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Abstract. We obtain a convergent power series expansion for the first branch of the
dispersion relation for subwavelength plasmonic crystals consisting of plasmonic rods with
frequency-dependent dielectric permittivity embedded in a host medium with unit permit-
tivity. The expansion parameter is η = 2πd/λ, where λ is a fixed wavelength and d is the
period of the crystal, and the plasma frequency scales inversely to d, making the dielectric
permittivity in the rods large and negative. The expressions for the series coefficients (a.k.a.,
dynamic correctors) and the radius of convergence in η are explicitly related to the solutions
of higher-order cell problems and the geometry of the rods. We obtain radii of convergence
on the order of 10−2 so that, within this range, we can compute the dispersion relation
and the fields and define dynamic effective properties in a mathematically rigorous manner.
Explicit error estimates show that a good approximation to the true dispersion relation is
obtained using only a few terms of the expansion. The convergence proof requires the use
of properties of the Catalan numbers to show that the series coefficients are exponentially
bounded in the H1 Sobolev norm.

Key words. Meta-material, Plasmonic crystal, Dispersion relation, Catalan numbers,
Series solutions

Contents

1 Introduction 2

2 Mathematical Formulation and Background 6

3 Power Series Expansions 8

4 Solutions of the Infinite System for Plasmonic Domains with Rectangular
Symmetry 10

5 Convergence Proof 12
5.1 The Catalan Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.2 The p̄m, pm and ξ2m Inequalities—Stability Estimates . . . . . . . . . . . . . 14
5.3 The Catalan Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.3.1 The Even Part of the Catalan Convolution . . . . . . . . . . . . . . 19
5.4 Proof of the Catalan Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.5 Proof of Theorem 5.2: Solution of the Eigenvalue Problem . . . . . . . . . . 23

1



6 Effective Properties, Error Bounds and the Dispersion Relation 25
6.1 The Effective Index of Refraction - Quasistatic Properties and Homogenization 25
6.2 Absolute Error Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.3 Relative Error Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

7 Appendix 30
7.1 Table of Values of A, ΩP̄ and J for Circular Inclusions . . . . . . . . . . . . 30
7.2 Explicit Expressions for Tensors . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.3 Bounds on p̄m, pm and |ξ2m−1|, m = 0, 1, 2, 3 . . . . . . . . . . . . . . . . . . 30
7.4 Computing the Constant A for Circular Inclusions . . . . . . . . . . . . . . 31
7.5 Graphs of ψ0 and ψ1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1 Introduction

Sub-wavelength plasmonic crystals are a class of meta-material that possesses a microstruc-
ture consisting of a periodic array of plasmonic inclusions embedded within a dielectric host.
The term “sub-wavelength” refers to the regime in which the period of the crystal is smaller
than the wavelength of the electromagnetic radiation traveling inside the crystal. Many re-
cent investigations into the behavior of meta-materials focus on phenomena associated with
the quasi-static limit in which the ratio of the period cell size to wavelength tends to zero.
Sub-wavelength micro-structured composites are known to exhibit effective electromagnetic
properties that are not available in naturally-occurring materials. Investigations over the
past decade have explored a variety of meta-materials, including arrays of micro-resonators,
wires, high-contrast dielectrics, and plasmonic components. The first two, especially in
combination, have been shown to give rise to unconventional bulk electromagnetic response
at microwave frequencies [28, 24, 23] and, more recently, at optical frequencies [25], includ-
ing negative effective dielectric permittivity and/or negative effective magnetic permittivity.
An essential ingredient in creating this response are local resonances contained within each
period due to extreme properties, such as high conductivity and capacitance in split-ring
resonators [24].

In the case of plasmonic crystals, the dielectric permittivity εp of the inclusions is fre-
quency dependent and negative for frequencies below the plasma frequency ωp,

εp(ω) = 1−
ω2

p

ω2
. (1.1)

Shvets and Urzhumov [26, 27] have investigated plasmonic crystals in which ωp is inversely
proportional to the period of the crystal and for which both inclusion and host materials
have unit magnetic permeability. They have proposed that simultaneous negative values
for both an effective ε and µ arise at sub-wavelength frequencies that are quite far from the
quasi-static limit, that is, η = 2πd/λ is not very small, where d is the period of the crystal
and λ the wavelength.

In this work, we present rigorous analysis of this type of plasmonic crystal by establishing
the existence of convergent power series in η for the electromagnetic fields and the associated
dispersion relation. The effective permittivity and permeability defined according to Pendry,
et. al., [24], are shown to be positive for all η within the radius of convergence R, and,
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r 0.1 0.2 0.3 0.4 0.45
Rm 1/60 1/68 1/88 1/96 1/340

Table 1: Lower bounds on the radii of convergence R for circular inclusions of radii rd.

r 0.1 0.2 0.3 0.4 0.45
λm 38µm 43µm 56µm 73µm 214µm
kM 1.6 · 105m−1 1.4 · 105m−1 1.1 · 106m−1 1.0 · 105m−1 3.0 · 104m−1

Table 2: Values of λm and kM for circular inclusions of radii rd when d = 10−7m.

in this regime, the extreme property of the plasma produces no resonance in the effective
permittivity or permeability.

The analysis shows that the radii of convergence of the power series R is at least Rm
which is not too small, as shown in Table 1, which contains values of Rm for circular
inclusions of various radii rd. For a fixed choice of cell size d, the lower bound on the
convergence radius corresponds to propagating waves with wavelengths greater than λm
and wave numbers less than kM respectively. Table 2 presents values of λm and kM when
d = 10−7m. The wavelengths λm are seen to lie in the infrared range. The plasma frequency
for d = 10−7m is ωp = 1015 sec−1.

The governing family of differential equations for the magnetic field is the Helmholtz
equation with a rapidly oscillating coefficient

−∇ · (A(x/d)∇u) =
ω2

c2
u , (1.2)

in which A is the matrix defined on the unit period of the crystal given by

A(y) =
{
εp(ω)−1I in the plasmonic phase,
ε−1
p̄ I in the host phase,

and I is the identity matrix. Since εp is negative in the regime of interest ωp > ω, this
coefficient is not coercive.

It is precisely the appearence of negative εp that allows us to obtain a convergent power-
series expansion of the electromagnetic field and the frequency ω for a fixed Bloch wavevec-

P

P̄

y1

y2

εP(ω)

εP̄

n

n

Figure 1: Unit cell with plasmonic inclusion.
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tor k = kκ̂ with |κ̂| = 1. The expansion of ω2 yields a dispersion relation

ω2 = ω2
η = W 2

η (k) = k2ω2
0(κ̂) + k4η2ω2

2(κ̂) + . . . , (1.3)

in which ω2
n is homogeneous of degree n + 2 in κ̂, see corollary (5.1). This, in turn, gives

rise to a convergent power series for an effective index of refraction neff defined through

n2
eff =

c2k2

ω2
. (1.4)

The effective property neff is defined for η > 0 and is not phenomenological in origin but
instead follows from first principles using the power series expansion. Interpreting the
first term of this series as the quasi-static index of refraction n2

qs, the remaining terms
then provide the dynamic correctors of all orders. In section 6, we define the effective
permeability and permittivity µeff and εeff and prove that neff and µeff are positive for η in
some interval (0, η0] and that an effective magnetic response emerges for the homogenized
composite, even though the component materials are non-magnetic (µP̄ = µP = 1). In fact,
µeff is less than unity and is very close to 1 for circular inclusions. The fact that both neff and
µeff are positive then implies that εeff is also positive. Thus, one has a solid basis on which
to assert that plasmonic crystals function as materials of positive index of refraction in
which both the effective permittivity and permeability are positive. The method developed
here is general and can be applied to other types of frequency-dependent dielectric media
including polaratonic crystals. From a physical perspective this work provides the first
explicit description of Bloch wave solutions associated with the first propagation band
inside nanoscale plasmonic crystals.

To emphasize the difference between effective properties defined for meta-material struc-
tures where the crystal period d is fixed and effective properties defined in the quasistatic
limit, i.e., k fixed and d → 0, we refer to the latter as quasistatic effective properties and
denote these with the subscript qs. The situation considered in this paper contrasts with
the case in which ε ≈ d−2 in the inclusion and is large and positive, investigated by Bou-
chitté and Felbacq [3]. In that case for η → 0, µqs(ω) has poles at Dirichlet eigenvalues of
the inclusion and therefore is negative in certain frequency intervals (see also [4, 12, 11]).
In fact, what allows us to prove convergence of the power series in the plasmonic case is
precisely the absence, due to negative εp, of these internal Dirichlet resonances.

We focus on harmonicH-polarized electromagnetic waves in a lossless composite medium
consisting of a periodic array of plasmonic rods that possess rectangular symmetry, that
is, that are invariant under rotation by 180◦ about the center of the unit cell, embedded
in a non-magnetic frequency-independent dielectric host material. Each period can contain
multiple parallel rods with different cross-sectional shapes. The regime of interest for this
investigation is that in which

1. the plasma frequency ωp is high,

2. the ratio of the cell width to the wavelength is small (η � 1).

A high plasma frequency ωp gives rise to a large and negative dielectric permittivity εp in
the plasmonic inclusions (see [27, 14]),

εp = 1−
ω2

p

ω2
. (1.5)

4



In the sub-wavelength regime, we take the point of view that the wave length λ, and
hence also the wave number k = 2π/λ, are fixed and that the expansion parameter η is
proportional to the period-cell length d:

η = kd = 2π
d

λ
. (1.6)

Following [27], the plasma frequency is related to the cell size by

ωp =
c

d
. (1.7)

This results in the relation
εp = 1− 1

ξ2η2
, (1.8)

in which ξ is a dimensionless frequency

ξ =
ω

ck
, (1.9)

that identifies the in-vacuo frequency ck with unity. Here the wave vector associated with
a Bloch wave is written as kκ̂ where κ̂ is a unit vector giving the direction of propagation.

For the regime of interest, εp is negative and large, thus the perturbation methods used
for describing Bloch waves in heterogeneous media developed in Odeh and Keller [21], Conca
[9], and Bensoussan Lions and Papanicolaou [2] cannot be applied. Our analysis instead
makes use of the fact that εp is negative and large for sub-wavelength crystals and develops
high-contrast power series solutions for the nonlinear eigenvalue problem that describes the
propagation of Bloch waves in plasmonic crystals. Our convergence analysis takes advantage
of the iterative structure appearing in the series expansion and is inspired by a technique
of Bruno [6] developed for series solutions to quasi-static field problems. We prove that
the series converges to a solution of the harmonic Maxwell system for ratios of cell size to
wavelength that are not too small. Indeed for typical values of the plasma frequency ωp

the analysis delivers convergent series solutions for nano scale plasmonic rods at infrared
wavelengths.

In section 6.3 we compute the first two terms of the dispersion relation for circular
inclusions [26, 27] and provide explicit bounds on the relative error comitted upon replacing
the full series with its first two terms. The error is seen to be less than 3% for values of
η up to 20% of the convergence radius, so that the two-term approximation provides a
numerically fast and accurate approximation to the dispersion relation.

The high contrast in ε gives rise to effective constants εeff and µeff. In the bulk relation

Beff = µeffHeff, (1.10)

Beff is the average over the the period cell (a flux), whereas Heff is the average of H3 over line
segments in the matrix parallel to the rods. Taking the ratio of Beff/Heff delivers an effective
magnetic permeability and one recovers magnetic activity from meta-materials made from
non-magnetic materials. This phenomenon was understood by Pendry, et. al., [24] and has
been made rigorous in the quasistatic limit through two-scale analysis in several cases. These
include the two-dimensional arrays of inclusions in which ε scales as d−2 [3, 4, 12, 11, 24],
two dimensional arrays of ring resonators whose surface conductivity scales as d−1 [16], as
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well as three-dimensional arrays of split-ring wire resonators in which the conductivity scales
as d−2 [5]. This “non-standard” homogenization has been understood for some decades in
problems of porous media and imperfect interface [8, 1, 19, 10, 31], and recently has given
rise to interesting effects in composites of both high contrast and high anisotropy [7, 30].

The two-scale analysis in these cases relies on the coercivity of the underlying partial dif-
ferential equations. The problem of plasmonic inclusions, however, is not coercive because ε
is negative in the plasma—but it is precisely this negative index that underlies the conver-
gence of the homogenization power series. As we shall see, the uniqueness of the solution of
the Dirichlet problem for 4u− u = 0 in the plasmonic inclusion gives exponential bounds
on the coefficients of the series, which allows us to prove that it converges to a solution of
the differential equation (1.2). This result implies homogenization in all orders, in other
words, by considering a finite number of terms in the series, one has an approximation of
the true solution, to any desired algebraic order of convergence. The formal power series of
correctors has been shown to be an asymptotic series in certain cases under the hypothesis
that the coefficient A is coercive [29, 15, 22].

2 Mathematical Formulation and Background

We introduce the nonlinear eigenvalue problem describing the propagation of Bloch waves
inside a plasmonic crystal and provide the context for the power series approach to its
solution.

For points x = (x1, x2) in the x1x2-plane, the d-periodic dielectric coefficient of the
crystal is denoted by ε(ω,x), where

ε(ω,x) =
{
εp(ω) for x ∈ P,
εp̄ for x ∈ P .

Both materials are assumed to have unit magnetic permeability, µp = µp̄ = 1.
We assume a Bloch-wave form of the field, where κ̂ = (κ1, κ2) is the unit vector along

the direction of the traveling wave and k = 2π/λ is the wave number for a wave of length λ.
The magnetic and electric fields are denoted by H = (H1,H2,H3) and E = (E1, E2, E3)
respectively. For H-polarized time-harmonic waves, the non-vanishing field components are

H3 = H3(x)eikκ̂·x−iωt (2.1)
E1 = E1(x)eikκ̂·x−iωt, (2.2)
E2 = E2(x)eikκ̂·x−iωt, (2.3)

in which the fieldsH3(x), E1(x), and E2(x) are continuous and d-periodic in both x1 and x2.
The Maxwell equations take the form (1.2), in which substitution of u = H3(x)eikκ̂·x−iωt

gives

−(∇+ ikκ̂)εp(ω)−1(∇+ ikκ̂)H3 =
ω2

c2
H3 in the rods, (2.4)

−(∇+ ikκ̂)ε−1
p (∇+ ikκ̂)H3 =

ω2

c2
H3 in the host material, (2.5)

where H3 satisfies the transmission conditions on the interface between the rods and host
material given by

n · (εp(ω)−1(∇+ ikκ̂)H3)|p = n · (ε−1
p (∇+ ikκ̂)H3)|p . (2.6)
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Here, the subscripts indicate the side of the interface where the quantities are evaluated
and n is the unit normal vector to the interface pointing into the host material. We denote
the unit vector pointing along the x3 direction by e3, and the electric field component of
the wave is given by

E =
−ic

ωε(ω,x)
e3 ×∇H3. (2.7)

For each value of k and κ̂ equations (2.4, 2.5, 2.6) provide a nonlinear eigenvalue problem
for the solution of H3 and ω. One of the main results of this work is to show that this
problem is well posed by explicitly constructing solutions using power series expansions. In
order to develop the appropriate expansions we rewrite (2.4, 2.5, 2.6) in terms of η, kκ̂,
ξ, and a dimensionless variable y in R2 that normalizes a period cell to the unit square
Q = [0, 1]2,

x = yd = y
η

k
. (2.8)

With a slight abuse of notation we continue to denote the part of the unit square occupied
by plasmonic material by P and the part occupied by host material by P . We define the
Q-periodic function

h(y) = H3(dy) (2.9)

and set

ε(ξ,y) =
{
εp(ckξ) for y ∈ P,
εp̄ for y ∈ P . (2.10)

to arrive at the nonlinear eigenvalue problem that requires the pair h(y) and ξ2 to be a
solution of our master system −(∇y + iηκ̂)ε(ξ,y)−1h(y)(∇y + iηκ̂) = η2ξ2h(y) for y ∈ P ∪ P ,

n · εp(ξ)−1(∇y + iηκ̂)h(y)|p = n · ε−1
p̄ (∇y + iηκ̂)h(y)|P̄ for y ∈ ∂P.

(2.11)

The solution of this eigenvalue problem determines the magnetic field h(y) and normalized
frequency ξ. We prove in Theorem 5.2 that this eigenvalue problem can be solved by
constructing explicit convergent power series solutions. Here the power series that delivers
h(y) is shown to converge with respect to the norm on the standard Sobolev space H1(Q).
The power series expansion for ξ is shown to converge and delivers the dispersion relation
describing the first pass band.

The power series method introduced in this paper is developed in the next sections.
The development is as follows. In section 3 the power series expansion is introduced and
the associated boundary-value problems necessary for determining each term in the series
are obtained. The boundary value problems are given by a strongly coupled infinite system
of linear partial differential equations. The existence and uniqueness of the solution to
this infinite system is proved under fairly general hypotheses in section 4. Because the
system is coupled through convolution products, the convergence analysis is delicate. The
convolutions are handled through estimates involving sequences of Catalan numbers whose
convolution products determine the next element of the sequence. The Catalan numbers
and their relevant properties are discussed and used to derive bounds on the Sobolev norm
of each term of the series expansion in section 5. These bounds are then used to establish
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the radius of convergence for the power series representations of the field and frequency (the
dispersion relation), which solve the nonlinear eigenvalue problem (2.11). Section 6 deals
with the computation of error bounds for finite-term approximations of the magnetic field
and the dispersion relation.

3 Power Series Expansions

Let us take η to be the expansion parameter for the field h(y),

h(y) = hη(y) = h0(y) + ηh1(y) + η2h2(y) + . . . , (3.1)

in which all coefficients hm are periodic with period cell Q. For a fixed Bloch wavevector
kκ̂, the nonlinear eigenvalue problem (2.11) imposes a restriction on ξ2, and we write

ξ2 = ξ2η = ξ20 + ηξ21 + η2ξ22 + . . . . (3.2)

In our calculations, we take εp̄ = 1. The nonlinear eigenvalue problem (2.11) is rewritten as
(∆ + 2iηκ̂ ·∇ − η2)hη(y) = −η2ξ2ηhη(y) for y ∈ P̄ ,

(∆ + 2iηκ̂ ·∇ − η2)hη(y) = (1− η2ξ2η)hη(y) for y ∈ P,

(η2ξ2η − 1)(∇+ iηκ̂)hη(y)|P̄ · n = η2ξ2η(∇+ iηκ̂)hη(y)|p · n for y ∈ ∂P ,

(3.3)

and, identifying coefficients of the right- and left-hand sides yields the equations
∆hm + 2iκ̂ ·∇hm−1 − hm−2 = −ξ2`hm−2−` in P̄ ,

∆hm + 2iκ̂ ·∇hm−1 − hm−2 = hm − ξ2`hm−2−` in P ,

(∇(ξ2`hm−2−`)−∇hm − ihm−1κ̂)|P̄ · n = ∇(ξ2`hm−2−`)|p · n on ∂P ,

(3.4)

for m = 0, 1, 2, . . . , in which hm ≡ 0 and ξ2m = 0 for m < 0 and the terms involving the
subscript ` are convolutions written according to the following summation conventions,

a`bn−` =
n∑
`=0

a`bn−` , a`b
(`<`2)
n−` =

`2−1∑
`=0

a`bn−`

a`b
(`1<`<`2)
n−` =

`2−1∑
`=`1+1

a`bn−` , a`b
(` even)
n−` =

[n/2]∑
`=0

a2`bn−2` .

Now, h0 is necessarily equal to a constant h̄0 in P̄ and for y in P we write h0(y) =
h̄0. It is convenient to express the equations (3.4) in terms of the functions ψm defined
through hm(y) = h̄0i

mψm(y). Arranging terms we obtain an infinite system which the
sequences {ψm(y)}∞m=0 and {ξ2m}∞m=0 must satisfy. The system is written in terms of a
Poisson equation in P̄ with Neumann boundary data and a Helmholtz equation in P with
Dirichlet boundary data. The system is given by ∆ψm = Gm in P̄ ,

∇ψm|P̄ · n = Fm on ∂P ,
(3.5)
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and  ∆ψm = ψm +Gm in P ,

ψm|p = ψm|P̄ on ∂P ,
(3.6)

where  Gm = (−i)`ξ2`ψm−2−` − 2iκ̂ ·∇ψm−1 − ψm−2

Fm = ∇((−i)`ξ2`ψm−2−`)|p · n− (∇((−i)`ξ2`ψm−2−`)− ψm−1κ̂)|P̄ · n,
(3.7)

where ψm|P̄ and ψm|p indicate the trace of ψm on the P̄ and P sides of the interface ∂P
separating the two materials. The Neumann boundary value problem (3.5) is subject to the
standard solvability condition given by

〈Gm〉P̄ + 〈Fm〉∂P = 0. (3.8)

Here the area integral over the domain P is denoted by 〈·〉P , the area integral over P is
denoted by 〈·〉P , and the line integral over the interface ∂P separating the two materials
is denoted by 〈·〉∂P . It is easily seen that the infinite system is highly coupled through the
convolution terms appearing in (3.5), (3.6), and (3.7).

The iterative algorithm for solving the system is as follows. First note from the definition
of ψ0 it follows that that ψ0 = 1 for y in P . The function ψ0 is determined inside P by
solving (3.6) with Dirichlet boundary data ψ0|p = ψ0|P̄ = 1 on ∂P . Then ψ1 on P is the
solution of (3.5) with Neumann data ∇ψ1|P̄ · n = −ψ0|P κ̂ · n on ∂P . The process then
continues with the boundary values on ∂P of ψm in P̄ providing the Dirichlet data for ψm
in P which, in turn, provides the Neumann data for ψm+1 in P̄ , up to an additive constant.
The term ξ2m−2 is determined by the consistency condition (3.8) and an inductive argument
can be used to show that it is a monomial of degree m in κ̂. The equations satisfied by
ψ0, . . . , ψ4 inside P̄ , P , and ∂P are listed in Table 3 below.

P̄ P ∂P

ψ0 = 1 ∆ψ0 = ψ0 ∇ψ0|p̄ · n = 0

∆ψ1 + 2κ̂ ·∇ψ0 = 0 ∆ψ1 + 2κ̂ ·∇ψ0 = ψ1 (∇ψ1 + ψ0κ̂)|p̄ · n = 0

∆ψ2 + 2κ̂ ·∇ψ1 + ψ0 = ξ20ψ0 ∆ψ2 + 2κ̂ ·∇ψ1 + ψ0 = ψ2 + ξ20ψ0
(∇(ξ20ψ0) +∇ψ2 + ψ1κ̂)|p̄ · n

= ∇(ξ20ψ0)|p · n

∆ψ3 + 2κ̂ ·∇ψ2 + ψ1 = ξ20ψ1 ∆ψ3 + 2κ̂ ·∇ψ2 + ψ1 = ψ3 + ξ20ψ1
(∇(ξ20ψ1) +∇ψ3 + ψ2κ̂)|p̄ · n

= ∇(ξ20ψ1)|p · n

∆ψ4 + 2κ̂ ·∇ψ3 + ψ2 = ξ20ψ2 − ξ22ψ0
∆ψ4 + 2κ̂ ·∇ψ3 + ψ2

= (ξ20ψ2 − ξ22ψ0) + ψ4

(∇(ξ20ψ2 − ξ22ψ0) +∇ψ4 + ψ3κ̂)|p̄ · n
= ∇(ξ20ψ2 − ξ22ψ0)|p · n

Table 3: Table of PDEs for ψm from the expansion in η.

Note in the table that ξ2odd = 0 (meaning ξ2` = 0 for ` = 1, 3, 5, . . . ). In the next
section we identify a large class of shapes for the plasmonic rod cross sections for which
the sequences {ψm(y)}∞m=0 and {ξ2m}∞m=0 satisfy the infinite system (3.5, 3.6, 3.7, 3.8) and
〈ψm〉P = 0, m = 1, 2, . . .. The mean zero property of ψm on P provides a tractable scenario
for proving the convergence of the resulting power series. This topic is discussed further in
section 4.

9



In what follows we will make use of the equivalent weak form of the infinite system.
To introduce the weak form we introduce the space of complex valued square integrable
functions with square integrable derivatives H1(Q). For u and v in H1(Q) the inner product
is defined by

(u, v)H1(Q) =
(∫

Q
uv dy +

∫
Q
∇u · ∇v dy

)
, (3.9)

and the norm is given by ‖v‖H1(Q) = (v, v)1/2
H1(Q)

. The H1 inner products and norms over

P and P are defined similarly.
The weak form of the infinite system is given in terms of the space H1(Q)per of functions

in H1(Q) that take the same boundary values on opposite faces of Q. The weak form of
the system (3.5, 3.6, 3.7, 3.8) is given by

〈[∇σ′m−2 + κ̂σ′m−3] · ∇v̄ − [κ̂ ·∇σ′m−3 − σ′m−2 − σ′′m−4 + σ′m−4]v̄〉P +
+〈[∇σ′m−2 + κ̂σ′m−3] · ∇v̄ − [κ̂ ·∇σ′m−3 − σ′m−2 − σ′′m−4 + σm−4]v̄〉P̄ + (3.10)

+〈[∇ψm + κ̂ψm−1] · ∇v̄ − [κ̂ ·∇ψm−1 + ψm−2]v̄〉P̄ = 0,

for all v ∈ H1
per(Q), where σ′m = (−i)`ξ2`ψm−` and σ′′m = (−i)`ψm−`ξ2`−jξ2j . The equiva-

lence between (3.5, 3.6, 3.7) and the weak form follows from integration by parts and the
solvability condition (3.8) follows from (3.10) on choosing the test function v = 1 in (3.10).

4 Solutions of the Infinite System for Plasmonic Domains
with Rectangular Symmetry

The goal here is to identify solutions of the infinite system for which one can prove con-
vergence of the associated power series with a minimum of effort. Looking ahead we note
that the convergence proof is expedited when one can apply the Poincare inequality to the
restriction of ψm on P for m greater than some fixed value. To this end we seek a solution
({ψm(y)}∞m=0, {ξ2m}∞m=0) such that for m ≥ 1 one has 〈ψm〉P = 0 and the sequences satisfy
satisfy (3.5, 3.6, 3.7, 3.8) or equivalently satisfy (3.10). We show that we can find such so-
lutions for the class of plasmonic domains P with rectangular symmetry. Here we suppose
that the unit period cell is centered at the origin and the class of rectangular symmetric do-
mains is given by the set of all shapes invariant under 180o rotations about the origin. This
class includes simply connected domains such as rectangles and ellipses as well as multiply
connected domains. For these geometries and for each m = 1, 2, 3 . . . it is demonstrated
that one can add an arbitrary constant to the restriction of the function ψm on P with out
affecting the solvability condition (3.8).

Under the assumption of rectangular symmetry we will show that there exists an infinite
sequence of functions {ψm}∞m=1 in the space of H1(Q)-periodic real-valued functions with
zero average in P̄ satisfying (3.10). For brevity, we denote this space by H1

∗ (Q).
We now record the symmetries necessarily satisfied by any solution ψm ∈ H1

∗ (Q) to (3.5,
3.6, 3.7) for plasmonic domains with rectangular symmetry. We denote the dependence of
ψm on the unit vector κ̂ by writing ψκ̂m, so that we have

(i) ψ−κ̂m (y) = (−1)mψκ̂m(y), ∀y ∈ Q (homogeneity in κ̂)
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(ii) ψ−κ̂m (−y) = ψκ̂m(y), ∀y ∈ Q (rectangular symmetry).

Statement (i) is true for inclusions of arbitrary shape, while statement (ii) is true only for
inclusions with rectangular symmetry. Taking sums and differences of (i) and (ii) gives

ψκ̂m(−y) = (−1)mψκ̂m(y).

Thus the function ψκ̂m is even or odd in Q according as the index m is even or odd. From its
definition, ψ0 ≡ 1 in P and trivially satisfies the solvability condition (3.8). The solvability
of ψm when m ≥ 1 is proved by induction on m using the weak form (3.10). We have the
following theorem.

Theorem 4.1. For each κ̂, there exists a sequence of functions {ψm}∞m=1, ψm ∈ H1
∗ (Q),

and a sequence of real numbers {ξ2m}, with ξ2odd = 0, solving the weak form (3.10) for each
integer m.

Proof. The proof is divided into the base case (m = 1 and m = 2) and the inductive step.
Base case:

The solvability for ψ1 and ψ2 can be established without the need to restrict to rect-
angular symmetric inclusions. This restriction will be necessary only in the inductive step.
Setting m = 1 and v ≡ 1 in (3.10), we see that the left-hand side of (3.10) vanishes. This
establishes the solvability for ψ1. If we then take 〈ψ1〉P̄ = 0, we have a solution ψ1 ∈ H1

∗ (Q).
Setting m = 2 and v ≡ 1 in (3.10), we obtain

〈σ′0〉P + 〈σ′0〉P̄ − 〈κ̂ · ∇ψ1 + ψ0〉P̄ = 0.

Since 〈ψ0〉Q > 0 (see Appendix) and 〈σ′0〉P + 〈σ′0〉P̄ = ξ20〈ψ0〉Q, this is one equation in one
unknown ξ20 . Solving for ξ20 then gives

ξ20 =
〈κ̂ · ∇ψ1 + ψ0〉P̄

〈ψ0〉Q
. (4.1)

Choosing this value for ξ20 and also taking 〈ψ2〉P̄ = 0, we have a solution ψ2 ∈ H1
∗ (Q).

Inductive step:
Let 2n be an even positive integer and assume that (3.10) has solutions ψm ∈ H1

∗ (Q)
for m = 1, 2, ..., 2n, with ξ2m−2 ∈ R and ξ2odd = 0. Then (3.10) has solutions ψ2n+1, ψ2n+2 ∈
H1
∗ (Q) for m = 2n+ 1, 2n+ 2 with ξ22n−1 = 0 and ξ22n ∈ R.

The solvability condition for ψ2n+1 is obtained by setting v = 1 and m = 2n+ 1 in the
weak form, namely

〈[κ̂ ·∇σ′2n−2 − σ′2n−1 − σ′′2n−3 + σ′2n−3]〉P +
+〈[κ̂ ·∇σ′2n−2 − σ′2n−1 − σ′′2n−3 + σ′2n−3]〉P̄ +

+〈[κ̂ ·∇ψ2n + ψ2n−1]〉P̄ = 0.

The hypothesis ξ2odd = 0, odd ≤ 2n − 2, will imply that the convolutions σm, m ≤ 2n − 2,
have the same even/odd property as the functions ψm. Indeed, wrting out σ2n−3, we have

σ′2n−3 = (−1)`ξ2`ψ2n−3−`

= (−1)`ξ2`ψ
(` even)
2n−3−`.
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Since 2n− 3− ` is odd when ` is even, it follows that σ′2n−3 is a linear combination of odd
functions and is, therefore, an odd function. The same reasoning applies to all the other
convolutions of index ≤ 2n−2. Moreover, κ̂·∇σ′2n−2 is an odd function, since σ′2n−2 is even.
Thus, all integrals in the consistency condition above vanish (for the integrals in P̄ we can
also use the fact that all functions belong to H1

∗ (Q)), except that

〈σ′2n−1〉P + 〈σ′2n−1〉P̄ = (−i)2n−1ξ22n−1〈ψ0〉Q.

Since 〈ψ0〉Q > 0 (see Appendix), the solvability condition for ψ2n+1 is simply ξ22n−1 = 0.
We thus take ξ22n−1 = 0 to establish the existence of ψ2n+1 = 0. Moreover, since ψm and
ξm−2 are real by the induction hypothesis, 0 ≤ m ≤ 2n, it follows that ψ2n+1 is real-valued.
Thus, taking 〈ψ2n+1〉P̄ = 0, we have a solution ψ2n+1 ∈ H1

∗ (Q). Also, ψ2n+1 is an odd
function since its index is odd. We now proceed to the solvability of ψ2n+2, namely

〈[κ̂ ·∇σ′2n−1 − σ′2n−2 − σ′′2n−2 + σ′2n]〉P +
+〈[κ̂ ·∇σ′2n−1 − σ′2n−2 − σ′′2n−2 + σ′2n]〉P̄ +

+〈[κ̂ ·∇ψ2n+1 + ψ2n]〉P̄ = 0.

All terms in the above equation are real numbers, since we assumed ψm and ξ2m−2 real for
0 ≤ m ≤ 2n, with ξ2odd = 0, and we just took ξ22n−1 = 0 and ψ2n+1 is real-valued. Thus,
this equation contains the only one undetermined term (−i)2nξ22n〈ψ0〉Q. Thus, we have one
real equation with one real variable, so that taking ξ22n to be such as to solve this equation
and also taking 〈ψ2n+2〉P̄ = 0, we complete the proof of the inductive step.

5 Convergence Proof

In this section we show that the power series
∑∞

m=0 p̄mη
m,
∑∞

m=0 pmη
m and

∑∞
m=0 ξ

2
mη

m,
where p̄m = ‖ψm‖H1(P̄ ) and pm = ‖ψm‖H1(P ), converge and provide lower bounds on their
radius of convergence. This will then be used to show that the pair hη =

∑∞
m=0 h0i

mψmη
m

and ξ2η =
∑∞

m=0 ξ
2
mη

m is a solution to the non-linear eigenvalue problem (2.11). In subsec-
tion 5.1, we present the Catalan Bound theorem, which is used to provide a lower bound
on the radius of convergence of the power series. In subsection 5.2, we derive inequalities
which bound p̄m, pm and ξ2m in terms of lower index terms. In subsection 5.3, we present the
properties of the Catalan numbers relevant for bounding convolutions of the kind appearing
in (3.5) and (3.6). In subsection 5.4, we use an inductive argument on the inequalities of
subsection 5.2 to prove the Catalan Bound. Finally, in subsection 5.2, we give a proof that
the pair hη and ξ2η is a solution to the eigenvalue problem (2.11).

5.1 The Catalan Bound

The following theorem is the main result of this paper

Theorem 5.1. (Catalan Bound)
For every integer m, we have that

p̄m, pm, |ξ2m| ≤ βCmJ
m (5.1)

in which Cm is the mth Catalan number, β = max{p̄0, p0, |ξ20 |} and J = max{J1, J2}, where
the numbers J1 and J2 are determined as follows: J1 is the smallest value of J such that

12



(5.1) holds for m ≤ 4 and J2 is the smallest value of J for which the following polynomials
Q∗, R∗, S∗ in the variable J−1 are all less than unity

Q∗ = ΩP̄ [ A{2E(4)βJ−21/3 + E(4)βJ−35/42 + E(4)βJ−41/21 + E2(4)β2J−45/42}+
+ 2E(4)βJ−21/3 + 2E(4)βJ−35/42 + E(4)βJ−41/21 + E2(4)β2J−45/42 + J−25/42

+ 2ΩP̄ (A{2E(4)βJ−35/42 + 2E(4)βJ−41/21 + E(4)βJ−51/42 + E2(4)β2J−51/21}+
+ 2E(4)βJ−35/42 + 2E(4)βJ−41/21 + E(4)βJ−51/42 +

+ E2(4)β2J−51/21 + J−31/21 + 2J−25/42 )],

R∗ = AQ∗ + E(4)βJ−21/3 + 2J−11/3 + J−25/42,

S∗ = 4J{
√
θP̄Q

∗ +
√
θP (E(4)βJ−2(1/3) + E2(4)β2J−3(1/3) + E(4)βJ−3(5/42))

+
√
θP̄ (E(4)βJ−2(1/3) + E(4)

√
θP̄βJ

−3(5/42) +
√
θPJ

−3(1/21))}+

+
√
θP {( |ξ20 |R∗ + |ξ22 |J−2(1/7) + p2J

−2(1/7) ) + (0.7976β)}.

The constants A, ΩP̄ , β,
√
θP̄ ,

√
θP , |ξ20 |, |ξ22 | and p2 are determined by the particular

choice of inclusion, while E(4) = 16C2/C5 ≤ 0.7619.

All bounds obtained here are expressed in terms of the Catalan numbers, area fractions
and geometric parameters that appear in the Poincare inequality and in an extension op-
erator inequality. We start by listing these parameters and give the background for their
description. It is known [20] that any H1(P ) function φ can be extended into P as an
H1(Q) function E(φ) such that E(φ) = φ for y in P and

‖E(φ)‖H1(P ) ≤ A‖φ‖H1(P ) (5.2)

where A is a nonnegative constant and is independent of φ depending only on P . For
general shapes A can be calculated via numerical solution of a suitable eigenvalue prob-
lem. Constants of this type appear[6] for high contrast expansions of the DC fields inside
frequency independent dielectric media. The second constant is the Poincare constant D2

P

given by the reciprocal of the first nonzero Neumann eigenvalue of P . In what follows we
write ΩP = 1 + D2

P
. The last two geometric constants appearing in the bounds are the

volume fractions of P and P̄ given by θP and θP̄ , respectively.
Using that Cm ≤ 4m (see section 5.3), theorem (5.1) shows that

∑
p̄mη

m,
∑
pmη

m and∑
ξ2mη

m are convergent for η ≤ 1/4J , so that one may prove the following theorem

Theorem 5.2. (Solution of the Eigenvalue Problem) Let R = 1/4J , where J is the number
prescribed by theorem (5.1). Then

∑∞
m=0 ξ

2
mη

m converges as a series of real numbers and∑∞
m=0 hmη

m converges in the H1(Q) Sobolev norm for η ≤ R and the positive number

ξ = ξη =

( ∞∑
m=0

ξ2mη
m

)1/2

and the function

h = hη =
∞∑
m=0

hmη
m ∈ H1

∗ (Q)

satisfy the eigenvalue problem given by the master system (2.11) (or by (1.2)).
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The expansion for the dispersion relation follows immediately from Theorem 5.2 on
writing ω2

m(k) = c2k2ξ2m and noting that ξ2m = 0 for odd values of m and that ξ20 is given
by (7.1).

Corollary 5.1. (The dispersion relation)

ω2 = W 2
η (k) =

∞∑
m=0

η2mω2
2m(k) (5.3)

and ω2
0 is given by

ω2
0 = ω2

qs(k) =
c2k2

n2
qs

(5.4)

where the quasi static index of refraction is defined by

n−2
qs =

〈κ̂ · ∇ψ1 + ψ0〉P
〈ψ0〉Q

. (5.5)

We discuss the notions of effective properties and quasistatic properties in section 6.

5.2 The p̄m, pm and ξ2
m Inequalities—Stability Estimates

We now derive the inequalities which bound p̄m, pm and ξ2m in terms of lower index terms.
These inequalities follow from stability estimates for (3.5, 3.6, 3.7).

Theorem 5.3. Let m ≥ 0 be an integer. Then

p̄m ≤ ΩP̄ [A{2q ′m−2 + 2q ′m−3 + q ′m−4 + q ′′m−4}+ 2q̄ ′m−2 + 2q̄ ′m−3 + q̄ ′m−4

+q̄ ′′m−4 + p̄m−2 + 2 ΩP̄ (A{2q ′m−3 + 2q ′m−4 + q ′m−5 + q ′′m−5}
+2q̄ ′m−3 + 2q̄ ′m−4 + q̄ ′m−5 + q ′′m−5 + p̄m−3 + 2p̄m−2)]

pm ≤ Ap̄m + q ′m−2 + 2pm−1 + pm−2 (5.6)

|ξ2m−1| ≤ 〈ψ0〉−1
Q {
√
θP q

′∗
m−1 +

√
θP̄ p̄m +

+
√
θP (q ′m−2 + q ′′m−3 + q ′m−3) +

√
θP̄ (q̄ ′m−2 + q̄ ′′m−3 + q̄ ′m−3)},

where the p̄m inequality holds for m ≥ 2 only.

Here we have introduced the following notation for the convolution terms

q ′m = |ξ2` |pm−`
q ′′m = pm−`|ξ2`−j ||ξ2j |
q̄ ′m = |ξ2` |p̄m−`
q̄ ′′m = p̄m−`|ξ2`−j ||ξ2j |

q ′∗m−1 = |ξ2` |p
(`<m−1)
m−1−` .
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Proof. We start by proving the pm inequality. Recalling that (3.6) is satisfied by ψm in P
gives {

∆ψm = ψm +Gm, in P
ψm|p = ψm|P̄ , on ∂P

where Gm = (−i)`ξ2`ψm−2−` − 2κ̂ ·∇ψm−1 − ψm−2. Write the orthogonal decomposition
ψm = um + vm, where {

∆um = um, in P
um = ψm, on ∂P

(5.7)

and {
∆vm = vm +Gm, in P
vm = 0, on ∂P .

We then have by the triangle inequality that

‖ψm‖H1(P ) ≤ ‖um‖H1(P ) + ‖vm‖H1(P ). (5.8)

The term ‖um‖H1(P ) is bounded using (5.2) and

‖um‖H1(P ) ≤ ‖E(ψm)‖H1(P ) (5.9)

to obtain
‖um‖H1(P ) ≤ A‖ψm‖H1(P̄ ). (5.10)

Here (5.9) follows from the fact that the solution of (5.7) minimizes the H1(P ) norm over
all functions with the same trace on ∂P . The term ‖vm‖H1(P ) can be bounded using a
direct integration by parts on the BVP for vm

‖vm‖H1(P ) ≤ ‖Gm‖L2(P ). (5.11)

Now,

‖Gm‖L2(P ) = ‖(−i)`ξ2`ψm−2−` − 2κ̂ ·∇ψm−1 − ψm−2‖L2(P )

≤ |ξ2` |‖ψm−2−`‖L2(P ) + 2|κ̂|‖|∇ψm−2|2‖L2(P ) + ‖ψ2
m−2‖L2(P )

≤ |ξ2` |pm−2−` + 2pm−1 + pm−2,

where pm = ‖ψm‖H1(P ). Using (5.10) and (5.11) in (5.8) gives

pm ≤ Ap̄m + pm−2−`|ξ2` |+ 2pm−1 + pm−2,

or
pm ≤ Ap̄m + q ′m−2 + 2pm−1 + pm−2. (5.12)

and the pm inequality is established. We now prove the p̄m inequality. In the weak form
(3.10), set v = ψm in P̄ and v = um in P to obtain

〈[∇σ′m−2 + κ̂σ′m−3] · ∇ψm − [κ̂ ·∇σ′m−3 − σ′m−2 − σ′′m−4 + σ′m−4]ψm〉P̄ +
+〈[∇σ′m−2 + κ̂σ′m−3] · ∇um − [κ̂ ·∇σ′m−3 − σ′m−2 − σ′′m−4 + σ′m−4]um〉P +

+〈[∇ψm + κ̂ψm−1] · ∇ψm − [κ̂ ·∇ψm−1 + ψm−2]ψm〉P̄ = 0,
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We now use the Cauchy-Schwarz inequality on the product of integrals appearing in each
individual term. For the convolutions, we obtain

|〈∇σ′m−2 ·∇um〉P | = |〈∇((−i)`ψm−2−`ξ
2
` )·∇um〉P |

= |(−i)`ξ2` 〈∇ψm−2−` ·∇um〉P |
≤ |ξ2` |p̄m−2−`Ap̄m,

= q ′m−2Ap̄m

where we used that ‖um‖H1(P ) ≤ Ap̄m. For the double-convolutions, we obtain

|〈σ′′m−4um〉P | = |〈((−i)`ψm−2−`ξ
2
`−jξ

2
j )um〉P |

= |(−i)`ξ2`−jξ2j 〈∇ψm−2−` ·∇um〉P |
≤ |ξ2`−j ||ξ2j |p̄m−2−`Ap̄m

= q ′′m−2Ap̄m

Proceeding similarly with the other terms, we obtain

〈∇ψm ·∇ψm〉P̄ ≤ p̄m(A{2q ′m−2 + 2q ′m−3 + q ′m−4 + q ′′m−4}+
+2q̄ ′m−2 + 2q̄ ′m−3 + q̄ ′m−4 + q̄ ′′m−4 + 2p̄m−1 + p̄m−2). (5.13)

Since the functions ψm have zero average in P , we have the Poincare inequality

〈ψ2
m〉P̄ ≤ D2

P
〈∇ψm ·∇ψm〉P̄ , (5.14)

where the constant DP can be computed from the Rayleigh quotient characterization of the
first positive eigenvalue for the free membrane problem in P . A simple computation using
(5.14) then gives

p̄2
m ≤ ΩP̄ 〈∇ψm ·∇ψm〉P̄ , (5.15)

where ΩP̄ = D2
P̄

+ 1. Using this inequality (5.13) gives:

p̄m ≤ ΩP̄ (A{2q ′m−2 + 2q ′m−3 + q ′m−4 + q ′′m−4}+
+2q̄ ′m−2 + 2q̄ ′m−3 + q̄ ′m−4 + q̄ ′′m−4 + p̄m−2 + 2p̄m−1). (5.16)

It will turn out to be to our advantage to apply (5.16) to the last term 2p̄m−1 in (5.16) so
as to replace it with

p̄m−1 ≤ ΩP̄ (A{2q ′m−3 + 2q ′m−4 + q ′m−5 + q ′′m−5}+
+q̄ ′m−3 + 2q ′m−4 + q̄ ′m−5 + q̄ ′′m−5 + p̄m−3 + 2p̄m−2). (5.17)

Using (5.17) in (5.16) yields the p̄m inequality in (5.6), valid for m ≥ 2 (for m = 1, use
(5.16)):

Last we establish the ξ2m−1 inequality. Setting v = 1 in the weak form (3.10) we obtain

〈κ̂ ·∇σ′m−3 − σ′m−2 − σ′′m−4 + σ′m−4〉P +
+〈κ̂ ·∇σ′m−3 − σ′m−2 − σ′′m−4 + σ′m−4〉P̄ +

+〈κ̂ ·∇ψm−1 + ψm−2〉P̄ = 0. (5.18)
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(recall that for m odd, each term on the left-hand side of the above equation vanishes
individually). Solving for ξ2m−2 we then obtain

−(−i)m−2ξ2m−2〈ψ0〉Q = 〈κ̂ ·∇σ′m−3 − σ′ ∗m−2 − σ′′m−4 + σ′m−4〉P +
+〈κ̂ ·∇σ′m−3 − σ′ ∗m−2 − σ′′m−4 + σ′m−4〉P̄ + (5.19)

+〈κ̂ ·∇ψm−1 + ψm−2〉P̄ .

We shall be using this equality for m ≥ 5 only, so that 〈σ′ ∗m−2〉P̄ = 0 and 〈ψm−2〉P̄ = 0.
Moreover, using the inequality

〈|ψm|〉P ≤
√
θP 〈|ψm|2〉P (5.20)

and similarly for P̄ , where θP and θP̄ denote the volume fractions of the regions P and P̄
(θp+θp̄ = 1), we have that 〈ψm〉P ≤

√
θP pm and 〈ψm〉P̄ ≤

√
θP̄ p̄m. Thus, proceeding with

(5.19) as we did in the previous stability estimates, we obtain

|ξ2m−2| ≤ 〈ψ0〉−1
Q {
√
θP pm−2−`|ξ2` |`<m−2 +

√
θP̄ p̄m−1 +

√
θP (q ′m−3 + q ′′m−4 + q ′m−4) +

+
√
θP̄ (q̄ ′m−3 + q̄ ′′m−4 + q̄ ′m−4)}. (5.21)

Since the iteration scheme at each step involves pm and pm and ξ2m−1 we adjust subscripts
in (5.21) to obtain

|ξ2m−1| ≤ 〈ψ0〉−1
Q {
√
θP q

′∗
m−1 +

√
θP̄ p̄m +

√
θP (q ′m−2 + q ′′m−3 + q ′m−3) +

+
√
θP̄ (q̄ ′m−2 + q̄ ′′m−3 + q̄ ′m−3)} (5.22)

and the ξ2m−1 inequality is established.

5.3 The Catalan Numbers

We briefly present some facts about the Catalan numbers which will be used in the sequel
and indicate with a simple example why they are necessary in the proof. The Catalan
numbers Cm are defined algebraically through the recursion

Cm+1 = Cm−`C`, C0 = 1. (5.23)

They are named after E. Catalan and are one of the special integers that arise in many
combinatorial contexts [18] as well as in the study of random processes [13]. By computing
their generating function [18], it can be shown that

Cm =
1

m+ 1

(
2m
m

)
and a simple computation gives their ratio

Cm+1

Cm
= 4− 6

m+ 2
and

Cm
Cm+1

=
1
4

+
3

8m+ 6
, (5.24)

so that we have the exponential bound

Cm ≤ 4m. (5.25)
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It will be convenient to introduce the following notation

ρkm =
Cm−k
Cm

. (5.26)

From (5.24), it is clear that ρkm is decreasing in both m and k. In section 5.4 we shall make
use of the following table of values for ρk5

k 0 1 2 3 4
ρk5 1 1/3 5/42 1/21 1/42

Table 4: Values of ρk5.

We end this section with a short discussion on how the Catalan numbers will be used
to prove exponential bounds on the sequences p̄m, pm, ξ2m. Recall the many convolutions
appearing in (5.6) and suppose that we wish to prove inductively that certain positive
numbers {b`}∞`=0 are bounded exponentially,

b` ≤ b0r
`, (5.27)

using the information that they are bounded by the convolution of the previous terms,

bm+1 ≤ b`bm−`. (5.28)

Assuming (5.27) for 0 ≤ ` ≤ m, inequality (5.28) gives

bm+1 ≤ (b0r`) (b0rn−`) ≤ m
b20
r
rm+1

The factorm will grow with each iteration of this estimate, giving super-exponential growth.
If we use instead the induction hypothesis

b` ≤ b0r
``!, (5.29)

we obtain

bm+1 ≤ b`bm−`

≤ b20r
m`!(m− `)!. (5.30)

The convolution `!(m − `)! has m + 1 terms, the largest of which is m!. Thus, inequality
(5.30) gives

bm+1 ≤ b20
r
rm+1(m+ 1)!, (5.31)

and the induction is successful for r ≥ b0. Of course, bound (5.30) does not give exponential
growth, but its proof suggests that factorials work well with convolutions. Indeed, there is
a special combination of factorials which does give exponential growth, namely the Catalan
number Cm. If we assume that

b` ≤ b0r
`C`, (5.32)
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then

bm+1 ≤ b`bm−`

≤ b20r
mC`Cm−`

=
b20
r
rm+1Cm+1,

and using that Cm ≤ 4m, an exponential bound is obtained.

5.3.1 The Even Part of the Catalan Convolution

The fact that ξ2odd = 0 needs to be taken into account in order to provide a suitable upper
estimate on the incomplete convolution term q ′∗m−1 appearing in the ξ2m−1 inequality in
(5.6). Thus we consider the convolution Cn−`C` with the odd values of the index ` omitted
and denote it by Cn−`C

(` even)
` . We then define the even part E(n) by

E(n) =
Cn−`C

(` even)
`

Cn−`C`
. (5.33)

The following lemma gives the estimate E(n) ≤ E(4), n ≥ 4.

Lemma 5.1.

(i) E(2m)is a decreasing sequence
(ii) E(2m+ 1) = 1/2.

Thus, for all m ≥ 4, we have that E(m) ≤ max{E(4), 1/2} = E(4).

Proof. Statement (ii) is actually just an observation, as one can see by writing out the sum
Cn−`C`, e.g., for n = 7

C7−`C` = C7C0 + C6C1 + C5C2 + C4C3 + C3C4 + C2C5 + C1C6 + C0C7

= 2(C7C0 + C5C2 + C3C4 + C1C6)

= 2C7−`C
(` even)
` .

Statement (ii) can be deduced from the following identity [17]

C2m−2`C2` = 4mCm.

Indeed, dividing both sides of the identity by C2m+1, we obtain

E(2m) =
4mCm
C2m+1

=
1
4

4Cm
Cm+1

4Cm+1

Cm+2
· · · 4C2m

C2m+1
.

From 5.24, each of the above fractions 4Cm/Cm+`, ` = 1, 2, ...,m+1, is a decreasing sequence
in m so that their product is also decreasing in m. This completes the proof.
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5.4 Proof of the Catalan Bound

Before proceeding to the proof, we note that the numerical value of the radius of convergence
is affected only by J and not by β, which affects the error term in approximating the full
series by a finite series (see Appendix for values of J for circular inclusions).

Proof. (Catalan Bound, theorem (5.1)) Fix the values of the geometric parameters A, ΩP̄,
θP and θP̄ in (5.6). Using (5.6) recursively, we can then determine J1 such that

p̄m, pm, |ξ2m| ≤ βCmJ
m
1 , 0 ≤ m ≤ 4.

In the appendix, we have written explicitly the bounds a recursive use of (5.6) gives for
m ≤ 4. We now proceed inductively: assume that

p̄n, pn, |ξ2n| ≤ βCnJ
n, n ∈ {0, 1, 2, . . . ,m− 1}, (5.34)

where m ≥ 5. We then get for the single convolutions

q ′m−k = pm−k−`|ξ2` |
≤ (βCm−k−`Jm−k−`)(βC`J `)(` even)

= β2Jm−kCm−k−`C
(` even)
`

≤ E(4)β2Jm−kCm−k−`C`

= E(4)βJ−k
(
Cm+1−k
Cm

)
βJmCm

= E(4)βJ−kρk−1
m βJmCm. (5.35)

where ρkm = Cm−k/Cm and lemma (5.1) was used to introduce the factor E(4). Similarly,
for double convolutions we get

q ′′m−k = pm−k−`|ξ2`−j ||ξ2j |

≤ (βCm−k−`Jm−k−`)(βC`−jJ `−j)(`−j even)(βCjJ j)(j even)

= β3Jm−kCm−k−`C
(`−j even)
`−j C

(j even)
j

≤ E2(4)β3Jm−kCm−k−`C`−jCj

= E2(4)β3Jm−kCm−k−`C`+1

≤ E2(4)β3Jm−kCm+2−k

= E2(4)β2J−k
(
Cm+2−k
Cm

)
βJmCm

= E2(4)β2J−kρk−2
m βJmCm (5.36)

where the factor E(4)2 comes from using lemma (5.1) twice. For the non-convolution terms

pm−k ≤ βJm−kCm−k

= J−k
(
Cm−k
Cm

)
βJmCm

= J−kρkm βJ
mCm. (5.37)
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The same bounds hold for the terms p̄m−k, q̄ ′m−k and q̄ ′′m−k so that we have

p̄m−k, pm−k ≤ J−kρkm βJ
mCm

q̄ ′m−k, q
′
m−k ≤ E(4)βJ−kρk−1

m βJmCm (5.38)

q̄ ′′m−k, q
′′
m−k ≤ E2(4)β2J−kρk−2

m βJmCm.

The proof now essentially consists of applying these bounds to all terms in inequalities (5.6).
The factor J−k appearing on the right-hand side of each inequality is the workhorse of the
proof: by taking J sufficiently large, it will allow us to close the induction argument. The
incomplete convolution term q ′∗m−1 presents special difficulties, since attempting a bound of
the type (5.38) for this term does not produce a factor of J−k (actually, it produces J0 = 1).

Recall the p̄m inequality from (5.6)

p̄m ≤ ΩP̄ [A{2q ′m−2 + 2q ′m−3 + q ′m−4 + q ′′m−4}+
+ 2q̄ ′m−2 + 2q̄ ′m−3 + q̄ ′m−4 + q̄ ′′m−4 + p̄m−2 +

+ 2 ΩP̄ (A{2q ′m−3 + 2q ′m−4 + q ′m−5 + q ′′m−5}+
+ 2q̄ ′m−3 + 2q̄ ′m−4 + q̄ ′m−5 + q ′′m−5 + p̄m−3 + 2p̄m−2)]

Using (5.38) on this inequality gives

p̄m ≤ Qm βJ
mCm, (5.39)

where Qm is the following polynomial in J−1

Qm = ΩP̄ [ A{2E(4)βJ−2ρ1
m + E(4)βJ−3ρ2

m + E(4)βJ−4ρ3
m + E2(4)β2J−4ρ2

m}+
+ 2E(4)βJ−2ρ1

m + 2E(4)βJ−3ρ2
m + E(4)βJ−4ρ3

m + E2(4)β2J−4ρ2
m + J−2ρ2

m +

+ 2ΩP̄ (A{2E(4)βJ−3ρ2
m + 2E(4)βJ−4ρ3

m + E(4)βJ−5ρ4
m + E2(4)β2J−5ρ3

m}+
+2E(4)βJ−3ρ2

m +2E(4)βJ−4ρ3
m +E(4)βJ−5ρ4

m +E2(4)β2J−5ρ3
m +J−3ρ3

m +2J−2ρ2
m )].

Since we shall be using this inequality for m ≥ 5 only, table 5.3 can be used to bound the
numbers ρkm, so that we may write Qm ≤ Q∗, where

Q∗ = ΩP̄ [ A{2E(4)βJ−21/3 + E(4)βJ−35/42 + E(4)βJ−41/21 + E2(4)β2J−45/42}+
+ 2E(4)βJ−21/3 + 2E(4)βJ−35/42 + E(4)βJ−41/21 + E2(4)β2J−45/42 + J−25/42

+ 2ΩP̄ (A{2E(4)βJ−35/42 + 2E(4)βJ−41/21 + E(4)βJ−51/42 + E2(4)β2J−51/21}+
+ 2E(4)βJ−35/42 + 2E(4)βJ−41/21 + E(4)βJ−51/42+

+ E2(4)β2J−51/21 + J−31/21 + 2J−25/42 )]. (5.40)

The strategy now is to determine similar polynomials Rm and Sm−1 for the other two
inequalities, that is

pm ≤ Rm βJ
mCm

|ξ2m−1| ≤ Sm−1 βJ
m−1Cm−1,
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and then take J large enough that all three polynomials are less than unity, allowing us to
complete the induction argument. Having obtained Qm, it is straightforward to obtain Rm.
Indeed, using (5.38) and (5.39), the pm inequality in (5.6) yields

pm ≤ Rm βJ
mCm,

where

Rm = AQm + E(4)βJ−2ρ1
m + 2J−1ρ1

m + J−2ρ2
m.

Thus, Rm ≤ R∗, where

R∗ = AQ∗ + E(4)βJ−21/3 + 2J−11/3 + J−25/42. (5.41)

The ξ2m−1 inequality requires a little more care due to the presence of the incomplete con-
volution term q ′∗m−1. For the remaining terms, we proceed as we did with the previous
inequalities:√
θP̄ p̄m +

√
θP (q ′m−2 + q ′′m−3 + q ′m−3) +

√
θP̄ (q̄ ′m−2 +

√
θP̄ |ξ2` ξ2m−3−`|+

√
θP |ξ2m−3|) ≤

{
√
θP̄Qm +

√
θP (0.5βJ−2ρ1

m + 0.25β2J−3ρ1
m + 0.5βJ−3ρ2

m)
+
√
θP̄ (0.5βJ−2ρ1

m + 0.5
√
θP̄βJ

−3ρ2
m + J−3ρ3

m)}βJmCm.

since this is an upper bound on |ξ2m−1|, we must replace the term βJmCm with βJm−1Cm−1

as follows:

βJmCm = J

(
Cm
Cm−1

)
βJm−1Cm−1

≤ 4J βJm−1Cm−1.

Using this replacement and the bounds 5.3 on the numbers ρkm, we obtain the upper bound

4J{
√
θP̄Q

∗ +
√
θP (E(4)βJ−2(1/3) + E2(4)β2J−3(1/3) + E(4)βJ−3(5/42))

+
√
θP̄ (E(4)βJ−2(1/3) + E(4)

√
θP̄βJ

−3(5/42) +
√
θPJ

−3(1/21))}βJm−1Cm−1 (5.42)

It remains to deal with q ′∗m−1. We proceed as follows:

q ′∗m−1 = pm−1−`|ξ2` |`<m−1 (5.43)

= pm−1|ξ20 |+ pm−3|ξ22 |+ p2|ξ2m−3|+ pm−1−`|ξ2` |2<`<m−3. (5.44)

The non-convolution terms then give

pm−1|ξ20 |+ pm−3|ξ22 |+ p2|ξ2m−3|

≤
(
|ξ20 |Rm−1 + |ξ22 |J−2Cm−3

Cm−1
+ p2J

−2Cm−3

Cm−1

)
βJm−1Cm−1

≤ ( |ξ20 |R∗ + |ξ22 |J−2(1/7) + p2J
−2(1/7) )βJm−1Cm−1, (5.45)
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since Cm−3/Cm−1 ≤ C2/C4 = 1/7, if m ≥ 5. The remaining term pm−1−`|ξ2` |2<`<m−3 is
treated in a completely different manner:

pm−1−`|ξ2` |2<`<m−3 = pm−5|ξ24 |+ pm−7|ξ26 |+ · · ·+ p6|ξ2m−8|+ p4|ξ2m−5|
≤ (Cm−5C4 + Cm−7C6 + · · ·+ C6Cm−7 + C4Cm−5)β2Jm−1

≤ (Cm−1−`C
(` even)
` − 2C2Cm−3 − 2C0Cm−1)β2Jm−1

= (E(4)Cm−1−`C` − 2C2Cm−3 − 2C0Cm−1)β2Jm−1

= (E(4)Cm − 2C2Cm−3 − 2C0Cm−1)β2Jm−1

=
(
β
E(4)Cm − 2C2Cm−3 − 2C0Cm−1

Cm−1

)
βJm−1Cm−1

≤ β(E(4)4− 1/4− 2)βJm−1Cm−1,

≤ (0.7976β)βJm−1Cm−1, (5.46)

Thus, adding (5.42), (5.45) and (5.46), we set

S∗ = 4J{
√
θP̄Q

∗ +
√
θP (E(4)βJ−2(1/3) + E2(4)β2J−3(1/3) + E(4)βJ−3(5/42))

+
√
θP̄ (E(4)βJ−2(1/3) + E(4)

√
θP̄βJ

−3(5/42) +
√
θPJ

−3(1/21))}+

+
√
θP {( |ξ20 |R∗ + |ξ22 |J−2(1/7) + p2J

−2(1/7) ) + (0.7976β)}. (5.47)

Thus, taking J2 such that Q∗(J2), R∗(J2), S∗(J2) ≤ 1 and J = max{J1, J2}, we have shown
that the induction hypothesis (5.34) implies

p̄m, pm, |ξ2m| ≤ βCmJ
m, (5.48)

so that in fact (5.48) holds for every integer m.

Remark: The Catalan bound could turn out to be a very crude estimate, for every time
the triangle inequality is used in the above proof, no cancellation is taken into consideration.

5.5 Proof of Theorem 5.2: Solution of the Eigenvalue Problem

Proof. The weak form of the master system is∫
Q

[
ε−1
η (∇+ iηκ̂)hη(y) · (∇− iηκ̂)v̄(y)− η2ξ2ηhη(y)v̄(y)

]
= 0 for all v ∈ H1

per(Q). (5.49)

Using that ε−1
η = η2ξ2η/(η

2ξ2η−1) in P and εη = 1 in P̄ , and multiplying by (η2ξ2η−1), gives
the equivalent system

aη(h, ξ2; v) = 0 for all v ∈ H1
per(Q),

in which

aη(h, ξ2; v) = −
∫
P̄
(∇+ iηκ̂)h · (∇− iηκ̂)v̄ +

+
∫
Q

[
η2ξ2(∇+ iηκ̂)h · (∇− iηκ̂)v̄ − (η2ξ2 − 1)η2ξ2hv̄

]
.
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This form can be expanded in powers of η,

aη(h, ξ2; v) = a0(h; v)− iηa1(h; v)− η2a2(h, ξ2; v) + iη3a3(h, ξ2; v) + η4a4(h, ξ2; v) (5.50)

in which the am are real forms

a0(h; v) = −
∫
P̄
∇h · ∇v̄,

a1(h; v) =
∫
P̄
(hκ̂ · ∇v̄ −∇h · κ̂v̄),

a2(h, ξ2; v) =
∫
P̄
hv̄ − ξ2

∫
Q
(∇h · ∇v̄ + hv̄),

a3(h, ξ2; v) = ξ2
∫
Q
(hκ̂ · ∇v̄ −∇h · κ̂v̄),

a4(h, ξ2; v) = ξ2
∫
Q
(1− ξ2)hv̄.

Define the partial sums

ξ2,Nη =
N∑
m=0

ηmξ2m,

hNη =
N∑
m=0

ηmhm.

For η < R, the sequence {ξ2,Nη } converges to a number ξ2η and the sequence {hNη } converges
in H1

∗ to a function hη; thus

aj(hNη , ξ
2,N
η ; v) → aj(hη, ξ2η ; v) for all v ∈ H1

per(Q) and i = 0, . . . , 4.

Therefore, aj(hη, ξ2η ; v), j = 1, . . . , 4, has a convergent series representation in powers of η,
in which the mth coefficient is related to the coefficients ξ` and h` by

(j = 0)
∫
P̄
−∇hm · ∇v̄,

(j = 1)
∫
P̄

(hmκ̂ · ∇v̄ −∇hm · κ̂v̄) ,

(j = 2)
∫
P̄
hmv̄ −

∫
Q

(
∇(ξ2`hm−`) · ∇v̄ + (ξ2`hm−`)v̄

)
,

(j = 3)
∫
Q

(
(ξ2`hm−`)κ̂ · ∇v̄ −∇(ξ2`hm−`) · κ̂v̄

)
,

(j = 4)
∫
Q

(
ξ2`hm−` − ξ2j ξ

2
`−jhm−`

)
v̄.

¿From these, one obtains the mth coefficient of aη(hη, ξ2η ; v) (see 5.50), which, by means of
the relations

hm = h0i
mψm,

ξ2`hm−` = h0i
mσ′m,

ξ2j ξ
2
`−jhm−` = h0i

mσ′′m,
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is seen to be equal to the −imh0 times the right-hand side of equation (3.10). All these
coefficients are therefore equal to zero, and we conclude that

aη(hη, ξ2η ; v) = 0.

This proves that the function hη, together with the frequency
√
ξη solve the weak form

(5.49) of the master system.

6 Effective Properties, Error Bounds and the Dispersion Re-
lation

In this section we start by identifying a new type of effective property that follows directly
from the dispersion relations. We then discuss the relation between effective properties and
quasistatic properties. Next we provide explicit error bounds for finite-term approximations
to the first branch of the dispersion relation for nonzero values of η. The error bounds show
that numerical computation of the first two terms of the power series delivers an accurate
and inexpensive numerical method for calculating dispersion relations for sub-wavelength
plasmonic crystals.

6.1 The Effective Index of Refraction - Quasistatic Properties and Ho-
mogenization

The identification of an effective index of refraction valid for η > 0 follows directly from
the dispersion relation given by Corollary 5.1. Indeed the effective refractive index neff is
defined by expressing the dispersion relation as

ω2 =
c2k2

n2
eff

(6.1)

and it follows immediately from (5.3) that the effective refractive index has the convergent
power series expansion given by

n−2
eff = n−2

qs +
∞∑
m=1

η2mξ22m. (6.2)

We emphasize that this effective index of refraction follows directly from the dispersion
relation and is obtained from first principles.

We now discuss the relationship between the effective index of refraction and the qua-
sistatic effective properties seen in the d → 0 limit with k fixed. Having established that
hη(y)eiηκ̂·y is the solution to the unit cell problem, we can undo the change of variable
y = kx/η to see that the function

ĥη

(
kx
η

)
ei(kκ̂·x−ωηt), (6.3)

where ĥη is the Q-periodic extension of hη to all of R2, is a solution of

∇x · (ε−1
η ∇xĥη) =

1
c2
∂ttĥη, x ∈ R2, (6.4)

25



for every η in the radius of convergence.
We investegate the quasistatic limit directly using the power series (6.3). Here we wish

to describe the average field as d→ 0. To do this we introduce the three-dimensional period
cell for the crystal [0, d]3. The base of the cell in the x1x2 plane is denoted by Qd = [0, d]2

and is the period of the crystal in the plane transverse to the rods. We apply the definition
of Beff and Heff given in [24] which in our context is

(B3)eff =
1
d2

∫
Qd

ĥη

(
kx
η

)
ei(kκ̂·x−ωηt)dx1dx2 (6.5)

and

(H3)eff =
1
d

∫ (0,0,d)

(0,0,0)
ĥη

(
kx
η

)
ei(kκ̂·x−ωηt)dx3. (6.6)

Taking limits for k fixed and d→ 0 in (6.3) gives

lim
d→0

(B3)eff = 〈ψ0〉Qh̄0e
i(kκ̂·x−ωqst) and lim

d→0
(H3)eff = h̄0e

i(kκ̂·x−ωqst),

in which ω2
qs = c2k2

n2
qs

. These are the same average fields that would be seen in a quasistatic
magnetically active effective medium with index of refraction nqs and µqs that supports the
plane waves

(B3)qs = µqsh̄0e
i(kκ̂·x−ωqst) and (H3)qs = h̄0e

i(kκ̂·x−ωqst),

where µqs = 〈ψ0〉Q. It is evident that these fields are solutions of the homogenized equation

n2
qs

c2
∂ttu = ∆u (6.7)

This quasistatic interpretation provides further motivation for the definition of neff for
nonzero η given by 6.2.

Now we apply the definition of effective permeability µeff given in [24], together with
neff to define an effective permeability εeff for η > 0. The relationships between the effective
properties and quasistatic effective properties are used to show that plasmonic crystals func-
tion as meta-materials of positive index of refraction in which both the effective permittivity
and permeability are positive for η > 0.

The effective refraction index neff can be rewritten in the equivalent form by the equation
n2

eff = 1/ξ2η . By setting v = hη in the weak form of the master system (5.49), it is easily
seen that ξ2η > 0 for all η within the radius of convergence, so that n2

eff > 0 for those values
of η. Following Pendry et. al. [24], see also [16], we define the effective permeability by

µeff =
(B3)eff
(H3)eff

, (6.8)

and we then define εeff through the equation

n2
eff = εeffµeff. (6.9)
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The quasi-static effective properties are recovered by passing to the limits

n2
qs = lim

η→0
n2

eff

µqs = lim
η→0

µeff

εqs = lim
η→0

εeff.

An easy calculation shows that µqs = 〈ψ0〉Q > 0 (see appendix for proof that 〈ψ0〉Q > 0).
Hence, we have that µeff > 0 for η in a neighborhood of the origin, so that εeff > 0 for
these values of η, since n2

eff > 0 for all η in the radius of convergence. Thus, one has a solid
basis on which to assert that plasmonic crystals function as materials of positive index of
refraction in which both the effective permittivity and permeability are positive.

6.2 Absolute Error Bounds

The Catalan bound provides simple estimates on the size of the tails for the series ξ2η and hη,

Em0,ξ =
∞∑

m=m0+1

ξ22mη
2m

Em0,h =
∞∑

m=m0+1

hmη
m.

We have established convergence for η ≤ 1/4J , so that we may write η = α/4J , 0 ≤ α ≤ 1.
Then, using that |ξ22m| ≤ βC2mJ

2m, C2m ≤ 42m and 4Jη = α, we have

|Em0,ξ| =

∣∣∣∣∣
∞∑

m=m0+1

ξ22mη
2m

∣∣∣∣∣
≤ β

∞∑
m=m0+1

C2mJ
2mη2m

≤ β

∞∑
m=m0+1

(4Jη)2m

≤ β

∞∑
m=m0+1

α2m

= β
α2m0+2

1− α2
. (6.10)

Similarly, for hη we have that

‖Em0,h‖H1(Q) ≤ 2β|h0|
αm0+1

1− α
. (6.11)

6.3 Relative Error Bounds

• The Field:
In this section, we use the absolute error bound (6.11) with m0 = 1 to obtain a relative
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error bound for the particular case of a circular inclusion of radius r = 0.45 [26]. The
first term approximation to hη is

hη = h0ψ0 + ih0ψ1η + E1,h. (6.12)

For a circular inclusion of radius r = 0.45, we have

J ≤ 85, β ≤ 0.79,
‖ψ0‖ = 0.97,
‖ψ1‖ = 0.02,

where ‖ · ‖ = ‖ · ‖H1(Q). Thus, using bound (6.11), the relative error R1,h is bounded
by

|R1,h| =
|E1,h|

‖h0 + ih0ψ1η‖
(6.13)

≤
1.58 α2

1−α
‖h0‖ − ‖h0ψ1‖|η|

(6.14)

≤
1.58 α2

1−α
0.97− 0.02 α

340

, (6.15)

so that for α ≤ 0.2 the relative error is less than 8.2%. The graphs of ψ0 and ψ1 can
be found in the Appendix.

• The Frequency ξ2:
The first term approximation to ξ2η is

ξ2η = ξ20 + ξ22η
2 + E1,ξ. (6.16)

In the Appendix we indicate how the tensors ξ2m may be computed. For an inclusion
of radius r = 0.45, we have

ξ20 = 0.36, ξ22 = −0.14.

Thus, using bound (6.10), the relative error R1,ξ is bounded by

|R1,ξ| =
|E1,ξ|

|ξ20ψ0 + ξ22η
2|

≤
β α4

1−α2

|ξ20 + ξ22η
2|

≤
0.79 α4

1−α2

|0.36− 0.14 α2

3402 |
,

so that for α ≤ 0.3 the relative error is less than 2%.
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Figure 2: Solid curve is R1,ξ and dotdash curve is R1,h.

Figure 3: Graph of the first branch of the dispersion relation. Dashed curves represent error
bars.
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r 0.1 0.2 0.3 0.4 0.45
A 1.058 1.293 1.907 3.956 4.840
ΩP̄ 1.0 1.0 1.0 1.0 1.0
J1 3 4 8 25 85
J2 15 17 22 29 62
J 15 17 22 29 85

Table 5: Table of parameters for circular inclusions of radii rd.

7 Appendix

7.1 Table of Values of A, ΩP̄ and J for Circular Inclusions

7.2 Explicit Expressions for Tensors

The tensors ξ20 and ξ22 were calculated using the weak form (3.10), as follows. Setting m = 2
and v ≡ 1 in (3.10) and solving for ξ20 gives

ξ20 =
〈κ̂ ·∇ψ1 + ψ0〉P̄

〈ψ0〉Q
. (7.1)

Setting m = 4 and v ≡ 1 and solving for ξ22 gives

ξ22 =
−ξ20〈κ̂ ·∇ψ1〉Q + ξ20〈ψ2〉P + ξ20ξ

2
0〈ψ0〉Q + ξ20〈ψ0〉Q − 〈κ̂·∇ψ3〉P̄

〈ψ0〉Q
. (7.2)

All integrals appearing in (7.1) and (7.2) were then computed using the program COMSOL.

7.3 Bounds on p̄m, pm and |ξ2
m−1|, m = 0, 1, 2, 3

In this section we present the bounds which (5.6) give for p̄m, pm and ξ2m−1, 1 ≤ m ≤ 3,
starting with estimates on p̄0, p0 and ξ20 . We write the bounds as polynomials in the two
“variables” ΩP̄ and A. In practice, it is rather unwieldy to use these polynomials, so that
one may use some computer program such as MAPLE to compute the iterations for any
particular choice of problem parameters.

• m=0:

p̄0 = θP̄

p0 ≤
√
θP

|ξ20 | ≤ 1

These initial estimates are obtained as follows: we have ψ0 ≡ 1 in P̄ , so that p̄0 = θP̄ .
Using the BVP for ψ0 in P one can prove that 0 ≤ ψ0(y) ≤ 1, ∀y ∈ P , and that
p2
0 = 〈ψ0〉P . These two facts together give the estimate p0 ≤

√
θP . Setting v = ψ1

in the weak form for ψ1, we get that 〈κ̂·∇ψ1〉P̄ = −〈∇ψ1 ·∇ψ1〉P̄ < 0. Using this in
expression (7.1) gives ξ20 < 1. Since θP , θP̄ ≤ 1, these three estimates allow us to take
β ≤ 1.
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• m=1:

p̄1 ≤ (2p̄0)ΩP̄A

p1 ≤ (2p̄0)ΩP̄A2 + 2p01

• m=2:

p̄2 ≤ (4p̄0)ΩP̄
2A + (2p0|ξ20 |)ΩP̄A + p0(1 + 2|ξ20 |)ΩP̄

p2 ≤ (4p̄0)Ω2
P̄A2 + (2p0|ξ20 |+ 4p̄0)ΩP̄A2 + p̄0(1 + 2|ξ20 |)ΩP̄A + p0(1 + |ξ20 |)1

• m=3:

p̄3 ≤ 4p̄0Ω2
P̄A3 + 8p̄0ΩP̄

2A + 2(p0 + p̄0)(1 + 2|ξ20 |)ΩP̄A + 2p̄0(1 + 6|ξ20 |)1
p3 ≤ 4p̄0Ω2

P̄A4 + 16p̄0Ω2
P̄A2 + (6p̄0 + 2(p0 + p̄0)(1 + 3|ξ20 |)ΩP̄A2 + p̄0(1 + 2|ξ20 |)ΩP̄A +

+2p̄0(1 + 6|ξ20 |)A + 3p0(|ξ20 |+ 1)1

|ξ22 | ≤ 4p̄0

√
θP̄Ω2

P̄A3 + 4
√
θP |ξ20 |p̄0Ω2

P̄A2 + 8
√
θP̄ p̄0ΩP̄

2A + 2
√
θP |ξ20 |(3p̄0 + p0)ΩP̄A2 +

+(
√
θP |ξ20 |p̄0(1 + 2|ξ20 |) +

√
θP̄ (2(p0 + p̄0)(1 + 2|ξ20 |) + 2|ξ20 |p̄0)ΩP̄A +

+(
√
θP |ξ20 |p0(1 + |ξ20 |) + 2

√
θP̄ p̄0(1 + 6|ξ20 |) + 2

√
θP |ξ20 |p0 + p0|ξ20 |2 + p0|ξ20 |+ 2

√
θP̄ |ξ20 |2p̄0)1

7.4 Computing the Constant A for Circular Inclusions

Given a function ψ ∈ H1
per(P̄ ), let u ∈ H1

P satisfy

∇2u− u = 0 in P,
u = ψ on ∂P.

We seek to compute a number A such that

‖u‖2
H1(P ) ≤ A‖ψ‖2

H1(P̄ )

for all ψ. Following [6, Appendix A], we will calculate a value of A for circular inclusions P
of radius r0 < 0.5 by restricting ψ to the annulus between P and the circle of unit radius.
It suffices to consider real-valued functions ψ that minimize the H1 norm in the annulus,
that is

∇2ψ − ψ = 0, r0 < r < 0.5.

A function of this type is given generally by the real part of an expansion

ψ(r, θ) =
∞∑
n=0

(cnIn(r) + dnKn(r)) einθ,
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in which cn and dn are complex numbers and In and Kn are the “modified” Bessel functions.
The continuous continuation of ψ into the disk with ∇2u−u = 0 is given by the real part of

u(r, θ) =
∞∑
n=0

fnIn(r)einθ

under the relations
fn = cn + dn

Kn(r0)
Kn(r0)

. (7.3)

One computes that

‖Reψ‖2 =
1
2
‖ψ‖2 and ‖Reu‖2 =

1
2
‖u‖2,

so we may work with the complex functions rather than their real parts.
The Helmholtz equation in P and integration by parts yield

‖u‖2
H1(P ) =

∫
P

(
|∇u|2 + |u|2

)
dA =

∫
∂P
ū∂nu,

and this provides the representation

‖u‖2
H1 = 2πr1

∞∑
n=0

f̄nIn(r1)fnI ′n(r1).

The analogous representation in the annulus is

‖ψ‖2
H1 =

∫ 2π

0
(∂rψ(1, θ)ψ(1, θ) dθ −

∫ 2π

0
r0(∂rψ(r0, θ)ψ(r0, θ) dθ

= 2π
∞∑
n=0

(
c̄nIn(0.5) + d̄nKn(0.5)

) (
cnI

′
n(0.5) + dnK

′
n(0.5)

)
+

− 2πr0
∞∑
n=0

(
c̄nIn(r0) + d̄nKn(r0)

) (
cnI

′
n(r0) + dnK

′
n(r0)

)
We seek a positive number A such that, for all choices of complex numbers cn and dn,

0 ≤ A‖ψ‖2 − ‖u‖2.

The right-hand-side is a quadratic form in all of the coefficients (cn, dn) that depends on A,

A‖ψ‖2 − ‖u‖2 = m11
n cnc̄n +m12

n cnd̄n +m21
n dnc̄n +m22

n dnd̄n,

in which the mij
n depend on A and are conveniently expressed in terms of the functions

IIn(r) = In(r)I ′n(r),
KKn(r) = Kn(r)K ′

n(r),
IKn(r) = In(r)K ′

n(r),
KIn(r) = Kn(r)I ′n(r),

JJn(r) =
Kn(r)2

In(r)
I ′n(r).
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m11
n = −r0IIn(r0)−Ar0IIn(r0) +A IIn(0.5),

m22
n = −r0JJn(r0)−Ar0KKn(r0) +AKK(0.5),

m12
n = −r0KI(r0)−Ar0KIn(r0) +AKIn(0.5),

m21
n = −r0KI(r0)−Ar0IKn(r0) +A IKn(0.5).

The form mij
n is Hermitian, as one can show that m12

n = m21
n by using the fact that

rWron[In,Kn] is constant.
We must find A > 0 such that m11

n ≥ 0 and m11
n m

22
n −m12

n m
21
n ≥ 0 for all n = 0, 1, 2, . . . .

These quantities are equal to

m11
n = β(r0, 0.5)A− α(r0),

m11
n m

22
n −m12

n m
21
n = ε(r0, 0.5)A2 − δ(r0, 0.5)A,

in which

αn(r) = rIIn(r),
βn(r, s) = IIn(s)− rIIn(r),
δn(r, s) = rs [IIn(r)KKn(s) + IIn(s)JJn(r)−KIn(r)IKn(s)−KIn(s)KIn(r)] +

+ r2 [−IIn(r)KKn(r)− IIn(r)JJ(r) + KIn(r)IKn(r) + KIn(r)KIn(r)] ,
εn(r, s) = rs [−IIn(r)KKn(s)− IIn(s)KKn(r) + KIn(r)IKn(s) + KIn(s)IKn(r)] .

The numbers αn(r) and βn(r, s) for r < s are positive; the latter because

(rInI ′n)
′ =

1
r
(r2 + n2)I2

n + rI ′n
2
> 0.

One can show that δ and ε are positive. Thus, it is sufficient to find A > 0 such that, for
all n = 0, 1, 2, . . . ,

A ≥ max
{

αn(r0)
βn(r0, 0.5)

,
δn(r0, 0.5)
εn(r0, 0.5)

}
.

Table 5.3 shows computed values of A for various values of r0.
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7.5 Graphs of ψ0 and ψ1

Figure 4: Graph of ψ0. This function is symmetric about the origin.

Figure 5: Graph of ψ1 when κ̂ = (1, 0). This function is antisymmetric about the origin.
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