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Abstract

We present an accurate and efficient numerical
method, based on integral Nyström discretizations,
for the solution of three dimensional wave prop-
agation problems in piece-wise homogeneous me-
dia that have two-dimensional (in-plane) periodic-
ity (e.g. photonic crystal slabs). Our approach
uses (1) A fast, high-order algorithm for evalua-
tion of singular integral operators on surfaces in
three-dimensional space, and (2) A new, representa-
tion of the three-dimensional quasi-periodic Green’s
functions, which, based on use of infinitely-smooth
windowing functions and equivalent-source represen-
tations, converges super-algebraically fast through-
out the frequency spectrum—even for high-contrast
problems and at and around the resonant frequencies
known as Wood anomalies.

1 Introduction

We consider the problem of transmission of time-
harmonic acoustic waves by periodic structures, in-
cluding (a) Structures Ωper = ∪(n,m)∈Z×ZΩn,m, where
Ω0,0 = Ω is a bounded region in R3 whose boundary
Γ is a (possibly singular) closed surface and where
Ωm,n are defined by Ωm,n = Ω + md1a1 + nd2a2 in
terms of given unit vectors a1 and a2 and periods d1

and d2; (b) Similarly defined periodic arrays of open
surfaces, and (c) Combinations of these two types
of periodic configurations. For simplicity we restrict
our presentation to the acoustic case. The treatment
in the electromagnetic case is analogous, albeit more
complicated; our results, however, include both ex-
amples of scalar and electromagnetic problems. For
acoustic problems concerning structures of type (a),
for example, we solve the scattering problem

∆u1 + k2
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√
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Γper = ∪(n,m)∈Z×ZΓ +md1a1 + nd2a2
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Here u1 = uinc + us, where the incident field uinc

is e.g., a given plane wave of the form uinc(x) =
exp(ik1d · x) = exp[i(αx1 + βx2 − γx3)] with α =
k1 sinψ cosφ, β = k1 sinψ sinφ, and γ = k1 cosψ.
We require that the scattered fields us be (α, β)
quasi-periodic with respect to x1 and x2 and out-
going in the regions above and below Γper.

Our problems can be posed in terms of bound-
ary integral equations that involve the quasi-periodic
Green’s functions. For wavenumbers k different
from the Wood anomaly values k2 =

(
α+ 2πn

d1

)2
+(

β + 2πm
d2

)2
(where (n,m) ∈ Z× Z are arbitrary in-

tegers), the (α, β) quasi-periodic Green’s function is
given by

Gper
k (x,x′) =
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eiαnd1eiβmd2

× Gk(x− x′ −md1a1 − nd2a2), (2)

where Gk(z) = eik|z|/(4π|z|).
The problem embodied in equation (1) can be re-

cast in terms of the following integral equation for-
mulations on Γ:(
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where S2, K2, K ′
2 and N2 denote the single layer,

double layer, Neumann trace of the single layer and
Neumann trace of the double layer potentials on Γ
associated with free-space Green’s function Gk2 , and
where Sper

1 , Kper
1 , (K ′

1)
per and Nper

1 denote the cor-
responding boundary layer operators associated with
quasi-periodic Green’s functions (2) with k = k1.



The very slow conditional convergence of the pe-
riodic Green’s function (2) has been extensively dis-
cussed in the vast literature devoted to this subject
(see e.g. the comprehensive review articles [6], [7]),
and several methods to accelerate its convergence,
notably Ewald’s method [5] and lattice sums meth-
ods [7], have been proposed. Following up on ideas
introduced in [8], we propose a new approach for fast
evaluations of integral operators involving periodic
Green’s functions: we use a smooth windowing func-
tion χ such that χ(t) = 1, t ≤ 1 and χ(t) = 0, t ≥ 2
and we approximate Gper

k in the following manner

Gper
k (x,x′) ≈

∑
(md1)2+(nd2)2≤4L2

χ

(
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)
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× Gk(x− x′ −md1a1 − nd2a2)
= Gper,L

k (x,x′), (4)

where dmn = ((md1)2 + (nd2)2)
1
2 . If k is not a

Wood anomaly, then Gper,L
k converges to Gper

k super-
algebraically as L→∞. In the Wood anomaly case,
in turn, use of adequate differences of such windowed
expressions restores super-algebraic convergence even
at an around Wood anomaly frequencies. We thus
have the following Theorem.

Theorem 1.1 (BSTV) If k is not a Wood anomaly,
then for all x 6= x′ and all integers p ≥ 2

|Gper
k (x,x′)−Gper,L

k (x,x′)| ≤ CL
1
2
−p.

Further, substitution of the free space Green func-
tion in (4) by a linear combination of multiple reflec-
tions across adequately chosen horizontal planes pro-
vides super-algebraic convergence even at and around
Wood anomalies.

2 Numerical Method
The rapidly convergent quasi-periodic Green’s

function Gper,L
k can be incorporated seamlessly into

the high-order Nyström discretizations introduced
in [1], [2]. As shown in what follows, further, the ac-
celeration strategy based on use of equivalent sources
and 3D sparse FFTs described in [2] can be extended
to the treatment of quasi-periodic problems. The
first step of the acceleration procedure consists of
partitioning a cube C of size A circumscribing Γ into
L3 identical cubic cells ci of size adjusted so that they
do not admit resonances. The main idea of the accel-
eration algorithm is to seek to substitute the surface

“true” sources which correspond to the discretization
points on Γ contained in a certain cube ci by periodic
“equivalent sources” on the faces of ci in a manner
such that the fields generated by the ci-equivalent
sources approximate to high order accuracy the fields
produced by the true ci sources at all points in space
non-adjacent to ci. For a fixed value l = 1, 2, 3,
we associate to a field u and each cell ci-equivalent
sources, acoustic monopoles ξ(m)l

i,j GL,per
k (x−xl

i,j) and

dipoles ξ(d)l
i,j ∂GL,per

k (x − xl
i,j)/∂xl placed at points

xl
i,j , l = 1, · · · ,M equiv contained within certain sub-

sets Πl
i. The fields ψci,true radiated by the ci-true

sources are approximated then in the least square
sense by fields ψci,eq radiated by the ci-equivalent

sources ψci,eq(x) =
∑ 1

2
Mequiv

j=1 (ξ(m)l
i,j GL,per

k (x,xl
i,j) +

ξ
(d)l
i,j

∂GL,per
k (x,x

(d)l
i,j )

∂xl
). The parameters nt, M equiv and

the unknown monopole and dipole intensities in
the representation of ψci,eq are chosen so that the
truncated spherical wave expansions of order nt for
ψci,true and ψci,eq differ in no more than O(ε) out-
side Si. The intensities ξ(m)l

i,j and ξ
(d)l
i,j are obtained

in practice as the least-squares solution of three
overdetermined linear systems Aξ = b where A are
ncoll×M equiv matrices. This strategy leads to a com-
putational cost of O(4L2N4/3 logN) for our solver,
where N is the number of discretization points.

The evaluation of quasi-periodic Green’s functions
can be accelerated beyond the fast convergence im-
plicit in Theorem 1.1 by resorting to Taylor expan-
sions of the terms Gk(x − x′ − md1a1 − nd2a2) in
inverse powers of dm,n =

√
(md1)2 + (nd2)2 for suffi-

ciently large values of dm,n—say, for dm,n ≥ T , where
T is a truncation parameter; cf. Table 2 below.

3 Numerical Results
In Table 1 we present results concerning acoustic

and electromagnetic transmission problems for a pe-
riodic array Γper of high-contrast dielectric spheres
(ε1 = 1, ε2 = 40 ) for the frequency value ω = k1 =
0.75 (reduced angular frequency ωd/π = 0.4775) in
the resonance regime relevant to photonics research.
We present errors in conservation of energy (using
the energy-balance indicator ε = |1 − reflected −
transmitted|) together with computational times and
numbers of iterations required by our solvers to reach
a GMRES residual of 10−4. Convergence studies we
have conducted show that the quantity ε provides, in
our context, an accurate measure of maximum errors



Unknowns L ε It/Time
12× 16× 16 20 2.1 × 10−3 19/5m38sec
12× 16× 16 30 8.4 × 10−4 19/9m29sec
12× 32× 32 50 4.9 × 10−5 19/26m10sec
24× 16× 16 20 7.2 × 10−4 103/28m23sec
24× 16× 16 30 6.3 × 10−4 103/31m50sec
24× 32× 32 50 3.4 × 10−5 103/44m8sec

Table 1: Convergence of the periodic transmission
solvers using GL,per

k for various L. No additional
Taylor-expansion truncations (cf. Section 2) were
used to obtain the results in this table. Here and
throughout this paper, the notation P × n× n indi-
cates that a total of P patches are used to represent
Γ, and n × n discretization points are used in each
patch.

in the far field.
Remark. We note that the implementation of one of
the most advanced approaches previously put forth for
evaluation of periodic Green’s functions [3]—which is
based use of a combination of techniques, including
spatial and spectral representations as well as Kum-
mer transforms and Shanks transforms—has been re-
ported to require several milliseconds per evaluation
point in present-day single processors [4]. Thus, even
for a small discretization consisting of N = 6×16×16
points (here we are assuming a total of 6 patches are
used to represent Γ, and 6 × 6 discretization points
are used in each patch) the number 2×N2 = 4.7×106

of values of the quasi-periodic Green’s functions that
are needed for computation of the four boundary in-
tegral operators (3) would require, if produced by the
method [3], at least 4.7 × 103 seconds for a single
matrix vector product (assuming a conservative one
millisecond per Green function evaluation). In con-
trast, as it can be seen in Table 1, our method requires
about 83 seconds to evaluate a matrix vector product
in the case under consideration, leading, upon use of
a Krylov-subspace iterative solver, to results with 5
digits of accuracy.

In Table 2 we present results based on the Taylor-
expansion truncation strategy described in Section 2
with truncation parameter T = 20 and keeping the
two leading terms in the Taylor series expansions.
This table includes results for sound-soft (Dirich-
let) quasi-periodic problems of scattering by various
types of periodic arrays, with ω = k = 3.75 (reduced
frequency = 2.5, five times larger than that in Ta-

Body Γ L T ε It/Time
Sphere 80 80 1.9 × 10−3 18/51m4sec
Sphere 80 20 1.4 × 10−2 18/3m41sec
Cube 80 80 1.3 × 10−5 70/58m42sec
Cube 80 20 1.9 × 10−3 70/14m21sec
Disc 80 80 1.4 × 10−5 17/50m56sec
Disc 80 20 2.0 × 10−2 17/5m54sec

Table 2: Computational times of periodic solvers us-
ing GL,per

k and Taylor-expansion truncations at level
T ; cf. Section 2. Discretizations containing 6×16×16
points were used for the sphere and cube, while a
5× 16× 16 discretization was used for the open disc;
in all cases a frequency five times larger than that in
Table 1 was assumed.

Figure 1: Transmission curve for a 2D array of
high-contrast cubes (ε1 = 1, ε2 = 40) at normal

incidence.

Figure 2: Fields inside and near the scatterer for
reduced frequencies equal to 0.36 (left) and 0.51

(right), corresponding to the near-zero transmission
cases clearly visible in Figure 1.



ble 1). We see that use of the truncation strategy
leads to very fast computations.

In Figures 1 and 2 we display the transmission
curve and near fields for the problem of scattering
and transmission of plane waves by two-dimensional
periodic arrays of high-contrast acoustic cubes at
normal incidence (again here ε1 = 1, ε2 = 40).
The near-field images correspond to two almost-zero
transmission frequencies that can easily be seen in
the transmission curve. For the reduced frequency
equal to 0.36 (Figure 1 middle) the transmission co-
efficient is very small (about 10−5). For reduced fre-
quency is 0.51 (Figure 1 bottom) we observe a signifi-
cant resonant behavior: the amplitude of the fields in
the interior of the scatterer is approximately 8 times
larger than the amplitude of the fields outside the
scatterer.

In Figure 3 we present transmission curves in the
electromagnetic case for a 2D array of high-contrast
spheres (ε1 = 1, ε2 = 40) with oblique incidence.
In Figure 4, finally, we demonstrate the capability of

Figure 3: Transmission curves in the
electromagnetic case for a 2D array of high-contrast

spheres (ε1 = 1, ε2 = 40) at oblique incidence
(ψ = π/6, φ = 0) and y polarization.

our algorithm to handle problems at and around the
classically challenging Wood anomaly values.
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