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Derivative

Recall the definition of the derivative of a function f at a point p:

f ′(p) = lim
w→p

f (w)− f (p)

w − p
(1)



Derivative

Thus, to say that
f ′(p) = 3

means that if we take any neighborhood U of 3, say the interval
(1, 5), then the ratio

f (w)− f (p)

w − p

falls inside U when w is close enough to p, i.e. in some
neighborhood of p. (Of course, we can’t let w be equal to p,
because of the w − p in the denominator.)



Derivative

So if
f ′(p) = 3

then the ratio
f (w)− f (p)

w − p

lies in (1, 5) when w is close enough to p, i.e. in some
neighborhood of p, but not equal to p.

In particular,

f (w)− f (p)

w − p
> 0 if w is close enough to p, but 6= p.
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Derivative

From f ′(p) = 3 we found that

f (w)− f (p)

w − p
> 0 if w is close enough to p, but 6= p.

Looking at this you see that :

• when w > p, but near p, the value f (w) is > f (p).

• when w < p, but near p, the value f (w) is < f (p).
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Positive Derivative and Increasing behavior

Looking back at the argument, we see that the only thing about
the value 3 for f ′(p) which made it all work is that it is > 0.

Thus:

Theorem
If f ′(p) > 0 then :

the values of f to the right of p, but close to p, are > f (p),

and

the values of f to the left of p, but close to p, are < f (p).
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Negative Derivative and Decreasing behavior

Similarly,

Theorem
If f ′(p) < 0 then :

the values of f to the right of p, but close to p, are < f (p),

and

the values of f to the left of p, but close to p, are > f (p).



Negative Derivative and Decreasing behavior

Similarly,

Theorem
If f ′(p) < 0 then :

the values of f to the right of p, but close to p, are < f (p),

and

the values of f to the left of p, but close to p, are > f (p).



Negative Derivative and Decreasing behavior
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Theorem
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Negative Derivative and Decreasing behavior

Similarly,

Theorem
If f ′(p) < 0 then :

the values of f to the right of p, but close to p, are < f (p),
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Local Maxima and Minima

A function f is said to have a local maximum at a point p if there
is a neighborhood U of p such that that for all x ∈ U in the
domain of f , the value f (x) is ≥ f (p).

A function f is said to have a local minimum at a point p if there
is a neighborhood U of p such that that for all x ∈ U in the
domain of f , the value f (x) is ≤ f (p).



Local Maxima and Minima

local maximum

local minimum

Figure: Local Maxima and Minima



The local Maxima/Minima theorem

Theorem
Suppose f is defined in a neighborhood of a point p ∈ R, and

f (p) ≥ f (x) for all x in a neighborhood of p. Suppose also that
f ′(p) exists. Then f ′(p) must be 0.

If f (p) ≤ f (x) for all x in a neighborhood of p, and f ′(p) exists,
then f ′(p) is 0.

Note that we are requiring that f be defined in a neighborhood
of p, and so on both sides of p.
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Proof of the Local Max/Min Theorem

Proof Suppose f ′(p) exists but is not 0. Then f ′(p) is either > 0
or < 0.
If f ′(p) > 0 then we know that to the right of p, but close to p,
the values of f are > than f (p),

and to the left of p, but close to
p, the values are < f (p).

But this would mean that p is neither a local maximum nor a
local minimum for f .

Thus, f ′(p) > 0 is ruled out.

Similarly, f ′(p) < 0 is also not possible.

Thus, f ′(p) must be 0.
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Rolle’s Theorem

Theorem
Consider a function

f : [a, b]→ R

where a, b ∈ R with a < b. Suppose
• f is continuous function

• f is differentiable on (a, b)

• f (a) = f (b).

Then there is a point c strictly between a and b where the
derivative of f is 0:

f ′(c) = 0 for some c ∈ (a, b).
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Proof of Rolle’s Theorem

A fundamental theorem about continuous functions on compact
intervals says that h reaches a maximum value and a minimum
value in the interval [a, b].

Assume for the moment that at least one of the max or min
values of h occurs in the interior (a, b).But then we know that h′

must be 0 there, by the previous theorem, and so we would be
done.

The only other possibility is that both the max and the min value
occur at the end points a and b. But h has the same value at a
and at b. So then the max and the min value must be the same.
Thus in this case h is constant and so its derivative is 0
everywhere.
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Useful consequence Rolle’s Theorem

Suppose now that f and g are functions on a compact interval
[a, b], and are differentiable in (a, b).

Next suppose also that f and g have the same value at a, and
also the same value at b:

f (a) = g(a), and f (b) = g(b).

Then f ′ and g′ agree at some point c between a and b:

f ′(c) = g′(c) for some c ∈ (a, b).

To see this simply apply Rolle’s theorem to the function
h = f − g.
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Mean Value Theorem

Theorem
Suppose f is continuous on a compact interval [a, b] and
differentiable in (a, b). Then there is a point c in (a, b) where

f ′(c) =
f (b)− f (a)

b − a



Proof of Mean Value Theorem

Proof Compare f with the straight line function L which agrees
with f at the points a and b:

L(a) = f (a), L(b) = f (b),

and the slope of L is constant given by

L(b)− L(a)

b − a
=

f (b)− f (a)

b − a

As consequence of Rolle’s theorem we see that there is a point

c ∈ (a, b) where the derivatives of f and L agree. But the
derivative of L at any point is the constant value given above.

Hence:
f ′(c) = L′(c) =

f (b)− f (a)

b − a



Proof of Mean Value Theorem

Proof Compare f with the straight line function L which agrees
with f at the points a and b:

L(a) = f (a), L(b) = f (b),

and the slope of L is constant given by

L(b)− L(a)

b − a
=

f (b)− f (a)

b − a

As consequence of Rolle’s theorem we see that there is a point

c ∈ (a, b) where the derivatives of f and L agree. But the
derivative of L at any point is the constant value given above.

Hence:
f ′(c) = L′(c) =

f (b)− f (a)

b − a



Proof of Mean Value Theorem

Proof Compare f with the straight line function L which agrees
with f at the points a and b:

L(a) = f (a), L(b) = f (b),

and the slope of L is constant given by

L(b)− L(a)

b − a
=

f (b)− f (a)

b − a

As consequence of Rolle’s theorem we see that there is a point

c ∈ (a, b) where the derivatives of f and L agree. But the
derivative of L at any point is the constant value given above.

Hence:
f ′(c) = L′(c) =

f (b)− f (a)

b − a



Polynomials: coefficients and derivatives at 0
Consider a polynomial

P(x) = a0 + a1x + a2x2 + a3x3

Observe that

P ′(x) = a1 + 2a2x + 3a3x2

P(2)(x) = 2a1 + 3 ∗ 2a3x

P(3)(x) = 3 ∗ 2 ∗ 1a3

Observe now that if we put in x = 0 we can recover the values
of a0, a1, a2, a3:

a0 = P(0)

a1 = P ′(0)

a2 =
1
2!

P(2)(0)

a3 =
1
3!

P(3)(0) of course, P(3)(x) is constant for all x .
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Polynomials with specified derivatives derivatives at 0

In general, we have for any polynomial of degree n:

P(x) = P(0) + P ′(0)x +
P(2)(0)

2!
x2 + . . . +

P(n)(0)

n!
xn (2)

Moreover, the n-th derivative of this polynomial is a constant.
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Polynomials with specified derivatives derivatives at 0

Exercise. Find a polynomial function P for which

P(0) = 1, P ′(0) = 1, P ′′(0) = −2, P(3)(0) = 12

Solution: The simplest choice is

1 + 1.x +
−2
2!

x2 +
12
3!

x3

We could also take, for instance,

1 + 1.x +
−2
2!

x2 +
12
3!

x3 +
K
4!

x4,

where K is any constant.
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Polynomials with specifications
Exercise. Find a polynomial function P for which

P(0) = −4, P ′(0) = 3, P ′′(0) = −4, P(3)(0) = 6

and also
P(1) = 5

Solution: To satisfy the conditions at 0 we can take the
polynomial

P(x) = −4 + 3x +
−4
2!

x2 +
6
3!

x3 +
K
4!

x4,

where K is any constant.

Now tune the constant K to the requirement that P(1) be 5,i.e.
choose K in such a way that

5 = −4 + 3 ∗ 1 +
−4
2!

12 +
6
3!

13 +
K
4!

14,

which we can solve for K .
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Taylor Polynomial of a Function

Consider a function f defined in a neighborhood of 0, and
differentiable 15 times.

We know that we can choose a polynomial function P whose
value and derivatives at 0 up to order the 14th order match
those for f :

P(0) = f (0), P ′(0) = f ′(0), . . . , P(14)(0) = f (14)(0)

For instance, we can take

P(x) = f (0)+ f ′(0)x +
f (2)(0)

2!
x2 + · · ·+ f (14)(0)

14!
x14 +

K
15!

x15 (3)

where K is any constant (could be 0 too in the simplest case).
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those for f :

P(0) = f (0), P ′(0) = f ′(0), . . . , P(14)(0) = f (14)(0)

For instance, we can take

P(x) = f (0)+ f ′(0)x +
f (2)(0)

2!
x2 + · · ·+ f (14)(0)

14!
x14 +

K
15!

x15 (3)

where K is any constant (could be 0 too in the simplest case).



Taylor Polynomial of a Function
We could put in an additional requirement, say that

P(4) = f (4)

This would let us pin down the constant K .

We can also get a description of the constant K by repeatedly
applying Rolle’s theorem:

Since f (x) and P(x) agree at x = 0 and and x = 4, their
derivatives agree at some point c1 strictly between 0 and 4:

f ′(c1) = P ′(c1)

But then...f ′ and P ′ agree at both 0 and c1, hence their
derivatives agree at a point c2 in between:

f (2)(c2) = P(2)(c2)

and on and on .... until ...
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Taylor Polynomial of a Function

we have a point c, of course still between 0 and 4, where f (15)

and P(15) agree:
f (15)(c) = P(15)(c)

Now if you look back at (3) to see what P(x) was, you can see
that the 15th-derivative of P is the constant K :

P(15)(x) =
K

15!
15!x0 = K

Hence,
K = f (15)(c)

Thus, the constant K happens to be the 15-th derivative of f at
some point c between 0 and 4.



Taylor’s Theorem
There is nothing special about 15. The general result is:

Theorem
Suppose f is a function defined in a neighborhood of 0 and is n
times differentiable on this neighborhood, where n is some
positive integer (i.e. n ∈ {1, 2, 3, ...}).Then for any x in this
neighborhood there is a point c lying between 0 and x such that

f (x) = f (0)+ f ′(0)x)+
f (2)(0)

2!
x2+ · · ·+ f (n−1)(0)

(n − 1)!
xn−1+

f (n)(c)

n!
xn

(4)

The main point here is the remainder or error term

Rn =
f (n)(c)

n!
xn

when f is approximated by the Taylor polynomial

f (0) + f ′(0)x) +
f (2)(0)

2!
x2 + · · ·+ f (n−1)(0)

(n − 1)!
xn−1
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Analytic Functions

Some functions are very special: for them the error term in the
Taylor approximation goes to the limit 0 when n→∞.

Thus for such functions f we have, for x in some neighborhood
of 0,

f (x) = f (0) + f ′(0)x +
f (2)(0)

2!
x2 + · · · =

∞∑
k=0

f (k)(0)

k !
xk (5)

The function f for which thise holds for all x in a neighborhood
U of 0 is said to be analytic on U.
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Analytic Functions

In class, we proved that the functions ex and sin x are analytic,
by showing that the Taylor remainder goes to 0 in each case.
Polynomials are, of course, analytic, because the remainder
term becomes 0 for them eventually.


