Cohomology computations for Coxeter groups and their relatives

Mike Davis

(joint work with Boris Okun)
Goa
August 10, 2010

Suppose G acts on a $C W$ complex \tilde{X} (written $G \curvearrowright \tilde{X}$). Put $X=\tilde{X} / G$ and let $p: \tilde{X} \rightarrow X$ be the projection. Let

- $C_{k}(\tilde{X})=$ the free abelian group on the k-cells of \tilde{X}.
- It is a G-module.
- Given a an arbitrary G-module M, put

$$
C_{G}^{*}(\tilde{X} ; M):=\operatorname{Hom}_{G}\left(C_{*}(\tilde{X}), M .\right.
$$

- We can regard M as defining a (not locally constant) coefficient system on the orbit space X. On a cell σ of X, it is defined by

$$
\sigma \mapsto \operatorname{Hom}_{G}\left(\mathbf{Z}\left(p^{-1}(\sigma)\right), M\right)
$$

$X=\tilde{X} / G$.

- If $G \curvearrowright \tilde{X}$ freely, then this system on X is locally constant. Write

$$
C^{*}(X ; M):=C_{G}^{*}(\tilde{X} ; M) .
$$

- $B G$ denotes a CW complex with fundamental group G and with universal cover, $E G$, contractible. ($B G$ is also called a $K(G, 1)$.)

Definition (of group cohomology)

$$
H^{*}(G ; M):=H^{*}(B G ; M) .
$$

Freeing up the action

If $G \curvearrowright \tilde{X}$ is not free, then there is a free action on the homotopy equivalent space, $E G \times \tilde{X}$. The orbit space is denoted

$$
E G \times{ }_{G} \tilde{X}
$$

and is called the Borel construction on X. The G-map $E G \times \tilde{X} \rightarrow \tilde{X}$ induces a homo, $H_{G}^{*}(\tilde{X} ; M) \rightarrow H^{*}\left(E G \times_{G} \tilde{X} ; M\right)$, which is sometimes an iso.

We want to compute $H^{*}(G ; M)$ or possibly $\left.H_{G}^{*} \tilde{X} ; M\right)$ for M a G-module and \tilde{X} a G-space for

- $M=\mathbf{Z G}$, or
- $\ell^{2} G$, the square summable functions on G, or
- $\mathcal{N}(G)$, an associated von Neumann algebra, or
- a "Hecke - von Neumann algebra" used for "weighted ℓ^{2}-cohomology".

Topological interpretation of $H^{*}(X ; Z G)$

Suppose X is compact (i.e., a finite complex). Then

$$
H^{*}(X ; \mathbf{Z} G)=H_{c}^{*}(\tilde{X}),
$$

the point being that the G-equivariant functions $p^{-1}(\sigma) \rightarrow \mathbf{Z} G$ can be identified with the finitely supported functions $p^{-1}(\sigma) \rightarrow \mathbf{Z}$. Even if the G-action on \tilde{X} is only assumed to be proper, $H_{G}^{*}(\tilde{X} ; \mathbf{Z} G)=H_{c}^{*}(\tilde{X})$. (Proper means that the cell stabilizers are finite subgroups. Similarly, $H_{G}^{*}\left(\tilde{X} ; \ell^{2} G\right)$ just means that we are using square summable cochains on \tilde{X}

Why are we interested in $\mathbf{Z} G$ coefficents?

- The rank of $H^{1}(G ; \mathbf{Z} G)$ tells us the number of ends of G.
- Suppose $H^{*}(G ; \mathbf{Z} G)$ is concentrated in a single degree, say n. Then G is a PD group $\Longleftrightarrow H^{n}(G ; \mathbf{Z} G)=\mathbf{Z}$ and G is a duality group $\Longleftrightarrow H^{n}(G ; \mathbf{Z} G)$ is torsion-free.

Example

$H^{*}\left(\mathbf{Z}^{n} ; \mathbf{Z Z} \mathbf{Z}^{n}\right)=H_{c}^{*}\left(\mathbf{R}^{n}\right)$, which is concentrated in degree $*=n$, where it is $\cong \mathbf{Z}$.

Why are we interested in $\ell^{2} G$ coefficients?

Because Hilbert G modules have a "dimension" with respect to the von Neumann algebra $\mathcal{N}(G)$. Hence we can define ℓ^{2}-Betti numbers:

$$
\ell^{2} b^{i}(Y, G):=\operatorname{dim}_{\mathcal{N}(G)} H_{G}^{i}\left(Y ; \ell^{2} G\right) .
$$

Example

If G is a (higher genus) surface gp , then $H^{*}\left(G ; \ell^{2} G\right)=H^{*}\left(\mathbf{H}^{2} ; \ell^{2} G\right)$ which is concentrated in degree 1 and $\ell^{2} b^{1}(G)=-\chi(G)$. (\mathbf{H}^{2} means the hyperbolic plane.)

Two methods of proof

First Method

Find a direct sum decomposition of G-module as $M=\bigoplus_{T} M^{T}$ and a corresponding decomposition of cochain complexes as so that each summand gives constant coefficients except that they are 0 on a certain subcomplex $X(T)$, giving

$$
\left.C^{*}(X ; M)=\bigoplus_{T} C^{*}(X, X(T)) \otimes M^{T}\right)
$$

This gives corresponding decomposition in cohomology. (This method was used for Coxeter groups and locally finite buildings.)

Second Method

We compute $H^{*}\left(E G \times{ }_{G} \tilde{X} ; M\right)$ by using a spectral sequence which decomposes at E_{2} as a direct sum:

$$
E_{2}^{p q}=\bigoplus_{T} H^{p}\left(X_{T}, \partial X_{T} ; H^{q}\left(B G_{T} ; M\right)\right)
$$

where X_{T} is certain subcomplex of X. Furthermore, the spectral sequence degenerates at E_{2}. Ignoring torsion, the terms on the RHS can be rewritten as $H^{p}\left(X_{T}, \partial X_{T}\right) \otimes H^{q}\left(B G_{T} ; M\right)$. In both methods the space X is the same: the fundamental chamber for standard complex with a Coxeter group action.)

Which groups G are we interested in?

- Coxeter groups
- Artin groups
- Bestvina-Brady groups
- graph product of groups.
(1) Introduction
(2) The groups
- Coxeter groups
- Artin groups
- Graph products
- Bestvina-Brady groups
(3) Computations
- Some previous results
- Graph products
- Artin groups and Bestvina-Brady groups
- A spectral sequence

Coxeter groups

$M=\left(m_{s t}\right)$ a symmetric $S \times S$ matrix with 1's on the diagonal and off-diagonal entries integers ≥ 2 or ∞. (M is called a Coxeter matrix.)

$$
\left.W:=\left\langle S \mid(s t)^{m_{s t}}\right\rangle_{(s, t) \in S \times S}\right\rangle
$$

(W, S) is called a Coxeter system. W is right-angled (a RACG) if each off-diagonal $m_{s t}=2$ or ∞.

Notation

$$
\mathcal{S}:=\left\{T \subset S| | W_{T} \mid<\infty\right\}
$$

$=$ the poset of spherical subsets
$L=L(W, S)$ is the nerve of (W, S), ie, the simplicial complex with vertex set S and simplices the nonempty elements of \mathcal{S}. $K=$ geometric realization of $\mathcal{S} \cong$ the cone on L.
$K_{s}=$ the geometric realization of $\mathcal{S}_{\geq\{s\}} \cong \operatorname{Cone}(\operatorname{Lk}(s))$, where $L k(s)$ denotes the link of s in L.

$$
K^{S-T}:=\bigcup_{s \in S-T} K_{s}, \quad \partial K:=K^{S}, \quad K_{T}:=\bigcap_{s \in T} K_{s}
$$

Artin groups

As before, $\left(m_{s t}\right)$ is a Coxeter matrix. Introduce generators $\left\{g_{s}\right\}_{s \in S}$ and for each $s \neq t$ with $m_{s t}<\infty$, relations

$$
g_{s} g_{t} \cdots=g_{t} g_{s} \cdots
$$

setting equal the alternating words of length $m_{s t}$. (NB each generator g_{s} has infinite order.) The result is the Artin group A. Let W be associated Coxeter gp. There is a a certain cell cx X^{\prime} on which W acts freely. $X:=X^{\prime} / W$ is the Salvetti $c x$. $\pi_{1}(X)=A$.

The $K(\pi, 1)$-Conjecture $X=B A \quad$ (ie X is a $K(A, 1))$.

Definition

If each $m_{s t}=2$ or ∞, then A is right-angled (a RAAG).

Example

If A is a RAAG, then X is a certain union of subtori of T^{S} and the $K(\pi, 1)$-Conjecture is true.

The setup

Γ a graph with Vert $(\Gamma)=S ; L$ the flag cx determined by the graph and (W, S) the RACS with nerve L. Let $\left\{X_{s}\right\}_{s \in S}$ be a family of pointed spaces. Their polyhedral product is defined by

$$
\pi_{L} x_{s}:=\bigcup_{T \in \mathcal{S}} x_{T}
$$

where $X_{T}=\prod_{s \in T} X_{s} \subset \prod_{s \in S} X_{s}$.

Let $\left\{G_{s}\right\}_{s \in S}$ be a family of groups. Their graph product G is defined by

$$
G=\prod_{\Gamma} G_{s}:=\pi_{1}\left(\pi_{L} B G_{s}\right)
$$

Example

- If each $G_{s}=\mathbf{Z} / 2$, then $G=\Pi_{\Gamma} G_{s}$ is a RACG.
- If each $G_{s}=\mathbf{Z}$, then G is a RAAG.

Bestvina-Brady groups

Let A_{L} be the RAAG associated to a flag cx L. Let $\varphi: A_{L} \rightarrow \mathbf{Z}$ send each standard generator to 1. The Bestvina-Brady group is $B B_{L}:=\operatorname{Ker} \varphi$.

Theorem (Bestvina-Brady)

If L is acyclic, then $B B_{L}$ is type FP (or FL), but not finitely presented if $\pi_{1}(L) \neq 1$.

General form of the results

In every case, there is a Coxeter system (W, S) in the background. \mathcal{S} is the poset of spherical subsets of S and K is the geometric realization of \mathcal{S}. There are explicit computations in almost all cases and they all have the same general form:

$$
H^{*}(G ; M)=\bigoplus_{\substack{T \in \mathcal{S} \\ p \leq *}} H^{p}(?, ?) \otimes M^{T, p}
$$

where (?,?) is a pair of subcomplexes of K and $M^{T, p}$ is an abelian gp or G-module.

It turns out that there are two distinct possibilities for (?, ?). In the first case (the locally finite case),
$(?, ?)=\left(K, K^{S-T}\right), \quad$ and there is no shifting of degrees in cohomology. (Remember $K^{S-T}=\bigcup_{s \in S-T} K_{s .}$.) In the second case (the locally infinite case),

$$
(?, ?)=\left(K_{T}, \partial K_{T}\right),
$$

and cohomology is shifted in degrees. (Remember $\left.K_{T}=\bigcap_{s \in T} K_{s}.\right)$

Here

- ∂K_{T} is the (barycentric subdivision of) the link of the simplex T in L and $K_{T}=\operatorname{Cone}\left(\partial K_{T}\right)$
- K^{S-T} (the union of mirrors indexed by $S-T$) is homotopy equivalent to the complement of the simplex T in L, and K is the cone on ∂K.

As an example of the first case:

Theorem (D)

$H^{*}(W ; \mathbf{Z} W)=\oplus_{T \in \mathcal{S}} H^{*}\left(K, K^{S-T}\right) \otimes M^{T}$, for a certain free abelian gp M^{T}.

Remarks

- (DDJMO) A similar formula holds for any locally finite bldg of type (W, S).
- In particular since a graph product of finite groups is a locally finite $R A B$, a similar formula holds for such graph products.

The next two results are examples of the second case:

Theorem (D - Leary)

A the Artin gp associated to (W, S) and X its Salvetti cx. Then

$$
H^{*}\left(X ; \ell^{2} A\right) \cong H^{*}(K, \partial K) \otimes \ell^{2}(A)
$$

In particular, $\ell^{2} b^{i}(X ; A)=b^{i}(K, \partial K)$. If $K(\pi, 1)$-Conjecture holds for A, then we can replace the left hand side by $H^{*}\left(A ; \ell^{2} A\right)$.

I should be saying "reduced" ℓ^{2}-cohomology and writing $\mathcal{H}^{*}(X)$.

Theorem (Jensen-Meier)

If A is a $R A A G$, then

$$
H^{*}(A ; \mathbf{Z A})=\bigoplus_{T \in \mathcal{S}} H^{*-|T|}\left(K_{T}, \partial K_{T}\right) \otimes \text { free abelian } g p
$$

This theorem was originally proved by using the first theorem and result of DJ that any RAAG is commensurable with a RACG.

Theorem

Suppose $G=\prod_{\Gamma} G_{s}$ is a graph product, where each G_{s} is infinite. Then

$$
H^{n}(G ; \mathbf{Z} G)=\bigoplus_{T \in \mathcal{S}} \bigoplus_{p+q=n} H^{p}\left(K_{T}, \partial K_{T} ; H^{q}\left(G_{T} ; \mathbf{Z} G\right)\right)
$$

Similarly,

Theorem

Still supposing each G_{s} is infinite,

$$
\ell^{2} b^{n}(G)=\sum_{T \in \mathcal{S}} \sum_{p+q=n} b^{p}\left(K_{T}, \partial K_{T}\right) \cdot \ell^{2} b^{q}\left(G_{T}\right)
$$

- Here G_{T} denotes the direct product $\prod_{s \in T} G_{s}$. So, ignoring torsion

$$
H^{*}\left(G_{T} ; \mathbf{Z} G_{T}\right)=\bigotimes_{\sum i_{s}=*} H^{i_{s}}\left(G_{s} ; \mathbf{Z} G_{T}\right)
$$

- I should be putting a Gr in front of the LHS for "associated graded group".

Artin groups

Suppose

- $A=A_{L}$ is the Artin group associated to (W, S), and X_{L} is the associated Salvetti complex.
- For each $T \subset S, A_{T}$ is the subgp generated by T. When T is spherical $H^{*}\left(A_{T} ; \mathbf{Z} A_{T}\right)$ is free abelian and concentrated in degree $|T|$ (ie A_{T} is a duality gp)

Theorem

$$
H^{n}\left(X_{L} ; \mathbf{Z} A_{L}\right)=\bigoplus_{T \in \mathcal{S}} H^{n-|T|}\left(K_{T}, \partial K_{T}\right) \otimes H^{|T|}\left(A_{T} ; \mathbf{Z} A_{L}\right)
$$

Bestvina-Brady groups

- Let A_{L} be the RAAG associated to the RACS (W, S), where $L=$ nerve (W, S) (ie A_{L} is a graph product of \mathbf{Z} 's).
- $B B_{L}=\operatorname{Ker}\left(A_{L} \rightarrow \mathbf{Z}\right)$, the map which sends each generator to 1.
- If L is acyclic, then $B B_{L}$ is called a Bestvina-Brady group.

Theorem

Suppose $B B_{L}$ is Bestvina-Brady. Then the cohomology of $B B_{L}$ with group ring coefficients is isomorphic to that of A_{L} shifted up in degree by 1 :

$$
H^{n}\left(B B_{L} ; \mathbf{Z} B B_{L}\right)=\bigoplus_{T \in \mathcal{S}_{>\emptyset}} H^{n-|T|+1}\left(K_{T}, \partial K_{T}\right) \otimes \mathbf{Z}\left(B B_{L} / B B_{L} \cap A_{T}\right)
$$

L^{2}-cohomology of $B B_{L}$

Let $L^{2} b^{k}\left(B B_{L}\right)$ be the $k^{\text {th }} L^{2}$-Betti number of $B B_{L}$.

Theorem

Suppose $B B_{L}$ is Betvina-Brady. Then

$$
L^{2} b^{k}\left(B B_{L}\right)=\sum_{s \in S} b^{k}\left(K_{s}, \partial K_{s}\right)
$$

where $b^{k}\left(K_{s}, \partial K_{s}\right)\left(=\bar{b}^{k-1}(\operatorname{Lk}(s))\right)$ is the ordinary Betti number.

Idea of proofs

- Suppose \mathcal{P} is a poset, $\left\{X_{a}\right\}_{a \in \mathcal{P}}$ is a poset of spaces and

$$
X=\bigcup_{a \in \mathcal{P}} \dot{X}_{a}
$$

- There is a spectral sequence with

$$
E_{1}^{p, q}=C^{p}\left(\operatorname{Flag}(\mathcal{P}) ; \mathcal{H}^{q}(\mathcal{V})\right)
$$

converging to $H^{*}(X)$, where the (nonconstant) coefficient system $\mathcal{H}^{q}(\mathcal{V})$ associates to a simplex $\sigma \in \operatorname{Flag}(\mathcal{P})$ the abelian gp $H^{q}\left(X_{\text {min }}\right)$

- Want conditions to insure a decomposition:

$$
E_{2}^{p, q}=E_{\infty}^{p, q}=\bigoplus_{a \in \mathcal{P}} H^{p}\left(\operatorname{Flag}\left(\mathcal{P}_{\leq a}\right), \operatorname{Flag}\left(\mathcal{P}_{<a}\right) ; H^{q}\left(X_{a}\right)\right)
$$

Put $X_{<a}:=\bigcup_{b<a} X_{b}$.

Main Lemma

The condition we need for this decomposition to hold is that $H^{*}\left(X_{a}\right) \rightarrow H^{*}\left(X_{<a}\right)$ is the 0 -map, $\forall a \in \mathcal{P}$

In all situations in which we will apply this lemma, $\mathcal{P}=\mathcal{S}$ so that $\operatorname{Flag}(\mathcal{P})=K$ and $\forall T \in \mathcal{S}$,

$$
\left(\operatorname{Flag}\left(\mathcal{P}_{\leq T}\right), \operatorname{Flag}\left(\mathcal{P}_{<T}\right)\right)=\left(K_{T}, \partial K_{T}\right) .
$$

The key point

for applying this to graph products is that when each G_{s} is infinite, $H^{0}\left(G_{s} ; Z G_{s}\right)=0$, so by Künneth Formula, $H^{*}\left(G_{T} ; \mathbf{Z} G_{T}\right) \rightarrow H^{*}\left(G_{U} ; \mathbf{Z} G_{T}\right)$ is the 0 -map whenever $U<T$.

嗇 M.W. Davis, J. Dymara, T. Januszkiewicz, J. Meier and B. Okun, Compactly supported cohomology of buildings, Comment. Math Helv. 85 (2010), 551-582.

圊 M.W. Davis, J. Dymara, T. Januszkiewicz and B. Okun, Cohomology of Coxeter groups with group ring coefficients: II, Algebr. Geom. Topol. 6 (2006), 1289-1318.

R M.W. Davis and I.J. Leary, The ℓ^{2}-cohomology of Artin groups, J. London Math. Soc. (2) 68 (2003), 493-510.

E M.W. Davis and B. Okun, Cohomology computations for Artin groups, Bestvina-Brady groups and graph products, arXiv:1002.2564.
(C. Jensen and J. Meier, The cohomology of right-angled Artin groups with group ring coefficients, Bulletin of London Math. Soc. 37 (2005), 711-718.

