Flows, Fixed Points and Rigidity for Kleinian Groups

Kingshook Biswas, Department of Mathematics, RKM Vivekananda University.

Theorem

(Mostow Rigidity) Any isomorphism $f: \pi_{1}(M) \rightarrow \pi_{1}(N)$ between fundamental groups of closed hyperbolic manifolds M, N of dimension $n \geq 3$ is induced by an isometry $\tilde{f}: M \rightarrow N$.

Sketch of proof:

Step 1. Fixing a basepoint p in the universal cover \mathbb{H}^{n}, f induces a map F between orbits $\pi_{1}(M) \cdot p$ and $\pi_{1}(N) \cdot p$ conjugating actions.
Step 2. Orbits are dense in $\partial \mathbb{H}^{n}=\mathbb{R}^{n-1} \cup\{\infty\}$, and F is a quasi-isometry, extends to a quasi-conformal map $F: \partial \mathbb{H}^{n} \rightarrow \partial \mathbb{H}^{n}$ conjugating actions.

Step 3. If F is not conformal then "zoom-in" near point of differentiability where $D F$ not conformal to get linear non-conformal map A conjugating actions.

Generalizations : Replace cyclic subgroups $\gamma \subset G$ (geodesics) with infinite index quasiconvex subgroups $H \subset G$. Consider collection \mathcal{J} of limit sets on boundary.

Definition. Let G be a cocompact Kleinian group. A G-symmetric pattern is a G-invariant collection \mathfrak{J} of closed subsets of \mathbb{H}^{n}, none of which are singletons, and whose only accumulations (in Hausdorff topology) are singletons.

Example : Collection of translates of limit sets of any infinite index quasiconvex subgroup $H \subset G$.

Theorem

(B., Mj '08) Let G_{1}, G_{2} be cocompact Kleinian groups in dimension $n \geq 3$, and $H_{i} \subset G_{i}$ infinite index quasiconvex subgroups satisfying one of the two following conditions: (1) H_{i} is a codimension duality group. (2) H_{i} is an odd-dimensional Poincare Duality Group. Then any quasi-conformal pairing f between the corresponding patterns of limit sets $\mathcal{I}_{1}, \mathcal{J}_{2}$ is conformal and $G_{1}, f^{-1} G_{2} f$ are commensurable.

Theorem

(Mj. '09) Let G_{1}, G_{2} be word-hyperbolic groups and $H_{i} \subset G_{i}$ codimension one filling subgroups. Suppose G_{1}, G_{2} are Poincare Duality groups and Hausdorff dimension of ∂G_{i} is strictly larger than topological dimension of G_{i} plus two. If there is a quasi-conformal pairing between the patterns of limit sets given by H_{1}, H_{2} then G_{1}, G_{2} are commensurable.

Corollary

(1) Mostow Rigidity.
(2) If G is a cocompact Kleinian group in dimension $n \geq 3$ and f is a quasi-conformal map which is not conformal then $\langle G, f\rangle$ contains a non-trivial one-parameter subgroup.

Sketch of proof of Main Theorem:
Observation: For G cocompact, any sequence of isometries can be approximated by elements of G upto bounded error.
Step 1. Given G_{1}, G_{2}, f, upgrade f to a non-conformal linear map: zoom-in at point of differentiability of f, approximate zoom-in, zoom-out by elements of G_{1}, G_{2}, replace G_{1}, G_{2} by conformal conjugates and f by linear map A.

Theorem

Let G_{1}, G_{2} be cocompact Kleinian groups in dimension $n \geq 3$ and \mathcal{J}_{i} be G_{i}-symmetric patterns, $i=1,2$. Then any quasi-conformal pairing f between f_{1} and g_{2} is conformal, and $G_{1}, f^{-1} G_{2} f$ are commensurable.

Observation: The subgroup of Homeo $\left(\partial \mathbb{H}^{n}\right)$ preserving a symmetric pattern \mathcal{J} is closed and totally disconnected.

Theorem

Let G_{1}, G_{2} be cocompact Kleinian groups in dimension $n \geq 3$. If f is a quasi-conformal map which is not conformal then the closure of the subgroup of $\operatorname{Homeo}\left(\partial \mathbb{H}^{n}\right)$ generated by G_{1} and $f^{-1} G_{2} f$ contains a non-trivial one parameter subgroup $\left(f_{t}\right)_{t \in \mathbb{R}}$.

Step 2. Linear map A must pair poles of G_{1}, G_{2} :

Theorem

Let G_{1}, G_{2} be cocompact Kleinian groups in dimension $n \geq 3$ and f a C^{2} diffeomorphism of $\partial \mathbb{H}^{n}$. If $<G_{1}, f^{-1} G_{2} f>$ does not contain a flow then f preserves poles; if in addition f is linear then f pairs poles.

Theorem

(Hyperbolic flows) Let G be a cocompact Kleinian group in dimension $n \geq 3$. If x_{0} is not a fixed point of G, and is a fixed point of a C^{2} diffeomorphism f of $\partial \mathbb{H}^{n}$ such that $\operatorname{Df}\left(x_{0}\right)$ is conjugate to a conformal linear map λO with $\lambda \neq 1, O$ orthogonal, then $<G, f>$ contains a one-parameter subgroup conjugate to a flow of affine linear maps.
(Parabolic flows) Let G be a cocompact Kleinian group in dimension $n \geq 3$. If x_{0} is a fixed point of a C^{2} diffeomorphism f of $\partial \mathbb{H}^{n}$ such that that $\operatorname{Df}\left(x_{0}\right)=I d, D^{2} f\left(x_{0}\right) \neq 0$, then $\langle G, f\rangle$ contains a one-parameter subgroup conjugate to a flow of translations.

Step 3. Linear map A non-conformal implies group $\hat{G}:=<G_{1}, A^{-1} G_{2} A>$ indiscrete:

Take g_{1} in G_{1} with poles not in $\{0, \infty\}$, then A pairs poles of g_{1} with some g_{2} in G_{2}.

Conjugate G_{1}, G_{2} to send poles of g_{1}, g_{2} to $0, \infty$ and get new pole-pairing map $\mu=$ linear map A post and pre composed with conformal maps ("eccentric map"), $\mu(0)=0, \mu(\infty)=\infty$.

A non-conformal implies μ non-linear

Points a_{n}, b_{n} are fixed points of maps $\mu_{n} g \mu_{n}^{-1}$, and also poles of some g_{n} in G_{1}
Zoom-in, zoom-out on these maps using g_{1} to get maps F_{n} in \hat{G} with fixed points a_{n}, b_{n}, which are conformal conjugates of linear maps.

Wlog $a_{n} \rightarrow 0, b_{n} \rightarrow \infty$, conjugate by dilation to move b_{n} much closer to ∞ than a_{n} is to 0 . Then F_{n} 's look like affine maps, converging to a linear map F.

Compositions $F^{-1} F_{n}$ look like identity plus infinitesimal affine maps, apply Euler's formula to get a flow.

