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Abstract. We prove the existence of bound guided modes for the Helmholtz equa-
tion on lossless penetrable periodic slabs. We handle both robust modes, for which
no Bragg harmonics propagate away from slab, as well as nonrobust standing modes,
which exist in the presence of propagating Bragg harmonics. The latter are made
possible by symmetries of the slab structure, which prevent coupling of energy to the
propagating harmonics. These modes are isolated in wavevector-frequency space, as
they disappear under a perturbation of the wavevector. The main tool is a volumetric
integral equation of Lippmann-Schwinger type that has a self-adjoint kernel.

1. Introduction. In this work, we prove the existence of bound guided acoustic
and electromagnetic modes in periodic slab structures. These are material slabs
that are infinitely periodic in two spatial directions and finite in the other. Such a
structure can be thought of as an acoustic or photonic crystal slab if it arises from
an infinite periodic structure that is truncated to a finite width in one direction.

A bound guided mode is a traveling or standing wave that is supported by the
slab in the absence of any source, such as a plane wave incident upon it from
the side. The intensity of the field decays exponentially away from the slab and
therefore loses no energy through the sides. In this communication, we restrict
attention to the Helmholtz equation of linear acoustics. For structures that are
constant in one of the directions of periodicity, our results also describe polarized
electromagnetic guided modes.

It is well known that objects that are bound in space (finite in all directions)
cannot support bound Helmholtz states [1]. In other words, there are no nonzero
solutions of the Helmholtz equation, with different constants inside and outside a
bounded domain Ω in R3, that satisfy physical matching conditions on the boundary
of Ω and an outgoing condition. However, if the structure is extended infinitely in
one or two directions (as a periodic pillar or slab), it may support guided modes,
which can be viewed as true bound states when one restricts analysis to a single
period.

As a simple illustrative example, consider a uniform slab without any peri-
odic structure, whose material coefficient is greater than that of the surrounding
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medium. It is a simple calculation to show that such a structure supports guided
modes. More precisely, one seeks solutions u(x, y, z) to the problem

∇2u + εω2u = 0, |z| "= L

ε =
{

ε0, |z| > L
ε1, |z| < L

}
, ε0 < ε1

u and
∂u

∂z
continuous.

Here, ε may refer to an acoustic or dielectric constant, and ω is the nondimension-
alized frequency. Separation of variables leads to the form

u = v(z)ei(κ1x+κ2y),

where v satisfies
v′′ + (εω2 − κ2

1 − κ2
2)v = 0,

and one arrives at extended states for κ2
1 + κ2

2 < ε0ω2 ((κ1,κ2,ω) inside the light
cone for the exterior medium) and dispersion relations ω = W (κ1,κ2) that describe
guided modes for ε0ω2 < κ2

1 + κ2
2 < ε1ω2 ((κ1,κ2,ω) outside the exterior light

cone but inside that of the interior medium). At high frequencies, these modes
correspond to total internal reflection of rays by geometric optics.

Under a periodic perturbation of the slab, those guided modes that can be repre-
sented by points outside the light cone for the exterior medium ε0 with wave vector
inside the first Brillouin zone are robust, whereas those outside are not. This is
reflected in the fact that the Green function for the exterior medium in the former
case decays away from the slab (it has no propagating Fourier harmonics, also called
Bragg harmonics), whereas in the latter it has a finite number of radiating Fourier
harmonics. See [2] for a lucid description of extended and bound states and their
relation to the light cones for photonic crystals.

In this paper, we prove the existence of bound guided modes on periodic slabs
outside the light cone for the exterior medium. These are robust, for there are
no propagating Bragg harmonics that can carry energy away from the slab. We
also prove that, even in the wavevector and frequency regimes for which there
are propagating Bragg harmonics (this is the region inside the light cone for the
exterior medium), certain symmetry conditions allow for bound standing modes on
the slab—the energy is confined to the nonpropagating harmonics. In Corollary 2.2,
we show that this confinement of the energy of the mode to the slab is described by
the vanishing of certain integrals, which depend on the frequency and wavenumber,
over a period of the structure. They are hence nonrobust—they disappear under a
perturbation of the wavevector and are thus isolated states within the light cone.
Nonrobust states correspond to eigenvalues embedded in the continuous spectrum
of the Helmholtz operator in R3 in the presence of the slab; it is known that they
exist in hard acoustic waveguides in the presence of certain obstacles [3].

Our main tool is the volumetric integral with a self-adjoint Green function as the
convolution kernel. The material coefficient of the slab, with the exterior material
coefficient fixed, essentially becomes the eigenvalue of an integral operator with
frequency and wave number as parameters. The approach is applicable to a wider
class of problems than that which we present in this Proceedings communication.
In future communication, we will present similar results for guided electromagnetic
modes (satisfying the full Maxwell equations), Helmholtz modes with more general
boundary conditions, and bound states in waveguides with obstacles.
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2. Pseudo-periodic fields and guided modes. The structure for which we
investigate guided modes is described by a domain Ω in R3 that is doubly periodic,
with period 2π in x and y, and bounded in z. Ω has a C2 boundary ∂Ω with
outward-pointing normal vector field n. The structure is penetrable, with real
positive material constants ε0 exterior to the structure and ε1 interior to it. We
consider harmonic solutions u(x, y, z)e−iωt of the linear wave equation, with nonzero
real frequency ω, that are continuous and have continuous gradients across ∂Ω. The
spatial factor u satisfies the Helmholtz equation:

∇2u + ε0ω2u = 0 in R3 \ Ω,
∇2u + ε1ω2u = 0 in Ω,

u and
∂u

∂n
are continuous on ∂Ω.

Because of the periodicity of the structure, we let u have the Bloch pseudo-periodic
form

u(x, y, z) = v(x, y, z)ei(κ1x+κ2y),

where v is 2π-periodic in x and y. The periodic factor v satisfies

(∇ + iκ)2v + ε0ω2v = 0 in R2 \ Ω,
(∇ + iκ)2v + ε1ω2v = 0 in Ω,

v and
∂v

∂n
are continuous on ∂Ω,

in which κ = 〈κ1,κ2, 0〉 and i =
√
−1 . We seek solutions of this problem that

decay to zero as |z| → ∞ .
The radiating periodic Green function for the operator (∇+ iκ)2 +ε0ω2 is G(r−

r′), where r = (x, y, z), r′ = (x′, y′, z′), and G satisfies

(∇ + iκ)2G + ε0ω
2G =

∞∑

k,#=−∞
δ(x + 2πk, y + 2π', z).

δ is the Dirac δ-distribution with unit strength at the origin. The expansion of G
in its Fourier harmonics is

G(x, y, z) = − 1
8π2

∞∑

n,m=−∞

1
γmn

eγmn|z|ei(mx+ny),

in which γ2
mn = −ε0ω2 + (m + κ1)2 + (n + κ2)2. It is assumed that γmn "= 0 for

all pairs (m,n). We take iγmn < 0 for the finite number of propagating Fourier
harmonics, so that they are outgoing as |z| → ∞, and γmn < 0 so that the rest of
the harmonics decay as |z| → ∞.

The adjoint of G as an integral kernel is the “antiradiating” analog of G, obtained
by taking iγmn > 0 for the propagating modes, so that they are incoming. We shall
make use of the self-adjoint pseudo-periodic Green function, which is the mean of
the radiating and antiradiating functions:

H(x, y, z) = − 1
8π2

∑

prop

1
µmn

sin µmn|z| ei(mx+ny) +

+
1

8π2

∑

decay

1
νmn

e−νmn|z| ei(mx+ny),
(2.1)
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in which µmn =
√

ε0ω2 − (m + κ1)2 − (n + κ2)2, νmn =
√

(m + κ1)2 + (n + κ2)2 − ε0ω2,
and

∑
prop and

∑
decay indicate sums over the finitely many Fourier harmonics that

are propagating in z and the rest of the harmonics, which are decaying in z.
We now establish an integral representation theorem that is a form of the

Lippmann-Schwinger equation [4]. Let S denote the three-dimensional strip

S = {(x, y, z) : −π ≤ x ≤ π, −π ≤ y ≤ π, −∞ < z < ∞}.

Theorem 2.1. Let ε = ε0 in the exterior to Ω and ε = ε1 in the interior.
1. Let v : R3 → C be a continuously differentiable function that satisfies

(a) (∇ + iκ)2v + εω2v = 0 in R3,
(b) v(x, y, z) is 2π-periodic in x and y,
(c) v(x, y, z) ∼

∑
prop

(
Amneiµmnz + Bmne−iµmnz

)
ei(mx+ny) (z → ∞),

v(x, y, z) ∼ −
∑

prop

(
Amneiµmnz + Bmne−iµmnz

)
ei(mx+ny) (z → −∞).

Then v satisfies the integral equation

v(x, y, z) = ω2(ε1 − ε0)
∫

Ω∩S
H(x−x′, y − y′, z − z′)v(x′, y′, z′) dV (x′, y′, z′), (2.2)

for all (x, y, z) ∈ R3 \ ∂Ω and the coefficients Amn and Bmn are given by

− 16π2iµmnAmn =

ω2(ε1 − ε0)
∫

Ω∩S
e−iµmnz′

e−i(mx′+ny′)v(x′, y′, z′) dV (x′, y′, z′),

(2.3)

16π2iµmnBmn =

ω2(ε1 − ε0)
∫

Ω∩S
eiµmnz′

e−i(mx′+ny′)v(x′, y′, z′) dV (x′, y′, z′),

(2.4)

2. A solution of (2.2) for (x, y, z) ∈ Ω extends to a solution of (a), (b), and (c).
The extension is the natural one, in which the same formula is applied for
(x, y, z) ∈ R3 \ Ω.

Proof. Condition (a) implies

(∇ + iκ)2v + ε0ω
2v = 0 in R3 \ Ω, (2.5)

(∇ + iκ)2v + ε0ω
2v = −ω2(ε1 − ε0)v in Ω. (2.6)

Define ṽ : R3 → C by

ṽ(x, y, z) = ω2(ε1 − ε0)
∫

Ω∩S
H(x − x′, y − y′, z − z′)v(x′, y′, z′) dV (x′, y′, z′).

(2.7)

Then ṽ also satisfies (2.5) and (2.6) and is periodic, for the factor ei(mx+ny) can be
extracted from the Green function. Furthermore, using the expression (2.1) for H,
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we obtain the asymptotics

ṽ(x, y, z) ∼
∑

prop

(
amneiµmnz + bmne−iµmnz

)
ei(mx+ny) (z → ∞) (2.8)

ṽ(x, y, z) ∼ −
∑

prop

(
amneiµmnz + bmne−iµmnz

)
ei(mx+ny) (z → −∞). (2.9)

in which

− 16π2iµmnamn =

ω2(ε1 − ε0)
∫

Ω∩S
e−iµmnz′

e−i(mx′+ny′)v(x′, y′, z′) dV (x′, y′, z′) (2.10)

16π2iµmnbmn =

ω2(ε1 − ε0)
∫

Ω∩S
eiµmnz′

e−i(mx′+ny′)v(x′, y′, z′) dV (x′, y′, z′) (2.11)

Now define w = v − ṽ. Then

(∇ + iκ)2w + ε0ω
2w = 0 in R3,

and w has the asymptotic behavior

w(x, y, z) ∼
∑

prop

(
cmneiµmnz + dmne−iµmnz

)
ei(mx+ny) (z → ∞) (2.12)

w(x, y, z) ∼ −
∑

prop

(
cmneiµmnz + dmne−iµmnz

)
ei(mx+ny) (z → −∞),(2.13)

where cmn = Amn − amn and dmn = Bmn − bmn. Since w satisfies a homogeneous
Helmholtz equation throughout S, the decomposition of w into Fourier harmonics
as z tends to ∞ or −∞ must be the same. It follows that w ≡ 0.

Part 2 of the Theorem is straightforward.

The following corollary give necessary and sufficient conditions for a pseudo-
periodic field to be a bound state and follows directly from the Theorem.

Corollary 2.2. Let ε = ε0 in the exterior to Ω and ε = ε1 in the interior.
A function v : R3 → C satisfies

(a) (∇ + iκ)2v + εω2v = 0 in R3,
(b) v(x, y, z) is 2π-periodic in x and y,
(c) v(x, y, z) → 0 as |z| → ∞,

if and only if
1. v is the natural extension to R3 of a solution to the following eigenvalue

problem on Ω ∩ S

v(x, y, z) = λ

∫

Ω∩S
H(x − x′, y − y′, z − z′)v(x′, y′, z′) dV (x′, y′, z′), (2.14)

where λ = ω2(ε1 − ε0);
2. ∫

Ω∩S
e−iµmnz′

e−i(mx′+ny′)v(x′, y′, z′) dV (x′, y′, z′) = 0, (2.15)
∫

Ω∩S
eiµmnz′

e−i(mx′+ny′)v(x′, y′, z′) dV (x′, y′, z′) = 0, (2.16)
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for all m,n such that ε0ω2 − (m + κ1)2 − (n + κ2)2 > 0.

Let 〈H〉 denote the convolution operator from L2(Ω ∩ S) into itself with integral
kernel H(x − x′, y − y′, z − z′):

〈H〉 : L2(Ω ∩ S) → L2(Ω ∩ S)

〈H〉 is compact and self-adjoint. In fact, H(r) (where r = (x, y, z)) differs from
r

|r|2 eiω
√

ε0|r|

by a regular function of r so that 〈H〉 is compact. H is conjugate-symmetric in r,
that is, H(r) = H(−r), making 〈H〉 self-adjoint. Therefore there exists a sequence
of real eigenvalues {λi}∞i=1 of the problem (2.14) with |λi| → ∞ and corresponding
eigenfunctions {vi} that form an orthonormal Hilbert-space basis for L2(Ω ∩ S).

Suppose first that the values of ε0, ω, κ1, and κ2 admit no propagating Fourier
harmonics, that is,

ε0ω
2 < (m + κ1)2 + (n + κ2)2 for all m,n ∈ Z.

This is the case discussed in the Introduction, in which (κ1,κ2,ω) lies outside of
the light cone (or “sound cone”) for the exterior material, assuming (κ1,κ2) lies in
the first Brillouin zone of the structure, that is, |κ1| < 1/2 and |κ2| < 1/2. Each
eigenvalue λi gives rise to an interior material coefficient

ε1i =
λi

ω2
+ ε0,

for which there exists a bound state at the given frequency ω traveling along the
periodic slab with Bloch wave vector (κ1,κ2). Indeed, the extension of the eigen-
functions to R3 automatically decay as |z| → ∞ because there are no propagating
harmonics; the second condition in the Corollary is trivially satisfied. The time
dependent fields are

|v(x, y, z)| cos(θ(x, y, z) + κ1x + κ2y − ωt),

where θ(x, y, z) = arg v(x, y, z).
Consider next the case in which κ1 = κ2 = 0 and ε0ω2 < 1. In this case, the

Green function has exactly one propagating harmonic,

e±iµ00z, µ00 = ω
√

ε0 .

The conditions that an eigenfunction vi of 〈H〉 (extended to R3) be a bound state
are given by (2) of the Corollary and reduce in this case to

∫

Ω∩S
e±iµ00zvi(x, y, z) dx dy dz = 0.

Under the assumption that Ω is symmetric about a plane parallel to the xz-plane
or the yz-plane, we have an infinite sequence of interior coefficients ε1 that support
bound states, as stated in the following theorem. As κ1 =κ2 =0, these are standing
waves.

Theorem 2.3.
1. If the parameters ω, κ1, κ2, and ε0 admit no propagating Fourier harmonics,

or
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2. if ε0ω2 < 1, and
either κ1 = 0 and Ω is symmetric about a plane parallel to the yz-plane,
or κ2 = 0 and Ω is symmetric about a plane parallel to the xz-plane,

then there exists a sequence of coefficients ε1i in Ω, such that ε1i → ∞, for which
the periodic structure admits a bound slab mode.

Proof. We have already proved the first case in the discussion above. For the
second, let Ω be symmetric about the yz-plane and κ1 = 0; symmetry about the
xz-plane and κ2 = 0 is handled similarly. Symmetry about planes parallel to these
two is handled by shifting the domain Ω so that the plane of symmetry is one of
the coordinate planes. Formula (2.1) shows that H(x, y, z) = H(−x, y, z) when
κ1 =0. By the symmetry of H and Ω about the yz-plane, 〈H〉 acts invariantly on
the closed subspace L2

odd(Ω ∩ S) consisting of those elements of L2(Ω ∩ S) that are
odd with respect to the x-variable. Therefore there exists an infinite sequence of
eigenvalues {λi} such that |λi| → ∞ and eigenfunctions vi (that are odd in x). It
follows from the symmetry of Ω and antisymmetry of the vi in x that

∫

Ω∩S
e±iµ00zvi(x, y, z) dx dy dz = 0,

thereby satisfying condition 2 of Corollary 2 that an eigenfunction be a bound state.
The sequence ε1i = λi/ω2 − ε0 is the sequence we seek.

3. Numerical Example. A class of acoustic and photonic bandgap structures
used commonly in experiments and applications consists of periodic arrays of ver-
tical rods. These are special cases of two-dimensional acoustic or photonic crystals.
High-contrast dielectric arrays tend to exhibit wide bandgaps that are complete,
that is, intervals of frequencies at which polarized electromagnetic waves at all
angles of propagation perpendicular to the rods are prohibited.

Fig. 1 shows (one period of) a numerical simulation of a bound mode on a slab
consisting of an array of penetrable rods, four rods thick, with a high contrast in
the material constant ε between the rods and the ambient space. The mode is non-
robust, and its frequency lies within a region for which very little energy of plane
wave sources is transmitted through the slab, indicating a bandgap for the corre-
sponding infinite array of rods. It is captured by a “surface defect” in the crystal,
produced by the enlargement of the first rod in each row of four comprising each
period of the slab. The mode is periodic (κ = 0), and represents those nonrobust
modes described in Theorem 2.3 that arise due to the symmetry of the structure.
The mode disappears from the bandgap altogether as κ is perturbed from zero.

The simulation was produced using a boundary-integral numerical code devel-
oped in [5] and [6]. Other simulations of slab modes in similar rod structures are
shown in [7].
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