Toy Model for Density of Bound States

Stacey Wieseneck

Density of Bound States

From both of these observations can deduce the following

- If \mid trace $\mid \leq 2$ then $\lambda=e^{i \theta}$ and $\lambda^{-}=e^{-i \theta}$ and that $\lambda+\lambda^{-}=2 \cos \theta$
- If | trace $\mid \geq 2$ then $\lambda, \lambda^{-} \in \mathbb{R}$

We concern ourselves only with values of $\lambda=e^{i \theta}$ which is the range for which we get propagation throughout the periodic medium.
By analytically diagonalizing the Monodromy matrix we are left with the following two equations to solve simultaneously:

- $e^{-\gamma L}\left(1+\frac{\alpha}{2 \gamma}\right) \sin (N \theta)-\sin ((N+1) \theta)=0$
- $2 \cos \theta-e^{\gamma L}\left(1-\frac{\alpha}{2 \gamma}\right)-e^{-\gamma L}\left(1+\frac{\alpha}{2 \gamma}\right)=0$

Solutions for this system of equations are shown below for varying values of L and N.

These graphs display bound-state solutions for ω, plotted on the ω axis, ranging from -0.32 to -0.12.

Asymptotic Density of Bound States

Analyzing these results we can clearly note two things.

- As we increase the number of defects, N , the number of discrete
frequencies ω that create a bound state increases.
- As we increase the distance, L, between defects, the length of the interval on which these frequencies fall decreases.
Recall, we are solving for the non-trivial solution of $A_{0}, B_{N}=0$. This is equivalent to saying the 2,2 entry of our transfer matrix is 0 . We solve for this value by diagonalizing our monodromy matrix, M

$$
M^{N}=P^{-1} D^{N} P=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -c \\
-b & d
\end{array}\right]\left[\begin{array}{ll}
\lambda & 0 \\
0 & \lambda^{-}
\end{array}\right]^{-N}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

from which we find that $t_{22}=\lambda^{-N} a d-\lambda^{N} c b=0$
We substitute in values for $\mathrm{a}, \mathrm{b}, \mathrm{c}$, and d we get a final equation of
$e^{-\gamma L}\left(1+\frac{\alpha}{2 \gamma}\right) \sin (N \theta)-\sin ((N+1) \theta)=0$
By analyzing the characteristic polynomial, we see its eigenvalues, λ and λ^{-} satisfy the property $\lambda \lambda^{-}=1$

- Characteristic Polynomial $=\lambda^{2}-\left(e^{\gamma L}\left(1-\frac{\alpha}{2 \gamma}\right)+e^{-\gamma L}\left(1+\frac{\alpha}{2 \gamma}\right)\right) \lambda+1$

By analyzing the trace, we see its eigenvalues satisfy the property $\lambda+\lambda^{-} \in \mathbb{R}$

- Trace $=e^{\gamma L}\left(1-\frac{\alpha}{2 \gamma}\right)+e^{-\gamma L}\left(1+\frac{\alpha}{2 \gamma}\right)$

