EXERCISES FOR LECTURES ON CAT(0) CUBICAL GROUPS

Notation.

X - CAT(0) cubical complex (finite dimensional)

 $\hat{\mathcal{H}}(X)$ – hyperplanes of X

 $\mathcal{H}(X)$ – halfspaces of X

 \mathfrak{h} – a halfspace

 \mathfrak{h}^* – the complementary halfpspace of \mathfrak{h}

 $\hat{\mathfrak{h}}$ – the bounding hyperplane of $\hat{\mathfrak{h}}$

 Σ - a *pocset*, poset with an order reversing involution

[pocsets are assumed to be locally finite (intervals are finite) and finite width (lengths of antichains are bounded)]

 (Ω, \mathcal{S}) – a discrete wall space

 $\mathcal{U}(\Sigma)$ – ultrafilters on Σ

 $X^{(0)}(\Sigma)$ – ultrafilters satisfying the Descending Chain Condition (DCC).

 $X(\Sigma)$ – CAT(0) cubical complex constructed from Σ

 $\rho_{\Delta}: X(\Sigma) \to X(\Delta)$ – the collapsing map for $\Delta \subset \Sigma$

1. CAT(0) CUBICAL COMPLEXES

Exercise 1. Prove that a CAT(0) cubical complex whose links are all complete bipartite graphs is a product of two trees.

Exercise 2. Square a surface group.

Exercise 3. Show that every RAAG is a cubical group. What is the link of a vertex in the complex you built?

2. Pocsets

Exercise 5. $\mathcal{H}(X)$ is a locally finite pocset and is finite width (when X is finite dimensional).

Exercise 6. Prove or disprove or salvage if possible. A wall space (Ω, S) is discrete if and only the associated pocset is locally finite.

Exercise 7. Suppose that G is finitely generated, e(G, H) > 1, let C(G) denote the Cayley graph of G.

Let $A \subset G$ be the vertex set of the preimage of an unbounded component of C(G)/H - K, where K is a compact subset that separates C(G, H) into more than one unbounded component.

Let $S = \{gA | g \in G\} \cup \{gA^* | g \in G\}$. Show that (G, S) is a discrete wall space.

3. Ultrafilters: building a CAT(0) cubical complex from a pocset

Example. Suppose that (Ω, \mathcal{S}) is a space with walls whose pocset of subsets is Σ , and $s \in S$. Then

$$\alpha_s = \{A \in \Sigma | s \in A\}$$

Observation 8. α_s is an ultrafilter. When Σ is discrete, α_s satisfies DCC.

Exercise 9. Show that there exists an ultrafilter satisfying DCC (for Σ a locally finite, finite width pocset).

Exercise 10. Let $\alpha, \beta, \gamma \in \mathcal{U}(\Sigma)$. Show that

$$m = (\alpha \cup \beta) \cap (\beta \cup \gamma) \cap (\alpha \cup \gamma)$$

Exercise 11. Let $A \in \alpha$, then $(\alpha - \{A\}) \cup \{A^*\}$ is an ultrafilter if and only if A is minimal in α .

Exercise 12. If Σ has finite width, then any two DCC ultrafilters are joined by a finite path.

Exercise 13. $X^{(2)}$ is simply connected.

Hint: Consider a minimal 1-skeleton closed path in $X^{(1)}$. Consider the "switches" are made along the way to produce a shorter close path.

Exercise 14. X satisfies the Gromov flag link condition.

We call this construction of a cubical complex from a pocset a *cubulation*.

Exercise 15. Consider the plane with a finite family of evenly spaced parallel lines. What is the cubical complex associated to this space with walls?

Exercise 16. Is there a discrete space with walls constructed from lines in the plane which is yields an infinite dimensional complex? What about the hyperbolic plane?

Exercise 17. Suppose that $[G : H] < \infty$ and H acts properly on a CAT(0) cubical complex. Show that G does as well.

4. The Roller compactification

We can topologize $\mathcal{U}(\Sigma)$ using the Tychonoff topology on the countable product

$$\mathcal{U}(\Sigma) \subset \prod_{\hat{\mathcal{H}}} \{\mathfrak{h}, \mathfrak{h}^*\}$$

Exercise 18. $\mathcal{U}(\Sigma)$ is closed (and hence compact).

Exercise 19. Assume that Σ has finite width. Show that $\mathcal{U}(\Sigma)$ is a compactification of $X^{(0)}(\Sigma)$.

5. Roller duality

We have to constructions:

$$CAT(0)$$
 cubical complex $X \rightsquigarrow pocset$ of halfspaces $\mathcal{H}(X)$

pocset $\Sigma \rightsquigarrow$ cubical complex $X(\Sigma)$

Exercise 20 (Roller Duality). These constructions are dual to one another:

(i) Given a finite width locally finite pocset, Σ , then $\mathcal{H}(X(\Sigma)) \equiv \Sigma$.

(ii) Given a finite dimensional cubical complex $X, X(\mathcal{H}(X)) = X$.

6. Subpocsets and collapsing

Observation 21. Suppose $\Delta \subset \Sigma$ is a subposset. ρ_{Δ} maps ultrafilters to ultrafilters and preserves DCC.

Orbit quotients.

Exercise 22. Consider $\mathbf{Z} \times \mathbf{Z}$ acting on the standard squaring of the plane. What are the orbit quotients?

Exercise 23. Consider the standard description of the surface of genus two given as the quotient of the octagon whose edges are identified $ab\overline{a}\overline{b}cd\overline{c}\overline{d}$. Square the surface by putting a vertex in the middle and joining this vertex to the midpoint of each edge. Let X be the universal cover of this surface acted on by the fundamental group of the surface G.

- (i) What are the orbit quotients? Are they locally finite?
- (ii) Are the actions on the orbit quotients proper?
- (iii) G acts on the product of the orbit quotients. Is this action proper? Is it cocompact?

Projections onto hyperplanes. Let $\hat{\mathfrak{h}} \subset X$ be a hyperplane of X.

$$\hat{\mathcal{H}}' = \{ \mathfrak{k} \in X | \hat{\mathfrak{k}} \cap \hat{\mathfrak{h}} \neq \emptyset \}$$

 \mathcal{H}' – denote the subposset of halfspaces associated to $\hat{\mathcal{H}}'$.

Exercise 24. What is the complex $X(\mathcal{H}')$? Describe the map $X \to X(\mathcal{H}')$.

Products. $X \cong X_1 \times X_2$ – a product of two cubical complexes.

For $i = 1, 2, p_i : X \to X_i$ – natural projections

 $\hat{\mathcal{H}}_i = p_i^{-1}(\hat{\mathcal{H}}(X_i)).$

Observation 25. $\hat{\mathcal{H}}(X)$ decomposes as a disjoint union $\hat{\mathcal{H}}(X) = \hat{\mathcal{H}}_1 \cup \hat{\mathcal{H}}_2$ and every hyperplane in $\hat{\mathcal{H}}_1$ crosses every hyperplane in \mathcal{H}_2 .

Exercise 26 (Recognizing Products). Show that a decomposition of the pocset $\mathcal{H}(X)$ as a disjoint union of transverse pocsets $\mathcal{H}(X) = \mathcal{H}_1 \cup \mathcal{H}_2$, meaning that every element of \mathcal{H}_1 is incomparable with every element of \mathcal{H}_2 , corresponds to a decomposition of X as a product.

Hint: Roller duality.

Exercise 27 (Product Decomposition Theorem). Show that every finite dimensional CAT(0) cubical complex admits a canonical decomposition into finitely many irreducibles.

Hint: Finite dimensionality gives a bound on the number of factors in a decomposition. Consider a maximal non-trivial decomposition...

Pruning

Exercise 28. Suppose that G = Aut(X) acts on X with finitely many orbits of hyperplanes. Then

- there exists a convex, G-invariant subcomplex $Y \subset X$ which has only shallow and essential hyperplanes
- show that Y decomposes as a product of two CAT(0) cubical complexes, one of which is finite and the other of which is essential.

Hint: For the first part, consider collapsing, starting with "outermost" hyperplanes. For the second part, observe that every shallow hyperplane intersects every essential hyperplane.

7. Skewering

Exercise 29. Let \mathfrak{h} be a halfspace bounded by $\hat{\mathfrak{h}}$ and g a hyperbolic automorphism. Show that g skewers $\hat{\mathfrak{h}}$ if and only if for some $n \neq 0$, we have $g\mathfrak{h} \subset \mathfrak{h}$.

Exercise 30. Show that g is peripheral to \mathfrak{h} if and only if for some \mathfrak{h} bounded by \mathfrak{h} , we have $g^n \mathfrak{h}^* \subset \mathfrak{h}$.

Exercise 31 (Single Skewering). Let X be essential and let G be a group acting cocompactly on X.

- Suppose there exists a single orbit of hyperplanes G(\$\u00fc)\$. Show that there exists a number N > 0 (depending only on the dimension of X) such that if diam(X) > N, then there exists g skewering \$\u00dc0\$.
- Conclude that for every hyperplane $\hat{\mathfrak{h}}$, there exists $g \in G$ skewering $\hat{\mathfrak{h}}$