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Suppose G acts on a CW complex X̃ (written G y X̃ ). Put
X = X̃/G and let p : X̃ → X be the projection. Let

Ck (X̃ ) = the free abelian group on the k -cells of X̃ .
It is a G-module.
Given a an arbitrary G-module M, put

C∗G(X̃ ; M) := HomG(C∗(X̃ ),M.

We can regard M as defining a (not locally constant)
coefficient system on the orbit space X . On a cell σ of X , it
is defined by

σ 7→ HomG(Z(p−1(σ)),M)
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X = X̃/G.
If G y X̃ freely, then this system on X is locally constant.
Write

C∗(X ; M) := C∗G(X̃ ; M).

BG denotes a CW complex with fundamental group G and
with universal cover, EG, contractible. (BG is also called a
K (G,1).)

Definition (of group cohomology)

H∗(G; M) := H∗(BG; M).
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Freeing up the action

If G y X̃ is not free, then there is a free action on the homotopy
equivalent space, EG × X̃ . The orbit space is denoted

EG ×G X̃

and is called the Borel construction on X . The G-map
EG × X̃ → X̃ induces a homo, H∗G(X̃ ; M)→ H∗(EG ×G X̃ ; M),
which is sometimes an iso.
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We want to compute H∗(G; M) or possibly H∗G(X̃ ; M) for M a
G-module and X̃ a G-space for

M = ZG, or
`2G, the square summable functions on G, or
N (G), an associated von Neumann algebra, or
a “Hecke - von Neumann algebra” used for “weighted
`2-cohomology”.
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Topological interpretation of H∗(X ; ZG)

Suppose X is compact (i.e., a finite complex). Then

H∗(X ; ZG) = H∗c (X̃ ),

the point being that the G-equivariant functions p−1(σ)→ ZG
can be identified with the finitely supported functions
p−1(σ)→ Z. Even if the G-action on X̃ is only assumed to be
proper, H∗G(X̃ ; ZG) = H∗c (X̃ ). (Proper means that the cell
stabilizers are finite subgroups. Similarly, H∗G(X̃ ; `2G) just
means that we are using square summable cochains on X̃
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Why are we interested in ZG coeffiicents?

The rank of H1(G; ZG) tells us the number of ends of G.
Suppose H∗(G; ZG) is concentrated in a single degree,
say n. Then G is a PD group ⇐⇒ Hn(G; ZG) = Z and G
is a duality group ⇐⇒ Hn(G; ZG) is torsion-free.

Example

H∗(Zn; ZZn) = H∗c (Rn), which is concentrated in degree ∗ = n,
where it is ∼= Z.
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Why are we interested in `2G coefficients?
Because Hilbert G modules have a “dimension” with respect to
the von Neumann algebra N (G). Hence we can define `2-Betti
numbers:
`2bi(Y ,G) := dimN (G) H i

G(Y ; `2G).

Example
If G is a (higher genus) surface gp, then
H∗(G; `2G) = H∗(H2; `2G) which is concentrated in degree 1
and `2b1(G) = −χ(G). (H2 means the hyperbolic plane.)
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Two methods of proof

First Method

Find a direct sum decomposition of G-module as M =
⊕

T MT

and a corresponding decomposition of cochain complexes as
so that each summand gives constant coefficients except that
they are 0 on a certain subcomplex X (T ), giving

C∗(X ; M) =
⊕

T

C∗(X ,X (T ))⊗MT )

This gives corresponding decomposition in cohomology. (This
method was used for Coxeter groups and locally finite
buildings.)
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Second Method

We compute H∗(EG ×G X̃ ; M) by using a spectral sequence
which decomposes at E2 as a direct sum:

Epq
2 =

⊕
T

Hp(XT , ∂XT ; Hq(BGT ; M))

where XT is certain subcomplex of X . Furthermore, the spectral
sequence degenerates at E2. Ignoring torsion, the terms on
the RHS can be rewritten as Hp(XT , ∂XT )⊗ Hq(BGT ; M). In
both methods the space X is the same: the fundamental
chamber for standard complex with a Coxeter group action.)
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Which groups G are we interested in?

Coxeter groups
Artin groups
Bestvina-Brady groups
graph product of groups.
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Coxeter groups

M = (mst ) a symmetric S × S matrix with 1’s on the diagonal
and off-diagonal entries integers ≥ 2 or∞. (M is called a
Coxeter matrix.)

W := 〈S | (st)mst 〉(s,t)∈S×S〉

(W ,S) is called a Coxeter system. W is right-angled (a RACG)
if each off-diagonal mst = 2 or∞.
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Notation

S := {T ⊂ S | |WT | <∞}
= the poset of spherical subsets

L = L(W ,S) is the nerve of (W ,S), ie, the simplicial complex
with vertex set S and simplices the nonempty elements of S.
K = geometric realization of S ∼= the cone on L.
Ks = the geometric realization of S≥{s} ∼= Cone(Lk(s)), where
Lk(s) denotes the link of s in L.

K S−T :=
⋃

s∈S−T

Ks, ∂K := K S, KT :=
⋂
s∈T

Ks
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Artin groups

As before, (mst ) is a Coxeter matrix. Introduce generators
{gs}s∈S and for each s 6= t with mst <∞, relations

gsgt · · · = gtgs · · ·

setting equal the alternating words of length mst . (NB each
generator gs has infinite order.) The result is the Artin group A.
Let W be associated Coxeter gp. There is a a certain cell cx X ′

on which W acts freely. X := X ′/W is the Salvetti cx.
π1(X ) = A.

The K (π,1)-Conjecture

X = BA (ie X is a K (A,1)).
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Definition
If each mst = 2 or∞, then A is right-angled (a RAAG).

Example

If A is a RAAG, then X is a certain union of subtori of T S and
the K (π,1)-Conjecture is true.
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The setup

Γ a graph with Vert(Γ) = S; L the flag cx determined by the
graph and (W ,S) the RACS with nerve L. Let {Xs}s∈S be a
family of pointed spaces. Their polyhedral product is defined by

πL Xs :=
⋃

T∈S
XT

where XT =
∏

s∈T Xs ⊂
∏

s∈S Xs.

Let {Gs}s∈S be a family of groups. Their graph product G is
defined by

G =
∏

Γ

Gs := π1(πL BGs)
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Example

If each Gs = Z/2, then G =
∏

Γ Gs is a RACG.
If each Gs = Z, then G is a RAAG.
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Bestvina-Brady groups

Let AL be the RAAG associated to a flag cx L. Let ϕ : AL → Z
send each standard generator to 1. The Bestvina-Brady group
is BBL := Kerϕ.

Theorem (Bestvina-Brady)
If L is acyclic, then BBL is type FP (or FL), but not finitely
presented if π1(L) 6= 1.
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General form of the results
In every case, there is a Coxeter system (W ,S) in the
background. S is the poset of spherical subsets of S and K is
the geometric realization of S. There are explicit computations
in almost all cases and they all have the same general form:

H∗(G; M) =
⊕
T∈S
p≤∗

Hp(?, ?)⊗MT ,p,

where (?, ?) is a pair of subcomplexes of K and MT ,p is an
abelian gp or G-module.
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It turns out that there are two distinct possibilities for (?, ?). In
the first case (the locally finite case),

(?, ?) = (K ,K S−T ), and there is no shifting of degrees in
cohomology. (Remember K S−T =

⋃
s∈S−T Ks.) In the second

case (the locally infinite case),
(?, ?) = (KT , ∂KT ),

and cohomology is shifted in degrees. (Remember
KT =

⋂
s∈T Ks .)

Here
∂KT is the (barycentric subdivision of) the link of the
simplex T in L and KT = Cone(∂KT )

K S−T (the union of mirrors indexed by S − T ) is homotopy
equivalent to the complement of the simplex T in L, and
K is the cone on ∂K .
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As an example of the first case:

Theorem (D)

H∗(W ; ZW ) =
⊕

T∈S H∗(K ,K S−T )⊗MT , for a certain free
abelian gp MT .

Remarks
(DDJMO) A similar formula holds for any locally finite bldg
of type (W ,S).
In particular since a graph product of finite groups is a
locally finite RAB, a similar formula holds for such graph
products.
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The next two results are examples of the second case:

Theorem (D - Leary)

A the Artin gp associated to (W ,S) and X its Salvetti cx. Then

H∗(X ; `2A) ∼= H∗(K , ∂K )⊗ `2(A)

In particular, `2bi(X ; A) = bi(K , ∂K ). If K (π,1)-Conjecture
holds for A, then we can replace the left hand side by
H∗(A; `2A).

I should be saying “reduced” `2-cohomology and writing H∗(X ).
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Theorem (Jensen-Meier)
If A is a RAAG, then

H∗(A; ZA) =
⊕
T∈S

H∗−|T |(KT , ∂KT )⊗ free abelian gp

This theorem was originally proved by using the first theorem
and result of DJ that any RAAG is commensurable with a
RACG.
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Theorem
Suppose G =

∏
Γ Gs is a graph product, where each Gs is

infinite. Then

Hn(G; ZG) =
⊕
T∈S

⊕
p+q=n

Hp(KT , ∂KT ; Hq(GT ; ZG))

Similarly,

Theorem
Still supposing each Gs is infinite,

`2bn(G) =
∑
T∈S

∑
p+q=n

bp(KT , ∂KT ) · `2bq(GT )
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Here GT denotes the direct product
∏

s∈T Gs. So, ignoring
torsion

H∗(GT ; ZGT ) =
⊗

∑
is=∗

H is (Gs; ZGT )

I should be putting a Gr in front of the LHS for “associated
graded group”.
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Artin groups

Suppose

A = AL is the Artin group associated to (W ,S), and XL is
the associated Salvetti complex.
For each T ⊂ S, AT is the subgp generated by T . When T
is spherical H∗(AT ; ZAT ) is free abelian and concentrated
in degree |T | (ie AT is a duality gp)

Theorem

Hn(XL; ZAL) =
⊕
T∈S

Hn−|T |(KT , ∂KT )⊗ H |T |(AT ; ZAL)
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Bestvina-Brady groups

Let AL be the RAAG associated to the RACS (W ,S),
where L = nerve (W ,S) (ie AL is a graph product of Z ’s).
BBL = Ker(AL → Z), the map which sends each generator
to 1.
If L is acyclic, then BBL is called a Bestvina-Brady group.

Theorem
Suppose BBL is Bestvina-Brady. Then the cohomology of BBL
with group ring coefficients is isomorphic to that of AL shifted up
in degree by 1:

Hn(BBL; ZBBL) =
⊕

T∈S>∅

Hn−|T |+1(KT , ∂KT )⊗ Z(BBL/BBL ∩ AT ).
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L2-cohomology of BBL

Let L2bk (BBL) be the k th L2-Betti number of BBL.

Theorem
Suppose BBL is Betvina-Brady. Then

L2bk (BBL) =
∑
s∈S

bk (Ks, ∂Ks)

where bk (Ks, ∂Ks) (= b
k−1

(Lk(s))) is the ordinary Betti number.
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Idea of proofs

Suppose P is a poset, {Xa}a∈P is a poset of spaces and
X =

⋃
a∈P Xa

There is a spectral sequence with

Ep,q
1 = Cp(Flag(P);Hq(V))

converging to H∗(X ), where the (nonconstant) coefficient
system Hq(V) associates to a simplex σ ∈ Flag(P) the
abelian gp Hq(Xmin a)

Want conditions to insure a decomposition:

Ep,q
2 = Ep,q

∞ =
⊕
a∈P

Hp(Flag(P≤a),Flag(P<a); Hq(Xa))
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Put X<a :=
⋃

b<a Xb.

Main Lemma
The condition we need for this decomposition to hold is that
H∗(Xa)→ H∗(X<a) is the 0-map, ∀a ∈ P

In all situations in which we will apply this lemma, P = S so that
Flag(P) = K and ∀T ∈ S,

(Flag(P≤T ),Flag(P<T )) = (KT , ∂KT ).

The key point
for applying this to graph products is that when each Gs is
infinite, H0(Gs; ZGs) = 0, so by Künneth Formula,
H∗(GT ; ZGT )→ H∗(GU ; ZGT ) is the 0-map whenever U < T .
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