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Derivative

Recall the definition of the derivative of a function f at a point p:

1oy g T(W) — F(P)
Flp) = Jim = b

(1)



Derivative

Thus, to say that
f(p) =3
means that if we take any neighborhood U of 3, say the interval
(1,5), then the ratio
f(w) = 1(p)

w-—p
falls inside U when w is close enough to p, i.e. in some
neighborhood of p. (Of course, we can’t let w be equal to p,
because of the w — p in the denominator.)
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neighborhood of p, but not equal to p.
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So if
f'(p) =3
then the ratio
f(w) — f(p)
w—-p

lies in (1,5) when w is close enough to p, i.e. in some
neighborhood of p, but not equal to p.
In particular,

fw) - f(p) _

W p if w is close enough to p, but # p.



Derivative

From f'(p) = 3 we found that

f(w) — f(p)
w-—p

Looking at this you see that :

>0 if w is close enough to p, but # p.



Derivative

From f'(p) = 3 we found that

f(w) — f(p)
w-—p

Looking at this you see that :

>0 if w is close enough to p, but # p.

e when w > p, but near p, the value f(w) is > f(p).



Derivative

From f'(p) = 3 we found that

f(w) — f(p)
w-—p

Looking at this you see that :

>0 if w is close enough to p, but # p.

e when w > p, but near p, the value f(w) is > f(p).

e when w < p, but near p, the value f(w) is < f(p).
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Looking back at the argument, we see that the only thing about
the value 3 for f/(p) which made it all work is that it is > 0.
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Thus:
Theorem
Iff'(p) > 0 then :
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and

the values of f to the left of p, but close to p, are < f(p).



Negative Derivative and Decreasing behavior

Similarly,

Theorem
Iff'(p) <O then :



Negative Derivative and Decreasing behavior

Similarly,

Theorem
Iff'(p) <O then :

the values of f to the right of p, but close to p, are < f(p),



Negative Derivative and Decreasing behavior

Similarly,
Theorem
Iff'(p) <O then :
the values of f to the right of p, but close to p, are < f(p),

and



Negative Derivative and Decreasing behavior

Similarly,
Theorem
Iff'(p) <O then :
the values of f to the right of p, but close to p, are < f(p),

and

the values of f to the left of p, but close to p, are > f(p).



Local Maxima and Minima

A function f is said to have a local maximum at a point p if there
is a neighborhood U of p such that that for all x € U in the
domain of f, the value f(x) is > f(p).

A function f is said to have a local minimum at a point p if there
is a neighborhood U of p such that that for all x € U in the
domain of f, the value f(x) is < f(p).



Local Maxima and Minima

local maximum

/\J’\

Figure: Local Maxima and Minima
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The local Maxima/Minima theorem

Theorem

Suppose f is defined in a neighborhood of a point p € R, and
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f'(p) exists. Then f'(p) must be 0.
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The local Maxima/Minima theorem

Theorem
Suppose f is defined in a neighborhood of a point p € R, and

f(p) > f(x) for all x in a neighborhood of p. Suppose also that
f'(p) exists. Then f'(p) must be 0.

If f(p) < f(x) for all x in a neighborhood of p, and f'(p) exists,
then f'(p) is 0.

Note that we are requiring that f be defined in a neighborhood
of p, and so on both sides of p.
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Proof of the Local Max/Min Theorem

Proof Suppose f'(p) exists but is not 0. Then f'(p) is either > 0
or < 0.

If f'(p) > 0 then we know that to the right of p, but close to p,
the values of f are > than f(p), and to the left of p, but close to
p, the values are < f(p).

But this would mean that p is neither a local maximum nor a
local minimum for f.

Thus, f'(p) > 0 is ruled out.
Similarly, f'(p) < 0 is also not possible.
Thus, f'(p) must be 0.
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Rolle’s Theorem

Theorem
Consider a function
f:la bl —R

where a, b € R with a < b. Suppose
e f is continuous function

e f is differentiable on (a, b)

Then there is a point c strictly between a and b where the
derivative of f is 0:

f'(c) = 0 forsome c € (a, b).
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Proof of Rolle’s Theorem

A fundamental theorem about continuous functions on compact
intervals says that h reaches a maximum value and a minimum
value in the interval [a, b].

Assume for the moment that at least one of the max or min
values of h occurs in the interior (a, b).But then we know that #
must be 0 there, by the previous theorem, and so we would be
done.

The only other possibility is that both the max and the min value
occur at the end points a and b. But h has the same value at a
and at b. So then the max and the min value must be the same.
Thus in this case his constant and so its derivative is 0
everywhere.
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Useful consequence Rolle’s Theorem

Suppose now that f and g are functions on a compact interval
[a, b], and are differentiable in (a, b).

Next suppose also that f and g have the same value at a, and
also the same value at b:

fla)=g(a), and  f(b)=g(b).

Then " and g’ agree at some point ¢ between a and b:

f(c)=gd'(c) forsome cec (a,b).

To see this simply apply Rolle’s theorem to the function
h=f-g.



Mean Value Theorem

Theorem
Suppose f is continuous on a compact interval [a, b] and
differentiable in (a, b). Then there is a point ¢ in (a, b) where

ERLLELC



Proof of Mean Value Theorem

Proof Compare f with the straight line function L which agrees
with f at the points a and b:

L(a) =f(a),  L(b)=1(b),
and the slope of L is constant given by
L(b) — L(a) f(b)—f(a)

b—-a  b-a
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Proof of Mean Value Theorem

Proof Compare f with the straight line function L which agrees
with f at the points a and b:

L(a)=f(a),  L(b)=f(b),
and the slope of L is constant given by

L(b)— L(a) f(b) - f(a)
b—a b-a

As consequence of Rolle’s theorem we see that there is a point

¢ € (a, b) where the derivatives of f and L agree. But the
derivative of L at any point is the constant value given above.

Hence: HbY _ f
f/(C) _ L/(C) _ ( g: a(a)



Polynomials: coefficients and derivatives at 0
Consider a polynomial

P(x) = ap + a1 X + axx® + azx®
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Polynomials: coefficients and derivatives at 0
Consider a polynomial

P(x) = ap + a1 X + axx® + azx®
Observe that
P'(x) = aj + 2axx + 3azx®
P@)(x) = 2a; + 3 * 2a3x
PO (x) =3%2x1a3

Observe now that if we put in x = 0 we can recover the values
of ap, a1, az, as:

ap = P(0)
= P’<0)

P( )(0)  of course, P®)(x) is constant for all x.
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In general, we have for any polynomial of degree n:

(2) (n)
PAO) , , PPO),

P(x) = P(0) + P'(0)x + —, e —

(@)

Moreover, the n-th derivative of this polynomial is a constant.
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Polynomials with specified derivatives derivatives at 0

Exercise. Find a polynomial function P for which
PO)=1, P(0)=1, P'(0)=-2, P®0)=12
Solution: The simplest choice is

-2 5, 12 4
1—|—1X+?X +§X

We could also take, for instance,

-2, 12 4 K 4
1+1.x+jx +§x +mx,

where K is any constant.



Polynomials with specifications
Exercise. Find a polynomial function P for which
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P(1)=5
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polynomial
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where K is any constant.
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Polynomials with specifications
Exercise. Find a polynomial function P for which

P(0)=—4, P(0)=3, P"(0)=-4, P®0)=6

and also

P(1)=5
Solution: To satisfy the conditions at 0 we can take the
polynomial

P(x):—4+3x+§x +§x +ax ,

where K is any constant.

Now tune the constant K to the requirement that P(1) be 5.i.e.
choose K in such a way that

_ —4.2 6.3 K.
5__4+3*1+§1 +§1 +ﬂ1’

which we can solve for K.
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Taylor Polynomial of a Function

Consider a function f defined in a neighborhood of 0, and
differentiable 15 times.

We know that we can choose a polynomial function P whose
value and derivatives at 0 up to order the 14th order match
those for f:

P(0)=f(0),  P'(0)=f(0), ..., PU%0)=f14(0)
For instance, we can take

f@(0) , fI90) 14 K 15

P(x) = f(0)+f(0)x+

where K is any constant (could be 0 too in the simplest case).
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Taylor Polynomial of a Function
We could put in an additional requirement, say that

P(4) = f(4)
This would let us pin down the constant K.

We can also get a description of the constant K by repeatedly
applying Rolle’s theorem:

Since f(x) and P(x) agree at x = 0 and and x = 4, their
derivatives agree at some point ¢y strictly between 0 and 4:

f'(c1) = P'(c1)
But then...f" and P’ agree at both 0 and ¢4, hence their
derivatives agree at a point ¢, in between:

f®)(c2) = PP(cy)

and on and on .... until ...



Taylor Polynomial of a Function

we have a point ¢, of course still between 0 and 4, where £(15)
and P15 agree:

f19)(c) = P19)(¢)
Now if you look back at (3) to see what P(x) was, you can see
that the 15th-derivative of P is the constant K:

P (x) = 1’;15!x° =K

Hence,
K = f(1%)(¢)

Thus, the constant K happens to be the 15-th derivative of f at
some point ¢ between 0 and 4.
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Taylor’s Theorem
There is nothing special about 15. The general result is:

Theorem

Suppose f is a function defined in a neighborhood of 0 and is n
times differentiable on this neighborhood, where n is some
positive integer (i.e. n € {1,2,3,...}).Then for any x in this
neighborhood there is a point ¢ lying between 0 and x such that

f2(0) f"0(0) nq 1)
T (o TR AT

(4)

f(x) = £(0)+F'(0)x)+

The main point here is the remainder or error term
() s
n
when f is approximated by the Taylor polynomial
f2)(0) » FD0) s
or X Tt T

n =

£(0) + £(0)x) +
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Analytic Functions

Some functions are very special: for them the error term in the
Taylor approximation goes to the limit 0 when n — occ.

Thus for such functions f we have, for x in some neighborhood
of 0,

(0) - _ -~ (0) &
(x) = £(0) + F(o)x + 0 X =3
k=0
The function f for which thise holds for all x in a neighborhood
U of 0 is said to be analyticon U.



Analytic Functions

In class, we proved that the functions e* and sin x are analytic,
by showing that the Taylor remainder goes to 0 in each case.
Polynomials are, of course, analytic, because the remainder
term becomes 0 for them eventually.



