
EXERCISES FOR LECTURES ON CAT(0) CUBICAL GROUPS

Notation.

X – CAT(0) cubical complex (finite dimensional)

Ĥ(X) – hyperplanes of X

H(X) – halfspaces of X

h – a halfspace

h∗ – the complementary halfpspace of h

ĥ – the bounding hyperplane of ĥ

Σ - a pocset, poset with an order reversing involution

[pocsets are assumed to be locally finite (intervals are finite) and finite width (lengths
of antichains are bounded)]

(Ω,S) – a discrete wall space

U(Σ) – ultrafilters on Σ

X(0)(Σ) – ultrafilters satisfying the Descending Chain Condition (DCC).

X(Σ) – CAT(0) cubical complex constructed from Σ

ρ∆ : X(Σ) → X(∆) – the collapsing map for ∆ ⊂ Σ

1. CAT(0) cubical complexes

Exercise 1. Prove that a CAT(0) cubical complex whose links are all complete bi-
partite graphs is a product of two trees.

Exercise 2. Square a surface group.

Exercise 3. Show that every RAAG is a cubical group. What is the link of a vertex
in the complex you built?
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Exercise 4. What is this?
THE SMALLEST IRREDUCIBLE LATTICES IN THE PRODUCT OF TREES 3

Figure 1. The four squares above are labelled to indicate
how they are glued together to obtain the complex X. The
single and double vertical edges are denoted a and b respec-
tively, while the single and double horizontal edges are de-
noted x and y respectively.

then it is irreducible. Note that for CSCs, reducibility is equivalent to the
existence of a finite cover which is a product of graphs.

Example 5. There are classical examples of irreducible lattices in semisim-
ple Lie groups of rank ≥ 2. For example, in the non-archimedean case there
is a beautiful construction of irreducible lattices in the product PGL(2, Qp)×
PGL(2, Qq) for distinct primes p, q ≡ 1 (mod 4) by Mozes in [3] where many
other interesting properties about these lattices are proved. Generalizations
to the cases where p, q are not necessarily congruent to 1 modulo 4 are
found in [4]. Note that the Bruhat-Tits building associated to PGL(2, Qp)
is a regular tree of degree p+1 on which PGL(2, Qp) acts by automorphisms.

Definition 6. A subgroup H of G is separable if it is the intersection of
finite index subgroups of G. Note that G is residually finite precisely when
{1G} is separable.

It was shown in [9] that a compact CSC is a virtual product of graphs
if and only if each of the vertex and edge groups in its virtual vertical and
horizontal decompositions are separable. Since our example X is not a
virtual product of graphs, if we let V = VX denote the vertical 1-skeleton of
X as defined below then we reach the following conclusion:

Theorem 7. π1V is not a separable subgroup of π1X.

This gives a very small example of a non-separable quasiconvex subgroup
of a CAT(0) group. As an application of the above theorems, we are able
to produce a CSC with only eight squares whose fundamental group is not
residually finite. To do this, we “double” X along V .

Definition 8. Let X̄ be an isomorphic copy of X and V̄ an isomorphic
copy of V inside X̄. Then the double of X along V is the complex D =
(X ∪ X̄/V = V̄ ).

It is easy to verify that D is itself a CSC with eight squares. Following
the argument in [7], doubling a group along a non-separable subgroup yields
a group which is not residually finite. This shows:

2. Pocsets

Exercise 5. H(X) is a locally finite pocset and is finite width (when X is finite
dimensional).

Exercise 6. Prove or disprove or salvage if possible. A wall space (Ω,S) is discrete
if and only the associated pocset is locally finite.

Exercise 7. Suppose that G is finitely generated, e(G, H) > 1, let C(G) denote the
Cayley graph of G.

Let A ⊂ G be the vertex set of the preimage of an unbounded component of C(G)/H−
K, where K is a compact subset that separates C(G, H) into more than one unbounded
component.

Let S = {gA|g ∈ G} ∪{ gA∗|g ∈ G}. Show that (G,S) is a discrete wall space.

3. Ultrafilters: building a CAT(0) cubical complex from a pocset

Example. Suppose that (Ω,S) is a space with walls whose pocset of subsets is Σ,
and s ∈ S. Then

αs = {A ∈ Σ|s ∈ A}

Observation 8. αs is an ultrafilter. When Σ is discrete, αs satisfies DCC.

Exercise 9. Show that there exists an ultrafilter satisfying DCC (for Σ a locally
finite, finite width pocset).

Exercise 10. Let α, β, γ ∈ U(Σ). Show that

m = (α ∪ β) ∩ (β ∪ γ) ∩ (α ∪ γ)
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is an ultrafilter. When α, β, γ satisfy DCC, so does m. Can exchange ∩ and ∪.
Interpret m in the case of α, β, γ vertices of a tree, and when they are vertices of
the square lattice in the plane.

Exercise 11. Let A ∈ α, then (α − {A}) ∪ {A∗} is an ultrafilter if and only if A is
minimal in α.

Exercise 12. If Σ has finite width, then any two DCC ultrafilters are joined by a
finite path.

Exercise 13. X(2) is simply connected.

Hint: Consider a minimal 1-skeleton closed path in X(1). Consider the "switches"
are made along the way to produce a shorter close path.

Exercise 14. X satisfies the Gromov flag link condition.

We call this construction of a cubical complex from a pocset a cubulation.

Exercise 15. Consider the plane with a finite family of evenly spaced parallel lines.
What is the cubical complex associated to this space with walls?

Exercise 16. Is there a discrete space with walls constructed from lines in the plane
which is yields an infinite dimensional complex? What about the hyperbolic plane?

Exercise 17. Suppose that [G : H] < ∞ and H acts properly on a CAT(0) cubical
complex. Show that G does as well.

4. The Roller compactification

We can topologize U(Σ) using the Tychonoff topology on the countable product

U(Σ) ⊂
∏

Ĥ

{h, h∗}

Exercise 18. U(Σ) is closed (and hence compact).

Exercise 19. Assume that Σ has finite width. Show that U(Σ) is a compactification
of X(0)(Σ).

5. Roller duality

We have to constructions:

CAT(0) cubical complex X ! pocset of halfspaces H(X)
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pocset Σ ! cubical complex X(Σ)

Exercise 20 (Roller Duality). These constructions are dual to one another:

(i) Given a finite width locally finite pocset, Σ, then H(X(Σ)) ≡ Σ.
(ii) Given a finite dimensional cubical complex X, X(H(X)) = X.

6. Subpocsets and collapsing

Observation 21. Suppose ∆ ⊂ Σ is a subpocset. ρ∆ maps ultrafilters to ultrafilters
and preserves DCC.

Orbit quotients.

Exercise 22. Consider Z × Z acting on the standard squaring of the plane. What
are the orbit quotients?

Exercise 23. Consider the standard description of the surface of genus two given as
the quotient of the octagon whose edges are identified ababcdcd. Square the surface
by putting a vertex in the middle and joining this vertex to the midpoint of each edge.
Let X be the universal cover of this surface acted on by the fundamental group of the
surface G.

(i) What are the orbit quotients? Are they locally finite?
(ii) Are the actions on the orbit quotients proper?
(iii) G acts on the product of the orbit quotients. Is this action proper? Is it

cocompact?

Projections onto hyperplanes. Let ĥ ⊂ X be a hyperplane of X.

Ĥ′ = {k ∈ X |̂k ∩ ĥ *= ∅}

H′ – denote the subpocset of halfspaces associated to Ĥ′.

Exercise 24. What is the complex X(H′)? Describe the map X → X(H′).

Products. X ∼= X1 ×X2 – a product of two cubical complexes.

For i = 1, 2, pi : X → Xi – natural projections

Ĥi = p−1
i (Ĥ(Xi)).

Observation 25. Ĥ(X) decomposes as a disjoint union Ĥ(X) = Ĥ1∪ Ĥ2 and every
hyperplane in Ĥ1 crosses every hyperplane in H2.
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Exercise 26 (Recognizing Products). Show that a decomposition of the pocset H(X)
as a disjoint union of transverse pocsets H(X) = H1∪H2, meaning that every element
of H1 is incomparable with every element of H2, corresponds to a decomposition of
X as a product.

Hint: Roller duality.

Exercise 27 (Product Decomposition Theorem). Show that every finite dimensional
CAT(0) cubical complex admits a canonical decomposition into finitely many irre-
ducibles.

Hint: Finite dimensionality gives a bound on the number of factors in a decomposi-
tion. Consider a maximal non-trivial decomposition...

Pruning

Exercise 28. Suppose that G = Aut(X) acts on X with finitely many orbits of
hyperplanes. Then

• there exists a convex, G-invariant subcomplex Y ⊂ X which has only shallow
and essential hyperplanes

• show that Y decomposes as a product of two CAT(0) cubical complexes, one
of which is finite and the other of which is essential.

Hint: For the first part, consider collapsing, starting with "outermost" hyperplanes.
For the second part, observe that every shallow hyperplane intersects every essential
hyperplane.

7. Skewering

Exercise 29. Let h be a halfspace bounded by ĥ and g a hyperbolic automorphism.
Show that g skewers ĥ if and only if for some n *= 0, we have gh ⊂ h.

Exercise 30. Show that g is peripheral to ĥ if and only if for some h bounded by ĥ,
we have gnh∗ ⊂ h.

Exercise 31 (Single Skewering). Let X be essential and let G be a group acting
cocompactly on X.

• Suppose there exists a single orbit of hyperplanes G(ĥ). Show that there
exists a number N > 0 (depending only on the dimension of X) such that if
diam(X) > N , then there exists g skewering ĥ.

• Conclude that for every hyperplane ĥ, there exists g ∈ G skewering ĥ


