ⊓N/a(P1 − a, P2) = ⊓N/a(P2, {α, β}) = 0.

Since N/a is not sequentially 4-connected, it has a non-sequential 3-
separation (R,G). By Lemma 2.12, we may assume that α, β ∈ R.

7.4.34. P1 − a 6⊆ R.

Suppose P1 − a ⊆ R. Then, as (R,G) is non-sequential, |P2 ∩G| ≥ 3 and
so we may assume that P2 ⊆ G as P2 contains no triangles in N/a. Since
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N\e/a is 3-connected, it follows by Lemma 2.21 that either e ∈ clN/a(R−e)
or e ∈ clN/a(G − e). If e ∈ clN/a(G − e), then e ∈ clN/a(P2), and so e ∈
clN (P2 ∪a). Since e 6∈ clN (P2), it follows that a ∈ clN (P2 ∪ e), contradicting
our choice of a. Thus e ∈ clN/a(R − e). But then e ∈ clN ({α, β} ∪ P1) and
so P2 is 3-separating in N ; a contradiction. Hence (7.4.34) holds.

7.4.35. P1 − a 6⊆ G.

Suppose P1 − a ⊆ G Then, as (R,G) is non-sequential, |P2 ∩ R| ≥ 1.
Assume that P2 ⊆ R. Then rN/a(R) ≥ 5, and so rN/a(R) = 5 and rN/a(G) =
3. By Lemma 2.21, either e ∈ clN/a(R − e) or e ∈ clN/a(G − e). If e ∈
clN/a(R − e), then e ∈ clN ({α, β, a} ∪ P2). Since e 6∈ clN ({α, β} ∪ P2), it
follows that a ∈ clN ({α, β, e} ∪ P2), contradicting our choice of a. Thus
e ∈ clN/a(G− e) and so e ∈ clN (P1). But then {α, β}∪P2 is 3-separating in
N ; a contradiction. It now follows that |P2 ∩G| ≥ 1, and so, as P2 contains
no triangles in N/a, we may assume that |P2 ∩ R| = 2 = |P2 ∩ G|. Since
⊓N/a(P2, {α, β}) = 0 = ⊓N/a(P1 − a, P2), this implies that rN/a(R) ≥ 4 and
rN/a(G) ≥ 5; a contradiction as r(N/a) = 6. Hence (7.4.35) holds.

It follows from (7.4.34) and (7.4.35) that we may assume |(P1 −a)∩R| =
2 = |(P1−a)∩G|. If P2 ⊆ R, then |G| ≤ 3; a contradiction. So |P2∩G| ≥ 1.
If P2 ⊆ G, then rN/a(G) ≥ 5 and rN/a(R) ≥ 4; a contradiction. Therefore
|P2 ∩ R| ≥ 1, and so we may assume that |P2 ∩ R| = 2 = |P2 ∩ G|. Now
|clN/a(P2 ∪ {α, β}) ∩ (P1 − a)| ≤ 1, otherwise, as N\e/a is 3-connected,
E(N) − {e, a} ⊆ clN/a(P2 ∪ {α, β}) contradicting the fact that rN/a(P2 ∪
{α, β}) = 5. Therefore rN/a(R) ≥ 5; a contradiction as rN/a(G) ≥ 4. We
conclude that Φ is not a copaddle.

(iii) ⊓({α, β}, P1) = ⊓(P1, P2) = ⊓(P2, {α, β}) = 1. Since P1 6⊆
fcl({α, β}) and P2 6⊆ fcl({α, β}), it follows by Lemma 3.1 that P1 and P2 are
both sequential.

Now 7 = r(N\e) = r({α, β})+r(P1)+r(P2)−3. Therefore r(P1)+r(P2) =
8. Furthermore, as |E(N)| = 12, we have |P1|+ |P2| = 9. It now follows that
either P1 is independent or P2 is independent. Without loss of generality,
we may assume that P2 is independent. As P2 is 3-separating in N\e, it
follows that r∗N\e(P2) = 2. Therefore, if |P2| ≥ 4, then, by Lemma 7.1, there

is an element y ∈ P2 ∪ e such that y does not expose any 3-separation in
M∗\y. Thus we may assume that |P2| ∈ {2, 3}.

Before partitioning (iii) into two subcases depending on the size of P2,
consider P1. Now |P1| ∈ {6, 7}. Let (z1, z2, . . . , zk) be a sequential ordering
of P1. Since P1 contains no triangles of N\e, it follows that {z1, z2, z3} is
a triad of N\e. If z4 ∈ cl∗N\e({z1, z2, z3}), then {z1, z2, z3, z4} is a 4-point

cosegment in N\e avoiding α and β, and so the lemma holds by Lemma 7.1.



EXPOSING 3-SEPARATIONS 61

Thus z4 ∈ clN\e({z1, z2, z3}). Since rN\e(P1) = |P1| − 1, it now follows that
zj ∈ cl∗N\e({z1, . . . , zj−1}) for all j ≥ 5.

(iii)(a) |P2| = 2. In this subcase, |P1| = 7 and so r(P1) = 6. Since P2 6⊆
fclN\e({α, β}), it follows that both clN\e(P1)∩clN\e(P2) and clN\e({α, β})∩
clN\e(P2) are empty. To maintain symmetry, let {Q1, Q2} = {{α, β}, P2}.
Now, by Lemma 2.10, r({z1, z2, z3, z4} ∪ Q1 ∪ Q2) = 6 and so {z5, z6, z7} is
a triad in N\e.

7.4.36. Let k ∈ {1, 2}. If Qk ∪ zi is a triad in N\e for some i ∈ {5, 6, 7},
then Qk ∪ zj is not a triad in N\e for each j ∈ {5, 6, 7} − i.

Suppose that Qk ∪ zi and Qk ∪ zj are triads in N\e, where i, j ∈ {5, 6, 7}
and i 6= j. Then Qk ∪ {z5, z6, z7} is a cosegment in N\e. In particu-
lar, there is a 4-element cosegment in N\e that avoids at least one el-
ement in {α, β}. Therefore, by Lemma 7.1, there is an element y in
(Qk ∪ {z5, z6, z7, e}) − {α, β} such that y does not expose any 3-separation
in M∗\y; a contradiction. Hence (7.4.36) holds.

7.4.37. There is an element a of {z1, z2, z3} such that a 6∈ clN ({z5, z6, z7, e})
and a 6∈ clN (P2 ∪ {α, β, zi, e}), where i is chosen in {5, 6, 7} so that, if
possible, Q1 ∪ zi or Q2 ∪ zi is a triad in N\e.

As ⊓({z1, z2, z3}, {z5, z6, z7}) = 0, we have ⊓({z1, z2, z3}, {z5, z6, z7, e}) ≤
1. Furthermore, by [5, Lemma 5.8] and Lemma 2.10, ⊓({z1, z2, z3}, Q1 ∪
Q2 ∪ zi) = 0, so ⊓({z1, z2, z3}, Q1 ∪ Q2 ∪ {zi, e}) ≤ 1. Thus there is such an
element a in {z1, z2, z3} satisfying (7.4.37).

Consider N/a and note that, by Lemma 2.13, N\e/a is 3-connected.
Since N/a is not sequentially 4-connected, it has a non-sequential 3-
separation (R,G). By closure-equivalence, either {z1, z2, z3, z4} − a ⊆ R,
or {z1, z2, z3, z4} − a ⊆ G.

7.4.38. Neither Q1 ∪ Q2 ⊆ R nor Q1 ∪ Q2 ⊆ G.

Suppose that Q1 ∪ Q2 ⊆ R. Suppose also that {z1, z2, z3, z4} − a ⊆
R. Then G = {z5, z6, z7, e} as |G| ≥ 4. Now a 6∈ clN ({z5, z6, z7, e}) and
e 6∈ clN ({z5, z6, z7}), so, by Lemma 2.2, e 6∈ clN/a(G − e). Therefore, by
Lemma 2.21, e ∈ clN/a(R − e). But then {z5, z6, z7} is a triad in N ; a
contradiction as N is 4-connected.

Now assume that {z1, z2, z3, z4} − a ⊆ G. Then G − e ⊆ P1 − a. By
Lemma 2.21, either e ∈ clN/a(R − e) or e ∈ clN/a(G − e). If e ∈ clN/a(G −
e), then e ∈ clN (P1), and so (P1, {α, β} ∪ P2) is a 3-separation in N ; a
contradiction. Therefore e ∈ clN/a(R− e). Since (z1, z2, z3, z4, z5, z6, z7) is a
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sequential ordering of P1 in N\e, it is easily checked that

({z1, z2, z3, z4} − a, z5, z6, z7, {α, β} ∪ P2)

is a 3-sequence in N\e/a. Therefore, by [5, Lemma 5.8], ({z1, z2, z3, z4} −
a, zi, zj , zk, {α, β} ∪ P2) is a 3-sequence in N\e/a, where {zi, zj , zk} =
{z5, z6, z7}. As e ∈ clN/a(R − e), it now follows that G − e, and there-
fore G, is sequential in N/a; a contradiction as (R,G) is a non-sequential
3-separation in N/a. Thus Q1∪Q2 6⊆ R and so, by symmetry, (7.4.38) holds.

By Lemma 2.12, (7.4.38), and closure-equivalence, we may assume that
Q1 ⊆ R and Q2 ⊆ G. We may also assume that {z1, z2, z3, z4} − a ⊆ R.
Then, by Lemma 2.10, rN/a(R−e) ≥ 4 and, as |G| ≥ 4, we have |{z5, z6, z7}∩
G| ≥ 1. Now |{z5, z6, z7}∩G| 6= 3, otherwise rN/a(G−e) ≥ 5; a contradiction
as r(N/a) = 6. If |{z5, z6, z7} ∩ G| = 2, then rN/a(G − e) ≥ 4 and, by
Lemma 2.10, rN/a(R − e) ≥ 5; a contradiction. Hence |{z5, z6, z7} ∩ G| = 1
and |{z5, z6, z7}∩R| = 2. Thus |G−e| = 3 and rN/a(R) ≥ 5, so G−e is a triad
in N\e/a and hence in N/e. By Lemma 2.22, this implies e ∈ clN/a(G− e).

Now G − e = Q2 ∪ zj for some j in {5, 6, 7}. Suppose first that j = i
in the selection of a in (7.4.37). Then a 6∈ clN (P2 ∪ {α, β, zi, e}). As G ⊆
{α, β, zi, e}, it follows that 3 = rN/a(G) = rN (G), so e ∈ clN (Q2 ∪ zi).
Thus {z1, z2, z3}, which is 3-separating in N\e, is also 3-separating in N ; a
contradiction. We may now assume that j 6= i. Then, by (7.4.36), Q1 ∪ zi

is a triad of N\e. Thus Q1 ∪ zi is a triad of N\e/a contained in R − e,
contradicting Lemma 2.22. This completes the subcase that |P2| = 2.

(iii)(b) |P2| = 3. Then |P1| = 6, so r(P1) = 5, and P2 is a triad in N\e.

7.4.39. We may assume that there is no triad T in N\e such that T ⊆
P2 ∪ {z5, z6} and |T ∩ {z5, z6}| ≥ 1.

Suppose there is such a triad T . If |T ∩ P2| = 2, then, as P2 is a triad in
N\e, it follows that P2 ∪ T is a 4-element cosegment in N\e that avoids α
and β. Therefore, by Lemma 7.1, there is an element in P2 ∪T ∪ e that does
not expose any 3-separations in N∗; a contradiction. Thus {z5, z6} ⊆ T . Let
{y} = T ∩P2. Since y ∈ cl∗N\e(P1), it follows by Lemma 2.9 that P1 ∪ y and

{α, β} ∪P1 ∪ y are 3-separating in N\e. Therefore ({α, β}, P1 ∪ y, P2 − y) is
a flower in N\e. Furthermore, as ⊓({α, β}, P1) = 1 and y 6∈ cl({α, β} ∪ P1),
it follows that ⊓({α, β}, P1 ∪y) = 1. Hence ({α, β}, P1 ∪y, P2−y) is a flower
in N\e of the form analyzed in the previous subcase. Thus (7.4.39) holds.

By Lemma 2.10, ⊓({z1, z2, z3}, P2 ∪ {α, β}) = 0, so ⊓({z1, z2, z3}, P2 ∪
{α, β, e}) ≤ 1. From this, we deduce the following.

7.4.40. There is an element a of {z1, z2, z3} such that a 6∈ clN (P2∪{α, β, e}).
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Consider N/a. By Lemma 2.13, N\e/a is 3-connected. Also, as
(z1, z2, z3, z4, z5, z6) is a sequential ordering of P1 in N\e, it follows, for
each (i, j) in {(5, 6), (6, 5)}, that ({z1, z2, z3, z4}−a, zi, zj , {α, β}∪P2) is a 3-
sequence in N\e/a, where {zi, zj} = {z5, z6}; zi ∈ cl∗N\e/a({z1, z2, z3, z4}−a);

and zj ∈ cl∗N\e/a(({z1, z2, z3, z4} − a) ∪ zi). Now, as N/a is not sequentially

4-connected, it has a non-sequential 3-separation (R,G). By Lemma 2.12,
we may assume that {α, β} ⊆ R. Furthermore, by closure-equivalence, we
may assume that either {z1, z2, z3, z4} − a ⊆ R or {z1, z2, z3, z4} − a ⊆ G.

First assume that {z1, z2, z3, z4}−a ⊆ R. Then, by Lemma 2.10, rN/a(R−
e) ≥ 4. If |P2∩R| ≥ 1, then rN/a(R− e) ≥ 5 as P2 is a triad in N\e/a. This
implies that rN/a(R) = 5 and rN/a(G) = 3, and so |G ∩ (P2 ∪ {z5, z6})| = 3.
But then G−e is a triad in N\e/a and therefore a triad in N\e, contradicting
(7.4.39). Thus |P2 ∩ R| = 0 and so P2 ⊆ G. Since rN/a(P2 ∪ {z5, z6}) = 5
and rN/a(R) ≥ 4, it follows that |G ∩ {z5, z6}| ≤ 1. If |G ∩ {z5, z6}| = 0,
then G = P2 ∪ e, so G − e is a triad in N\e/a. Therefore, by Lemma 2.22,
e ∈ clN/a(G − e), contradicting the choice of a in (7.4.40). It now follows
that |G ∩ {z5, z6}| = 1, and so rN/a(G − e) = 4 and rN/a(R − e) = 4. Thus
G − e is a 4-element cosegment in N\e/a, and therefore also in N\e. As
G− e avoids α and β, Lemma 7.1 implies that there is an element y in G∪ e
that does not expose any 3-separations in M∗\y; a contradiction.

We may now assume that {z1, z2, z3, z4} − a ⊆ G.

7.4.41. P2 6⊆ R.

Suppose P2 ⊆ R. Then G − e ⊆ P1 − a. As P2 is a triad of N/a, by
Lemma 2.22, e ∈ clN/a(R − e). But then it is easily checked that G is
sequential in N/a; a contradiction. Thus (7.4.41) holds.

7.4.42. P2 6⊆ G.

Suppose P2 ⊆ G. Then, by Lemma 2.10, rN/a(G − e) ≥ 5 and so
rN/a(G) = 5 and rN/a(R) = 3. Since (R,G) is non-sequential, |R∩{z5, z6}| ≥
1. If |R∩{z5, z6}| = 2, then rN/a(R) ≥ 4; a contradiction. So |R∩{z5, z6}| =
1 and |G∩{z5, z6}| = 1. But then R− e is a triad in N\e/a and P2 ⊆ G− e
is also a triad in N\e/a, contradicting Lemma 2.22. Thus (7.4.42) holds.

7.4.43. We may assume that |P2 ∩ R| = 1.

Suppose that |P2 ∩ R| = 2. Let P2 ∩ R = {x, y} and let P2 ∩ G = {z}.
Since R − e and P2 ∪ {α, β} are 3-separating sets in N\e/a, it follows by
Lemma 2.4 that their intersection, {α, β, x, y}, is 3-separating in N\e/a.
Since the triad {z1, z2, z3} of N\e contains a, it follows that {α, β, x, y}
is 3-separating in N\e. Therefore ({α, β}, P1 ∪ z, P2 − z) is a flower in
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N\e. Also, as ⊓({α, β}, P1) = 1 and z 6∈ cl({α, β} ∪ P1), it follows that
⊓({α, β}, P1 ∪ z) = 1. Thus ({α, β}, P1 ∪ z, P2 − z) is a flower in N\e of the
form analyzed in the previous subcase. Hence (7.4.43) holds.

Let P2 ∩ R = {x}. By Lemma 2.10, rN/a(G − e) ≥ 4 and so rN/a(R) ∈
{3, 4}. If {z5, z6} ⊆ G, then R − e = {α, β, x} and so R − e is a triad
in N\e/a. Therefore, by Lemma 2.22, e ∈ clN/a(R − e), contradicting our
choice of a. Thus {z5, z6} 6⊆ G. If {z5, z6} ⊆ R, then rN/a(R − e) ≥ 5; a
contradiction. Therefore |{z5, z6} ∩ R| = 1. Let {zp} = {z5, z6} ∩ R. Since
R − e and (P1 − a) ∪ {α, β} are 3-separating in N\e/a, their intersection,
{α, β, zp}, is 3-separating in N\e/a and so is a triad of N\e/a. Thus, by
Lemma 2.22, e ∈ clN/a({α, β, zp}), but e 6∈ clN/a((P1 ∪ P2) − zp). Therefore
{α, β, zp, e} is a cocircuit in N/a and so {α, β, zp, e} is a cocircuit in N . Let
{p, q} = {5, 6}. Then

7.4.44. zq ∈ clN ((P1 − zq) ∪ {α, β}).

If not, then P2 ∪ zq is a cosegment in N\e, so (P2 − x) ∪ zq is a triad in
N\e/a contained in G, contradicting Lemma 2.22. Hence (7.4.44) holds.

To complete the analysis, we now consider N/zp. Since N/zp is not se-
quentially 4-connected, it has a non-sequential 3-separation (R′, G′). Then
rN/zp

(R′), rN/zp
(G′) ∈ {3, 4, 5}. By Lemma 2.12, we may assume that

α, β ∈ R′. Since {α, β, zp} is a triad of N\e, it follows by Lemma 2.14
that N\e/zp is 3-connected. Furthermore, as {α, β, zp, e} is a cocircuit of N
and ⊓({z1, z2, z3, z4}, P2) = 0 in N , we have

7.4.45. ⊓N/zp
({z1, z2, z3, z4}, P2) = 0.

The next result simplifies the remaining analysis.

7.4.46. If |{z1, z2, z3, z4} ∩ G′| ≥ 2 and |P2 ∩ R′| = 2, then ({α, β}, P1 ∪
(P2 ∩ G′), P2 ∩ R′) is a flower in N\e of the form analyzed in the previous
subcase.

To see this, first observe that R′−e and P2∪{α, β} are both 3-separating
in N\e/zp. Thus their intersection, {α, β}∪ (P2 ∩R′), is also 3-separating in
N\e/zp. Furthermore, as r(N\e/zp) = 6 and rN\e/zp

((P1−zp)∪(P2∩G′)) =

5, we have rN\e/zp
({α, β} ∪ (P2 ∩ R′)) = 3. Therefore rN\e({α, β} ∪ (P2 ∩

R′)) = 3. As rN\e(P1 ∪ (P2 ∩ G′)) = 6 and ⊓({α, β}, P2 ∩ R′) = 1, we have
that ({α, β}, P1 ∪ (P2 ∩G′), P2 ∩R′) is a flower in N\e of the form analyzed
in the previous subcase. Thus (7.4.46) holds.

If {z1, z2, z3, z4} ⊆ R′, then, as zq ∈ cl((P1 − zq) ∪ {α, β}), we have
rN/zp

(R′ − e) ≥ 5. Since (R′, G′) is a non-sequential 3-separation of N/zp,

this implies that P2 ⊆ G′. So G′ contains a triad in N\e/zp. But
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{z1, z2, z3} ⊆ R′ is also a triad in N\e/zp, contradicting Lemma 2.22. Thus
{z1, z2, z3, z4} 6⊆ R′.

If {z1, z2, z3, z4} ⊆ G′, then |P2 ∩ G′| ≥ 1; otherwise, {z1, z2, z3} ⊆ G′

and P2 ⊆ R′, so {z1, z2, z3} and P2 are triads in N\e/a that contradict
Lemma 2.22. Also, |P2 ∩ R′| ≥ 1; otherwise, by (7.4.45), rN/zp

(G′) ≥ 6; a

contradiction. Now R′− e and P2 ∪{α, β} are both 3-separating in N\e/zp,
so their intersection, {α, β}∪(P2 ∩R′), is also 3-separating in N\e/zp. Thus
if |P2 ∩ G′| = 2, then {α, β} ∪ (P2 ∩ R′) is a triad in N\e/zp contained in
R′. As {z1, z2, z3} is a triad in N\e/zp contained in G′, we again contradict
Lemma 2.22. Thus |P2 ∩ G′| = 1 and so |P2 ∩ R′| = 2, in which case, by
(7.4.46), N\e has a flower of the form analyzed in the previous subcase.

By closure-equivalence, we may now assume that |{z1, z2, z3, z4} ∩ R′| =
2 = |{z1, z2, z3, z4} ∩ G′|. Suppose rN/zp

({α, β} ∪ ({z1, z2, z3, z4} ∩ R′)) = 3.
Then rN ({α, β} ∪ ({z1, z2, z3, z4}) ≤ 5 so, by (7.4.44), rN ({α, β} ∪ P1) ≤ 5;
a contradiction. Thus rN/zp

({α, β} ∪ ({z1, z2, z3, z4} ∩ R′)) ≥ 4. If P2 ⊆ G′,

then, by (7.4.45), rN/zp
(G′) ≥ 5; a contradiction. If |P2 ∩ G′| = 2, then

|P2∩R′| = 1 and so rN/zp
(R′) ≥ 5 and rN/zp

(G′) ≥ 4, again a contradiction.

The case |P2 ∩ G′| = 1 and |P2 ∩ R′| = 2 is covered by (7.4.46). Lastly,
if P2 ⊆ R′, then, by (7.4.45), rN/zp

(R′) ≥ 5. Thus rN/zp
(R′) = 5 and

rN/zp
(G′) = 3. But then |G′ − e| = 3 and so G′ − e is a triad in N\e/zp. As

P2∩R′ is also a triad in N\e/zp, we contradict Lemma 2.22. This completes
the argument in subcase (iii)(b), thereby completing the proof of (III) and
the lemma. �

Theorem 7.5. Let (A,B) be a non-sequential 3-separation in a 3-connected
matroid M . Suppose that B is fully closed, A meets no triangle or triad of
M , and if (X,Y ) is a non-sequential 3-separation of M , then either A ⊆
fcl(X) or A ⊆ fcl(Y ). If |A| ≤ 10, then A contains an element whose
deletion from M or M∗ is 3-connected but does not expose any 3-separations.

Proof. Suppose that |A| ≤ 10. Since (A,B) is a non-sequential, |A| ≥ 4
and r(A), r∗(A) ≥ 3. If r(A) = 3 or r∗(A) = 3, then the theorem holds by
Lemma 7.2 and its dual. Thus we may assume that r(A), r∗(A) ≥ 4. Now
λM (A) = 2, so 2 = r(A) + r∗(A) − |A|. Hence |A| ≥ 6.

Let N be the clonal replacement of B by {α, β}. By Lemma 4.12, N is
4-connected, and so, by Lemma 6.2, M\f and M∗\f are 3-connected for all
f in E(N) − {α, β}. As 6 ≤ |A| ≤ 10, we have 8 ≤ |E(N)| ≤ 12. Also,
as r(A) ≥ 4 and r∗(A) ≥ 4, it follows that r(N) ≥ 4 and, by Lemma 4.10,
r∗(N) ≥ 4. If r(N) = 4 or r∗(N) = 4, then, by Lemma 7.3, the theorem
holds. Thus we may assume that r(N, r∗(N) ≥ 5, and 10 ≤ |E(N)| ≤ 12.
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By Theorem 5.5, N has an element e not in {α, β} such that N\e or
N/e is sequentially 4-connected. By duality, we may assume the former. By
combining (I), (II), and (III) of Lemma 7.4, we get the theorem. �
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