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ABSTRACT

Variational methods are applied to the design of a two-dimensional lossless photonic crystal slab to optimize
resonant scattering phenomena. The method is based on varying properties of the transmission coefficient that
are connected to resonant behavior. Numerical studies are based on boundary-integral methods for crystals
consisting of multiple scatterers. We present an example in which we modify a photonic crystal consisting of an
array of dielectric rods in air so that a weak transmission anomaly is transformed into a sharp resonance.
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1. OVERVIEW

Resonant electromagnetic scattering behavior in photonic crystal slabs (as sheets, films, or walls) is closely
connected to anomalous behavior of the transmission of energy through them. It has been observed empirically
and through numerical simulations that leaky waveguide modes, Fabry-Perot bandgap resonances, and other
resonant phenomena coincide in the frequency domain with narrow regions of enhanced transmission or reflection
of incident waves (see Refs. 1, 2, 3, and 4).

In this report, we develop a method for designing infinite periodic photonic crystal slabs that have certain
desired electromagnetic resonant properties. Motivated by the connection between resonant behavior and trans-
mission, our method focuses on modifying or optimizing those properties of a photonic crystal slab that have a
relation to its transmission coefficient. We do this by developing the variational calculus of the transmitted en-
ergy as a function of the material parameters. We restrict our analysis to lossless materials in a two-dimensional
reduction, in which the design parameters are the dielectric permittivity ε, the magnetic permeability µ, and the
structure of the crystal.

Our numerical methods are based on free Green’s functions and boundary integrals and are therefore suited
to crystals whose period consists of a finite number of disjoint scatterers with smooth boundaries. In particular,
we apply the variational calculus to the manipulation of resonant properties of crystals that are built of circular
dielectric rods embedded in a contrasting dielectric medium.

Cox and Dobson (Refs. 5 and 6) have devised a gradient-search method for optimizing and creating bandgaps
for two-dimensional photonic crystals that are infinite in both directions. This is based on the generalized gradient
of the bandwidth derived from the variational calculus of the dispersion relation of the periodic structure.
Resonant scattering behavior in photonic crystal slabs is known to be related to complex dispersion relations
(Ref. 4): source fields at real frequencies near a complex eigenvalue produce resonant scattering in the crystal
and enhanced or inhibited transmission. A method based on the manipulation of these dispersion relations holds
promise for engineering crystal slabs with desired resonant properties. In this study, we approach the problem
by manipulating the transmission as a function of the structure and material properties of dielectric crystals.
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2. THE MATHEMATICAL FRAMEWORK

Our photonic crystal slab consists of an array of lossless rods perpendicular to the xy-plane embedded in a
lossless medium of contrasting dielectric permittivity ε and magnetic permeability µ. The array is periodic
in the y direction and truncated to a finite width in the x direction. In a cross-section (Fig. 1), one period
of the structure consists of a finite number of domains Dj , j = 1, . . . , n, with boundaries ∂Dj , and we put
D = ∪n

j=1Dj . We assume that each rod, as well as the exterior medium is homogeneous. We consider free
time-harmonic electromagnetic fields that are polarized so that either the electric field points out of the plane
and the magnetic field is transverse to the rods (the transverse magnetic, or TM, case) or the magnetic field
points out of the plane (the TE case). In either case, we denote the out-of-plane component by ψ(x, y)e−iωt,
where ω is the reduced frequency∗, and the Maxwell equations reduce to the Helmholtz equation

∇2ψ + εµω2ψ = 0.

This equation holds in the interiors of the regionsDj and in the exterior medium, where the values of ε and µ take
on different constant values. In the TM case, the Maxwell equations imply the following matching conditions for
the interior and exterior limiting values of the electric field component ψ on ∂D.

ψint = ψext

µext∂nψint = µint∂nψext

In the TE case, µext and µint are replaced by εext and εint, so it is sufficient to work out the analysis for the TM
case.

We assume further that the field ψ is pseudoperiodic in y, that is

ψ(x, y) = ψ̃(x, y)eiβy,

in which ψ̃(x, y) has period 2π in the variable y. Such fields are called Bloch waves. The pseudo-periodicity allows
us to restrict the analysis to one period of the structure, which is the strip S = {(x, y) : −∞<x<∞, 0≤y≤2π}
(Fig. 1).

A pseudo-periodic radiating fundamental solution of the Helmholtz equation in a homogeneous medium (ε
and µ constant) is given by G(x− x̂, y − ŷ), where G(x, y) satisfies

∇2G+ εµω2G = −

∞∑

k=−∞
δ(x, y − 2πk)e2πkiβ .

For values of β and ω such that εµω2 − (m+ β)2 6= 0 for all integers m, its Fourier form is

G(x, y) = −
1

4π

∞∑

m=−∞

1

νm

exp (νm|x| + i(m+ β)y) .

The Green’s function is built of a finite number of propagating plane-wave modes, for which νm = iκm,
κm > 0, m = m1, . . . ,m2, and infinitely many decaying (evanescent) modes, for which νm < 0. The Green’s
function, together with Green’s identities reduce much of the theory of the Helmholtz equation to boundary
integrals and shows us that the asymptotic behavior of bounded solutions in the strip S as |x| → ∞ is simply a
superposition of plane waves traveling to the right and left:

ψ ∼

m2∑

m=m1

(
a±me

iκmx + b±me
−iκmx

)
ei(m+β)y (x → ±∞)

∗We define the reduced frequency by ω = fL/c, where c is the speed of light, L is the period of the structure, and f
is the frequency in cycles per time. The reduced spatial variables (x, y) are related to the physical variables (X,Y ) by
(x, y) = 2π(X,Y )/L.
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Figure 1. A cross-section of a photonic crystal slab consisting of an array of homogeneous dielectric rods standing
perpendicular to the xy-plane. The rod structure is periodic in the y-direction, with period 2π, and extends indefinitely
as y → ±∞. The rod structure is finite in the x-direction. Exterior to the rods is a homogeneous material of contrasting
dielectric permittivity extending to infinity to the right and left. Pseudo-periodic fields in the plane can be analyzed in
the strip S = {(x, y) : −∞<x<∞, 0≤y≤2π} consisting of a single period of the dielectric permittivity function.

The solution approaches the asymptotic form exponentially as |x| → ∞.

In the scattering problem that we study in this paper, a source field incident upon the slab at an angle θ
from the left is given:

ψinc = eiκm̄xei(m̄+β)y,

where m̄ is an integer such that (m̄ + β)2 < εµω2. This is a plane wave whose angle of incidence with the slab
is θ= arcsin m̄+β√

εµω
. β can always taken to lie in the interval [−1/2, 1/2), and m̄ = 0 and β = 0 corresponds to

normal incidence.

The total field ψ has the asymptotic form

ψ ∼ eiκm̄xei(m̄+β)y +

m2∑

m=m1

rme
−iκmxei(m+β)y (x → −∞)

ψ ∼

m2∑

m=m1

tme
iκmxei(m+β)y (x→ ∞),

in which rm and tm are the coefficients of the modes of the fields reflected by the slab and transmitted through
it, respectively.

3. THE VARIATIONAL CALCULUS

Let x0 be any positive number large enough so that D is contained in the truncated strip Ω = {(x, y) : −x0 <
x < x0, 0 ≤ y ≤ 2π}; let Γ− and Γ+ denote the left and right boundaries of Ω: Γ± = {(±x0, y) : 0 ≤ y ≤ 2π};
put Γ = Γ− ∪ Γ+; and let n denote the outward-pointing normal vector to Γ.



Let ψ be a pseudo-periodic solution of the Helmholtz equation with TM matching conditions:





∇2ψ + εµω2ψ = 0 away from ∂D

ψint = ψext

µext∂nψint = µint∂nψext



 on ∂D

ψ = ψ̃eiβy, ψ̃ 2π-periodic in y.

(1)

Let λ be a smooth pseudo-periodic function in the plane: λ = λ̃eiβy, with λ̃ 2π-periodic in y. Multiplying the
Helmholtz equation in (1) by µ−1λ, integrating by parts, and using the matching conditions, yields

∫

Ω

(
−µ−1∇ψ · ∇λ+ εω2ψλ

)
dA+

∫

Γ

µ−1λ∂nψ ∂s = 0 (2)

The requirement that (2) hold for all λ and truncated strips Ω is a weak formulation of the Helmholtz equation
with the matching and boundary conditions given in (1) (see, for example, Ref. 7). It is equivalent to the system
(1) for continuously twice-differentiable functions ψ with well-defined limiting values on ∂D, that is, it implies
the Helmholtz equation and automatically enforces the matching and pseudo-periodicity conditions.

We now state the problem of the scattering of a pseudo-periodic source field exp[i(κm̄x+(m̄+β)y)] incident
upon the slab from the left:





∫

Ω

(
−µ−1∇ψ · ∇λ+ εω2ψλ

)
dA+

∫

Γ

µ−1λ∂nψ ds = 0

for all pseudoperiodic λ and truncated strips Ω

ψ ∼ eiκm̄xei(m̄+β)y +
∑m2

m=m1
rme

−iκmxei(m+β)y (x → −∞)

ψ ∼
∑m2

m=m1
tme

iκmxei(m+β)y (x → ∞)

(3)

The complex numbers rm and tm are the coefficients of the reflected and transmitted radiating plane waves.

The time-averaged energy flow of the transmitted field through Γ+ divided by the energy flow of the incident
field is

T =
1

2πκm̄

=

∫

Γ+

ψ∂nψ ds, (4)

which is independent of the location of Γ+. We call this the transmission coefficient. The energy flow is computed
as the real part of the complex time-harmonic Poynting vector.

We think of ψ as depending on the material properties ε and µ and T as a function of ψ and consider
the response of T to variations in ε and µ for a fixed frequency and angle of incidence. Thus, the incident
field exp[i(κm̄x + (m̄ + β)y)] remains fixed but the reflected and transmitted fields will vary with the material
parameters.

We derive the variational relations associated to this scattering problem by subtracting (3) and (4) from the

equations obtained by inserting into (3) and (4) the perturbed quantities ε+ ε̂, µ−1 + µ̂−1, ψ + ψ̂ and T + T̂ in
place of ε, µ−1, ψ, and T :





∫

Ω

[
−µ̂−1

(
∇ψ + ∇ψ̂

)
· ∇λ+ ε̂ω2

(
ψ + ψ̂

)
λ
]
dA +

+

∫

Ω

(
−µ−1∇ψ̂ · ∇λ+ εω2ψ̂λ

)
dA+

∫

Γ

µ−1λ∂nψ̂ ds = 0

ψ̂ ∼
∑m2

m=m1
r̂me

−iκmxei(m+β)y (x → −∞)

ψ̂ ∼
∑m2

m=m1
t̂me

iκmxei(m+β)y (x → ∞),

(5)



T̂ =
1

2πκm̄

=

∫

Γ+

(
ψ∂nψ̂ + ψ̂∂nψ + ψ̂∂nψ̂

)
ds. (6)

We have assumed that the support of µ̂−1 is inside Ω so that it does not contribute to the boundary integral
along Γ.

We now seek a function λ that represents the variation of the transmission functional. This means that λ is
chosen so that the part of (6) that is linear in ψ̂ is equal to the imaginary component of the linear part of (5)

that involves ψ̂ but not ε̂ or µ̂−1. Thus, we seek λ such that, for all perturbations ψ̂ satisfying the asymptotic
conditions in (5),

=

[∫

Ω

(
−µ−1∇ψ̂ · ∇λ+ εω2ψ̂λ

)
dA+

∫

Γ

µ−1λ∂nψ̂ ds

]
= µ−1

ext =

∫

Γ+

(
ψ∂nψ̂ + ψ̂∂nψ

)
ds. (7)

(We have multiplied T̂ by the constant 2πκm̄µ
−1
ext for convenience.) Once we have found such a function λ, we

use (5) and (6) to deduce that

T̂ =
µext

2πκm̄

=

∫

Ω

[
µ̂−1∇ψ · ∇λ− ε̂ω2ψλ

]
dA + h.o.t., (8)

where “h.o.t.” refers to the higher order terms that are quadratic in the perturbation. This equation gives T̂ in

terms of ε̂ and µ̂−1. We remark that both sides of (7) are independent of the truncation boundary Γ, assuming
that the perturbations ε̂ and µ̂ are contained in Ω. That the left-hand side is independent of Γ is evident from
(5). That the right-hand side is independent of Γ is seen as follows: T̂ in equation (6) is (a constant multiple of)

the difference of the energy flows of ψ and ψ + ψ̂ through Γ+, which is independent of the x-value of Γ+. The

quadratic term =
∫
Γ+
ψ̂∂nψ̂ ds is also independent of Γ+: ψ̂ is a radiating pseudo-periodic field; it has a Fourier

expansion

ψ̂ =

∞∑

m=−∞
ame

νmxei(m+β)y,

where νm = iκm for the finite number of propagating modes and νm < 0 for the rest, and we compute

=

∫

Γ+

ψ̂∂nψ̂ ds =

m2∑

m=m1

κm|am|2,

which is independent of x.

We now show that a solution λ to the following adjoint problem satisfies (7):




∫

Ω

(
−µ−1∇φ · ∇λ+ εω2φλ

)
dA+

∫

Γ

µ−1φ∂nλ ∂s = 0

for all pseudoperiodic φ and truncated strips Ω

λ ∼
∑m2

m=m1
τme

iκmxei(m+β)y (x→ −∞)

λ ∼
∑m2

m=m1
tme

iκmxei(m+β)y +
∑m2

m=m1
ρme

−iκmxei(m+β)y (x → ∞)

(9)

This is an “antiradiating” scattering problem, in which the source field is a sum of plane waves traveling to the
right, equal to the transmitted field in the scattering problem for ψ, and the “scattered field” is antiradiating.
The problem can also be interpreted in a physical sense if we use the time harmonic factor eiωt instead of e−iωt.
Then the problem for λ is just the scattering problem in which the transmitted field of ψ is reversed and sent
back toward the slab from the right. The left-hand side of (7) can now be rewritten and calculated using (9):

=

[∫

Ω

(
−µ−1∇ψ̂ · ∇λ+ εω2ψ̂λ

)
dA+

∫

Γ

µ−1λ∂nψ̂ ds

]
=

= =

∫

Γ

µ−1
(
λ∂nψ̂ − ψ̂∂nλ

)
ds = =

(
4πiµ−1

ext

m2∑

m=m1

κmtmt̂m

)
. (10)
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Figure 2. The far-field asymptotic behavior of the solution ψ to the scattering problem (3), the perturbed field ψ̂, and
the solution λ to the adjoint scattering problem (9).

On the other hand, we compute the right-hand side of (7) using the asymptotics in (3) and (5):

µ−1
ext =

∫

Γ+

(
ψ∂nψ̂ + ψ̂∂nψ

)
ds = µ−1

ext =

∫

Γ+

(
ψ∂nψ̂ − ψ̂∂nψ

)
ds = =

(
4πiµ−1

ext

m2∑

m=m1

κmtmt̂m

)
.

Thus, we have shown that if λ satisfies problem (9), then (7) holds for all perturbations ψ̂.

A word about the calculations of the integrals over Γ and Γ+ that we have just performed: Each is a
combination of integrals of the form ∫ 2π

0

(
φ1∂xφ2 − φ2∂xφ1

)
dy,

in which φ1 and φ2 are of the form

φ =

∞∑

m=−∞
cme

νmxei(m+β)y,

where νm = iκm if the oscillatory modes propagate is to the right and νm = −iκm if they propagate to the left,
and νm is real for the rest of the modes. Let am be the coefficients for φ1 and bm the coefficients for φ2. Simple
computation yields

∫ 2π

0

(
φ1∂xφ2 − φ2∂xφ1

)
dy =

{
±4πi

∑m2

m=m1
κmambm if φ1 and φ2 propagate in the same direction,

0 if φ1 and φ2 propagate in opposite directions.

Using this rule and the diagram of asymptotics in Figure 2, the calculations above follow easily.

We now specialize the variational formula (8), which gives the first variation of T as a function of ε and µ,
to specific classes of variations ε̂ and µ̂.

3.1. Variation of the Values of ε and µ

Suppose that a period of the crystal slab consists of components {Dj}
n
j=1 with dielectric and magnetic constants

εj and µj and exterior constants εext and µext. Let ε̂j and µ̂−1
j be perturbations of εj and µ−1

j , keeping the



boundaries of the domains Dj fixed. Then (8) gives

T̂ ≈
µext

2πκm̄

=
n∑

j=1

[
µ̂−1

j

∫

Dj

∇ψ · ∇λ dA − ε̂jω
2

∫

Dj

ψλ dA

]

=
µext

2πκm̄

=
n∑

j=1

[
µ̂−1

j

(
µjεjω

2

∫

Dj

ψλ dA −

∫

∂Dj

λ∂nψ ds

)
− ε̂jω

2

∫

Dj

ψλ dA

]
, (11)

in which “≈” means equal to leading (linear) order in the variations ε̂j and µ̂−1
j . The last equality is a result of

integration by parts.

3.2. Variation of the Boundaries

Now suppose that the constants εj and µj are fixed and that vj is a vector field on the boundary ∂Dj . Let h be

a small positive number, and let T + T̂ be the transmission due to scattering by the perturbed crystal, in which
the jth component has boundary defined by allowing ∂Dj to flow along the vector field vj for a distance of h.
Then (8) gives

T̂ =
µext

2πκm̄

=
n∑

j=1

∫

D̂j

[
±
(
µ−1

j − µ−1
ext

)
∇ψ · ∇λ ∓ (εj − εext)ω

2ψλ
]
dA + o(h),

where D̂j is the region that passed from exterior to interior, in which case the upper sign is taken, or from
interior to exterior, in which case the lower sign is taken. Taking the limit as h → 0, we obtain the variational
gradient of T with respect to variations v = {vj}

n
j=1 of the boundary ∂D:

δT

δ(∂D)
= lim

h→0

T̂

h
=

µext

2πκm̄

=

n∑

j=1

∫

∂Dj

[(
µ−1

j − µ−1
ext

)
∇ψ ·∇λ − (εj − εext)ω

2ψλ
]
vj ·n ds (12)

3.3. Variation of Circular Components

We now specialize (12) further and take the ∂Dj to be circles and compute the gradient of T with respect to
their radii rj and centers (xj , yj). If we let vj = n, then vj · n = 1, and (12) gives

∂T

∂rj
=

µext

2πκm̄

=

n∑

j=1

∫

∂Dj

[(
µ−1

j − µ−1
ext

)
∇ψ ·∇λ − (εj − εext)ω

2ψλ
]
ds. (13)

Letting vj = ~ı, the unit normal vector pointing in the direction of the x-axis, and the vj = ~, the unit normal
vector pointing in the direction of y-axis, we obtain

∂T

∂xj

=
µext

2πκm̄

=
n∑

j=1

∮

∂Dj

[(
µ−1

j − µ−1
ext

)
∇ψ ·∇λ − (εj − εext)ω

2ψλ
]
dy, (14)

∂T

∂yj

= −
µext

2πκm̄

=
n∑

j=1

∮

∂Dj

[(
µ−1

j − µ−1
ext

)
∇ψ ·∇λ − (εj − εext)ω

2ψλ
]
dx, (15)

where the integration is taken counter-clockwise.

4. NUMERICAL METHODS

In this Section, we describe the algorithm and numerical methods by which we alter and optimize resonant
behavior in a crystal slab and present an example. The basic algorithm goes as follows:



1. Start with a structure whose transmission coefficient T (β, ω) exhibits resonant features to be optimized.

2. Choose a set of frequencies and directions in which the transmission or extrema in the transmission coeffi-
cient should move.

3. Find the variational gradient of the transmission with respect to the structural parameters.

4. Compute the smallest change in the parameters that gives the desired change in the transmission.

5. Increment the structure by the computed amount.

6. Update the set of frequencies if necessary.

7. Go back to 3.

In our example, we begin with a square lattice of circular dielectric rods with ε = 12 and µ = 1 in air
(ε = µ = 1), truncated to a slab three rods thick (Fig. 4), with a periodic channel running through it. The
channel is created by adding an additional horizontal strip of air space between every three rows of rods. Thus,
the new period in the y-direction is the “supercell” consisting of a 3×3 array of rods plus the additional horizontal
strip.

Figure 3 shows the transmitted energy through the initial structure as a function of frequency, where the
source field is a plane wave normally incident to the slab from the left. The region of low transmission from
about ω = 0.9 to about ω = 1.7 coincides approximately with the bandgap for the initial square lattice. The
periodic channel is the cause of the anomalous features—sharp spikes and the shallow hump, marked with an
arrow, at the right end of the region. This hump corresponds to a mode going through the channel (see Ref. 3 for
some discussion on such modes). We wish to modify the rod structure so as to sharpen this resonant scattering
behavior, leaving the angle of incidence fixed. Figure 4 shows the modified structure and the resulting resonant
spike in the transmission coefficient.

We use this example to explain our numerical methods for carrying out the algorithm.

1. To compute the transmission coefficient, we must solve the scattering problem (3), or equivalently (1),
numerically. We do this using the method of boundary integrals based on Green’s identities and the
pseudo-periodic Green’s function. Details can be found in Ref. 3.

2. We choose the frequency at which the peak of the transmission anomaly occurs, where we seek to increase
the transmission, and two neighboring frequencies, where we seek to decrease the transmission.

3. We choose to restrict our admissible structures to arrays of circular rods with a fixed dielectric contrast
of 12. Our design variables are the radii and centers of the rods. We compute the variational gradient
by solving the scattering problems (3) and (9) numerically and computing the integrals (13), (14), and
(15). We denote the gradient of the transmission with respect to these parameters by ∇~pT , where ~p is the
27-dimensional vector of (x, y)-coordinates of the centers and the radii of the nine rods in the supercell.

4. Let M denote the 3 × 27 matrix whose rows are equal to ∇~pT at the three chosen frequencies, and let ~b
denote the vector of desired increments in T at these frequencies. We compute the smallest vector ∆~p that
produces the change ~b by solving the 3 × 3 system

MM t~x = ~b

for x and putting
∆~p = M t~x.
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Figure 3. The percentage of energy T of a plane wave source field that is transmitted through a slab is graphed as a
function of the reduced frequency ω. Two periods of the slab are shown in the first panel of Figure 4. The periodic
channel running through the slab is responsible for the anomalies in the transmission, including the hump indicated by
the arrow, which we have sharpened by modifying the slab (Fig. 4).

6. As the structure is modified, the peak of the transmission anomaly may shift to a different frequency. We
compute this shift as follows. Put T1 = ∂T/∂ω. The peak occurs when T1 = 0, so we need to change ω by
an amount ∆ω that satisfies

∂T1

∂ω
∆ω + ∇~pT1 · ∆~p = 0,

or, solving for ∆ω,

∆ω = −

(
∂T1

∂ω

)−1

∇~pT1 · ∆~p.
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Figure 4. Two periods of the original photonic crystal slab (first panel) and the modified slab (second panel). The
transmission coefficient of the original slab is shown as a dotted curve and that of the modified slab as a solid curve. The
modification has transformed the shallow hump into a sharp resonance.


