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Abstract. In the exciton-polariton system, a linear dispersive photon
field is coupled to a nonlinear exciton field. Short-time analysis of the
lossless system shows that, when the photon field is excited, the time
required for that field to exhibit nonlinear effects is longer than the time
required for the nonlinear Schrödinger equation, in which the photon
field itself is nonlinear1.
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1. Short-time behavior of the exciton-polariton system

The lossless unforced exciton-polariton system is a quantum-mechanical sys-
tem involving a linear dispersive photon wave-function φ(x, t) and a nonlinear
nondispersive exciton wave-function ψ(x, t) of spatial coordinates x ∈ Rn and
time t ∈ R:

iφt = −∆φ+ γψ

iψt = (ω0 + g|ψ|2)ψ + γφ .
(1.1)

For physical discussions of these equations, the reader is referred to [1, 2, 5],
among many other references.

The fact that the dispersive term −∆φ and the nonlinear term g|ψ|2ψ
involve different fields results in fundamental differences between the exciton-
polariton system (EP) and the nonlinear Schrödinger (NLS) equation

iφt = −∆φ+ g|φ|2φ , (1.2)

in which both terms involve a single field φ. The NLS equation is Galilean-
invariant, whereas the EP system is not; and NLS admits a frequency-scalable

1Proceeding article of the XXXV Workshop on Geometric Methods in Physics, Bia lowieża,

Poland, July 2016.
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“ground state”, whereas the structure of stationary harmonic solutions of EP
is complicated [3]. This communication addresses a fundamental difference
in the short-time behavior of these two systems.

We take the point of view that the photon field is excited and measured
by the observer and that the exciton field is hidden from the observer. Thus
we impose initial conditions

φ(x, 0) = φ0(x)

ψ(x, 0) = 0
(1.3)

and ask, up to what time can nonlinear effects observed in the photon field
through its coupling to the exciton field be considered to be negligible?

At first, the effect of the exciton field on the photon field is altogether
negligible and the exciton evolves essentially linearly under the influence of
the photon. This is described by the approximate system

iφt = −∆φ

iψt = ω0ψ + γφ .
(Approximation A) (1.4)

After some time, the exciton field grows sufficiently large so that its effect
on the photon field becomes non-negligible, but the nonlinear effects remain
negligible for a longer period of time. The photon acts as if it were coupled
to a linear exciton field:

iφt = −∆φ+ γψ

iψt = ω0ψ + γφ .
(Approximation B) (1.5)

At a later time, the nonlinear effects imparted by the exciton field are ob-
served significantly in the photon field and the linear Approximation B is no
longer acceptable.

Theorem 1.1 makes these assertions precise. The deviation of an ap-
proximation φ̃ to the true photon field φ is considered to be negligible if the
relative error ‖φ̃− φ‖Hs(Rn)/‖φ‖Hs(Rn) is less than a small number ε, which
is allowed to tend to zero. Our main result is that the deviation of the photon
field of the linear polariton system from that of the nonlinear one is negligible
up to time t = Cε1/5. This result is in contrast to the nonlinear Schrödinger
equation, for which nonlinear effects are negligible only up to time Cε.

Theorem 1.1. Let (φ(t), ψ(t)) be a solution of the polariton system (1.1) in
the interval 0 ≤ t ≤ T , with each field being a continuous function of t with
values in Hs(Rn) with s > n/2. Let C1 and C2 be real numbers, and for all ε

such that C2ε
1/5 ≤ T , let (φ̃(t), ψ̃(t)) be a solution of the equations

(φ̃(t), ψ̃(t)) satisfies

{
approx. A (1.4) for 0 ≤ t ≤ C1ε

1/2

approx. B (1.5) for C1ε
1/2 ≤ t ≤ C2ε

1/5

with φ̃ and ψ̃ being continuous function of t with values in Hs(Rn). Let both
systems satisfy the initial conditions

(φ(0), ψ(0)) = (φ̃(0), ψ̃(0)) = (φ0, 0), (1.6)

with ‖φ0‖Hs(Rn) = ‖φ0‖s = M 6= 0.
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The relative error in the photon field is bounded by

‖φ̃(t)− φ(t)‖s
‖φ(t)‖s

≤ K1ε+O(ε2) for 0 ≤ t ≤ C1ε
1/2 (ε→ 0),

‖φ̃(t)− φ(t)‖s
‖φ(t)‖s

≤ K2ε+O(ε7/5) for C1ε
1/2 ≤ t ≤ C2ε

1/5 (ε→ 0),

in which
K1 = 1

2γ
2C2

1 , K2 = 1
2γ

2C2
1 + 1

5 |g|Kγ
3M2C5

2

and K is an absolute constant (defined in the proof below).

The proof of this theorem will be given after existence of solutions and
preliminary bounds are established.

2. Existence of solutions to the polariton equations

Theorem 2.1. Given 0 < r < 1, N > 0, and φ0 ∈ Hs(Rn) with s > n/2, such
that ‖φ0‖s ≤ rN , there exists a unique solution to the polariton equations
(1.1) subject to ‖φ‖C (I,Hs(Rn)) ≤ N and ‖ψ‖C (I,Hs(Rn)) ≤ N defined for

t ∈ [0, T ], where T =
1− r

2γ + |g|K̃N2
for some constant K̃.

Proof. The proof is a standard contraction argument. Write u = (φ, ψ)t, and
consider the space

EN,r =
{
u ∈ C (I,Hs(Rn)) : ‖u‖C (I,Hs(Rn)) ≤ N, ‖u0‖s ≤ rN

}
,

with I = [0, T ], equipped with the distance d (u1 − u2) = ‖u1−u2‖C (I,Hs(Rn)).
(EN,r, d) is a complete metric space. Define a mapping Φ : EN,r → EN,r by

Φ(u)(t) =

 eit∆φ0(x)− iγ
∫ t

0

ei(t−τ)∆ψ(τ)dτ

−i
∫ t

0

e−iω0(t−τ)
(
g|ψ|2ψ(τ) + γφ(τ)

)
dτ

 .

Minkowski inequalities and the fact that eit∆ is an isometry in Hs yields

‖Φ(u)(t)‖s ≤ ‖φ0‖s + γT
(

sup
τ≤T
‖ψ‖s + sup

τ≤T
‖φ‖s

)
+ |g|KT sup

τ≤T
‖ψ‖3s

≤ ‖φ0‖s +NT
(
2γ + |g|KN2

)
.

The constant K for s > n/2 is guaranteed by [4, Theorem 3.4]; it relies on
the algebra property of Hs(Rn). For a different constant K ′, one obtains

‖Φ(u1)− Φ(u2)‖s ≤ T (2γ + |g|K ′N2)
(

sup
τ≤T
‖ψ1− ψ2‖s + sup

τ≤T
‖φ1− φ2‖s

)
.

Set K̃ = max {K,K ′}. Since T
(

2γ + |g|K̃N2
)

= 1−r < 1, Φ is a contraction

of (EN,r, d) and thus it has a unique fixed point, which, by the definition
of Φ, satisfies the exciton-polariton system. Uniqueness of the solution in
C(I,Hs(Rn)) follows from Gronwall’s Lemma. �
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3. Bounds for solutions to the polariton equations

Assume that (φ, ψ) is a solution of the polariton equations as in Theorem 2.1,
with initial condition (φ(x, 0), ψ(x, 0)) = (φ0(x), 0) and ‖φ0‖s = rN .

3.1. Solutions of the polariton equations

The integral form of the system (1.1), namely Φ(u) = u, Minkowski inequal-
ities, and the fact that eit∆ is an isometry in Hs(Rn) yield

rN − γ
∫ t

0

‖ψ(τ)‖s dτ ≤ ‖φ(t)‖s ≤ rN + γ

∫ t

0

‖ψ(τ)‖s dτ , (3.1)

‖ψ(t)‖s ≤ γrN t + γ2

∫ t

0

∫ τ

0

‖ψ(σ)‖s dσ dτ + |g|K
∫ t

0

‖ψ(τ)‖3s dτ . (3.2)

The constant K is guaranteed by [4, Theorem 3.4]. Hence

sup
τ≤t
‖ψ(t)‖s ≤ γrN t+ 1

2γ
2t2 sup

τ≤t
‖ψ(τ)‖s + |g|K t sup

τ≤t
‖ψ(τ)‖3s .

The last estimate can be written as P (t, y(t)) ≥ 0 , where

y(t) = sup
τ≤t
‖ψ(t)‖s and P (t, y) := γrN t+ y

(
|g|K ty2 + 1

2γ
2t2 − 1

)
.

For each t such that P (t, y) has two positive roots as a function of y,
denote these roots by y1(t) ≤ y2(t). One can show that y1(t) is increasing
in t, with limt→0 y1(t) = 0 and y2(t) is decreasing with limt→0 y2(t) = ∞.
Thus P (t, y(t)) ≥ 0 is equivalent to { y(t) ≤ y1(t) or y(t) ≥ y2(t) }. We shall
assume from now on that t is small enough so that y(t) ≥ y2(t) is ruled out,
so that one has supτ≤t ‖ψ(τ)‖s ≤ y1(t), or, equivalently, ‖ψ(t)‖s ≤ y1(t),
since y1(t) is increasing. Hence, (3.2) yields

‖ψ(t)‖s ≤ γrN t + γ2

∫ t

0

∫ τ

0

y1(σ) dσ dτ + |g|K
∫ t

0

y1(τ)3dτ . (3.3)

The Taylor expansion of y1(t) around t = 0 is

y1(t) = γrN t+ 1
2γ

3rN t3 + |g|K(γrN)3 t4 + . . . . (3.4)

Therefore, from (3.1), (3.3) and (3.4), we have

rN − 1
2γ

2rNt2 +O(t4) ≤ ‖φ(t)‖s ≤ rN + 1
2γ

2rNt2 +O(t4) . (3.5)

3.2. Solutions of approximate equation A

Let (φ̃(t), ψ̃(t)) be the solution of the approximate system A (1.4) with initial

condition (φ̃(0), ψ̃(0)) = (φ0, 0), and (φ(t), ψ(t)) be the solution of the true

system (1.1). Set φ̂ := φ̃− φ and ψ̂ := ψ̃ − ψ , so that (φ̂(t), ψ̂(t)) satisfies{
iφ̂t = −4φ̂+ γψ(t)

iψ̂t = ω0ψ̂ + γφ̂+ g|ψ(t)|2ψ(t)

{
φ̂(0) = 0

ψ̂(0) = 0 .
(3.6)
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One obtains the bounds

‖φ̂(t)‖s ≤ γ

∫ t

0

‖ψ(τ)‖dτ ≤ γ

∫ t

0

y1(τ) dτ, (3.7)

‖ψ̂(t)‖s ≤ γ2

∫ t

0

∫ τ

0

y1(σ) dσ dτ + |g|K
∫ t

0

y1(τ)3dτ . (3.8)

3.3. Solutions of approximate equation B

Now let (φ̃(t), ψ̃(t)) be the solution of the approximate system B (1.5) with

arbitrary initial conditions, and set again φ̂ := φ̃− φ and ψ̂ := ψ̃ − ψ ; then

(φ̂(t), ψ̂(t)) satisfies{
iφ̂t = −4φ̂+ γψ̂(t)

iψ̂t = ω0ψ̂ + γφ̂+ g|ψ(t)|2ψ(t)

{
φ̂(t1) = φ̂0

ψ̂(t1) = ψ̂0
, (3.9)

and from the integral form of (3.9), one deduces the bounds

‖φ̂(t)‖s ≤ ‖φ̂0‖s + γ

∫ t

t1

‖ψ̂(τ)‖sdτ (3.10)

‖ψ̂(t)‖s ≤ ‖ψ̂0‖s + γt‖φ̂0‖s + γ2

∫ t

t1

∫ τ

t1

‖ψ̂(σ)‖sdσ dτ + |g|K
∫ t

t1

‖ψ(t)‖3sdτ.

Combining this with (3.4) yields

‖ψ̂(t)‖s ≤
(
1− 1

2γ
2t2
)−1

(
‖ψ̂0‖s + γt‖φ̂0‖s + |g|Kt y1(t)

3
)
. (3.11)

3.4. Proof of Theorem 1.1

For the solutions (φ, ψ) and (φ̃, ψ̃) in the theorem, define φ̂ := φ̃ − φ and

ψ̂ := ψ̃ − ψ , and set M = rN .
For t ∈ [0, t1] with t1 = C1ε

1/2, (3.7) yields

‖φ̂(t)‖s ≤ γ
∫ t

0

y1(τ) dτ ≤ 1
2γ

2Mt2 +O(t4) ≤ 1
2γ

2MC2
1ε+O(ε2). (3.12)

Using (3.5), the relative error is controlled by

‖φ̂(t)‖s
‖φ(t)‖s

≤ 1
2γ

2C2
1ε+O(ε2).

For t ∈ [t1, t2] with t2 = C2ε
1/5, (3.4), (3.8), and (3.12) give initial bounds

‖ψ̂(t1)‖s ≤ 1
6γ

3Mt31 +O(t41) ≤ 1
6γ

3MC3
1 ε

3/2 +O(ε2),

‖φ̂(t1)‖s ≤ 1
2γMC2

1 ε+O(ε2).

Using these in (3.11) yields

‖ψ̂(t)‖s ≤
(
1 +O(t2)

)
×[

1
6γ

2MC3
1ε

3/2 +O(ε2) + γt
(

1
2γMC2

1ε+O(ε2)
)

+ |g|K(γM)3t4 +O(t6)
]
,
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and then inserting this into (3.10) gives

‖φ̂(t)‖s ≤ 1
2γ

2MC2
1ε+O(ε2) +

(
1 + ε1/5

)
×[

1
6γ

2MC3
1ε

3/2t+O(ε2)t+ 1
4γMC2

1εt
2 +O(ε2)t+ 1

5 |g|K(γM)3t5 +O(t7)
]
.

In view of t ≤ C2ε
1/5, the first four terms in the brackets are O(ε17/10),

O(ε11/5), O(ε7/5), and O(ε11/5), and the last one is O(ε7/5). Therefore

‖φ̂(t)‖s ≤
(

1
2γ

2rNC2
1 + 1

5 |g|K(γrN)3C5
2

)
ε+O(ε7/5) . (3.13)

The relative error is obtained from this and (3.5),

‖φ̂(t)‖s
‖φ(t)‖s

≤
(

1
2γ

2C2
1 + 1

5 |g|Kγ
3(rN)2C5

2

)
ε+O(ε7/5).

4. Final remark

The analysis above uses strictly Hs(Rn) estimates and triangle inequalities
and does not address whether the time t = Cε1/5 is sharp. A future commu-
nication will include a comparison between EP and NLS for initial photon
data of order εα and for nonlinearities not just of order 3 but of any power
greater than 1.
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