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Abstract – We study a discrete prototype of anomalous electromagnetic scattering associated with the
interaction of guided modes of a periodic scatterer and plane waves incident upon the scatterer.

I. INTRODUCTION

In a great many applications in the field of photonics, the propagation of electromagnetic waves in periodic
slab structures is of central importance. In this paper, we analyze a discrete prototype. Our structure consists of a
two-dimentional lattice of uniform masses and spring constants, which models the ambient space, and a periodic
one-dimentional lattice, modeling a periodic slab scatterer, which is coupled to the 2D lattice along a line. The
phenomenon that concerns us is anomalous transmission of energy across the periodic scatterer, and specifically,
transmission anomalies that result from the interaction of plane-wave sources with guided modes of the scatterer.
By transmission anomalies, we refer to sharp peaks and dips in the graph of the transmission coefficient as a
function of frequency. A guided mode is a field that is exponentially localized to the scatterer, and the phenomenon
of anomalous transmission occurs when such a mode is non-robust. This means that the mode exists at a specific
frequency and wave number but ceases to exist at any nearby frequency under a perturbation of the wave number.

Such transmission anomalies have been observed in the scattering of electromagnetic fields by metal films as
well as by dielectric slabs ([1], [4]) and appear more generally in problems of scattering of pane waves by a periodic
slab structure, whether in electromagnetics, acoustics, elasticity, or lattice dynamics, and for both classical wave
equations and Schrödinger equations. We have chosen to analyze a lattice model with Schrödinger equation of
evolution because it is a simple prototype that illuminates the phenomenon of anomalous electromagnetic scattering
through simple ideas and explicit calculations.

II. MATHEMATICAL FORMULATION

The dynamics of waves in our discrete structure are defined by a Schrödinger equation with generator given by
the (minus) discrete uniform Laplacian Ω2 in the 2D lattice, a periodic discrete Laplacian Ω1 in the 1D lattice,
and a simple coupling Γ between these two systems. The complex fields are denoted by {umn}∞m,n=−∞ in the 2D
lattice and {zn}∞n=−∞ in the 1D lattice (Figure, left):

i
dzn
dt

= (Ω1z)n + (Γu)n, (1)

i
dumn
dt

= (Γ†z)mn + (Ω2u)mn. (2)

The coupling operator Γ is defined through its adjoint by

(Γ†z)mn = γnzn for m = 0 and (Γ†z)mn = 0 for m 6= 0, (3)

and Ω1 is given by

(Ω1z)n = − kn√
MnMn+1

zn+1 +
(kn + kn−1)

Mn
zn −

kn−1√
MnMn−1

zn−1. (4)

The masses Mn, spring constants kn, and coupling constants γn are periodic of period N in n. Because of the
self-adjointness of Ω1 and Ω2 and the use of Γ and Γ† as the coupling operator, the coupled system is conservative.

Replacing the fields {umn} and {zn} by {umne−iωt} and {zne−iωt}, we obtain the corresponding equations
for harmonic fields,

ωzn = (Ω1z)n + (Γu)n, (5)
ωumn = (Γ†z)mn + (Ω2u)mn. (6)



We shall consider pseudo-periodic solutions to the system (5), with Bloch wave number κ in the n-direction. Such
fields have finite Fourier decompositions in the n-variable:

zn =
N−1∑
`=0

c`e
2πiκ+`

N n,


umn =

N−1∑
`=0

(a−` e
−2πiθ`m + a+

` e
2πiθ`m)e2πiκ+`

N n, m < 0,

umn =
N−1∑
`=0

(b−` e
−2πiθ`m + b+` e

2πiθ`m)e2πiκ+`
N n, m > 0,

(7)

where θ` is the horizontal component of a two-dimensional wave vector in the 2D lattice, determined by the
dispersion relation for the operator Ω2

ω = 4− 2 cos(2πθ`)− 2 cos(2πφ`), (8)

and φ` = (κ+`)/N . Those values of ` for which θ` is real correspond to propagating Fourier harmonics (diffractive
orders), and those values of ` for which θ` is imaginary correspond to evanescent harmonics. The square [0, 1]×
[0, 8], which consists of real pairs (κ, ω) with κ in the Brillouin zone [0, 1] of wave numbers and ω in the spectrum
[0, 8] of Ω2, is divided into regions according to the number of propagating Fourier harmonics (Figure, middle).

The scattering problem consists of prescribing a plane-wave source field (incident on the scatterer from the
left) uinc

mn = e2πiκ+¯̀
N ne2πiθ¯̀m for some fixed value of ` = ¯̀ for which θ` is real and solving for the total field

{zn}, {umn}. One requires that the difference of the total field and the incident field be outgoing. The problem
can be reduced to a system of equations for the Fourier coefficients c`, a−` , and b+` ,

B(κ, ω)
−→
X =

−→
F , (9)

where B is a 3N×3N matrix, the vector
−→
F represents the source field (with coefficients a+

` = δ`¯̀), and the vector
−→
X represents the reflected and the transmitted fields a−` and b+` (necessarily b−` = 0 by our choice of source field).

III. GUIDED MODES AND ANOMALOUS TRANSMISSION

A (generalized) guided mode is a nonzero solution of the sourceless equation

B(κ, ω)
−→
X = 0, (10)

in which ω and κ are in general complex-valued. The pairs (κ, ω) for which such a solution exists satisfy the
dispersion relation det(B(κ, ω))=0.

Let us illustrate the phenomenon of anomalous transmission near parameters (κ0, ω0) of a true guided mode
through a numerical computation of scattering for a structure in which N = 2, in the (κ, ω)-regime in which one
of the Fourier harmonics is propagating and the other is evanescent (see the Figure). We use a and b to denote the
coefficients of the propagating harmonic in the reflected and transmitted fields, respectively. The conditions for
existence of a generalized guided mode reduce to

(γ̄1 − γ̄0)
(γ̄0 + γ̄1)

(
2
M1
− 2
M0

)
− γ̄0γ̄1(γ0 + γ1)

(γ̄0 + γ̄1)i sin(2πθ1)
+ 2ω − 2

M0
− 2
M1
− 4 cos(πκ)√

M0M1

= 0, (11)

(γ̄1 − γ̄0)
(γ̄0 + γ̄1)

(
2ω − 2

M0
− 2
M1

+
4 cos(πκ)√
M0M1

)
+

γ̄0γ̄1(γ1 − γ0)
(γ̄0 + γ̄1)i sin(2πθ1)

+
2
M1
− 2
M0

= 0, (12)

where we take κ ∈ [0, 1/2) and ω ∈ (2−2 cos(πκ), 2+2 cos(πκ)) and sin(2πθ1) = i
√

(2− ω
2 + cos(πκ))2 − 1.

This region is shown in the Figure, and the dotted curve in that region is a graph of Re (ω) in the dispersion relation.
The solid dot shows an isolated pair (κ0, ω0) on this curve for which ω is real. This is the only point on this part of
the dispersion curve for which the generalized mode is a true guided mode (decaying exponentially away from the
1D lattice), for we can prove the following analogue of Theorem 5 in [3]: If (κ, ω) satisfies det(B(κ, ω))=0 and
κ is real, then Imω ≤ 0, with equality if and only if the associated generalized guided mode decays exponentially
away from the 1D lattice (in which case it is a true guided mode). This means that the guided mode at (κ0, ω0) is
nonrobust with respect to perturbations of κ from κ0.



Figure. Left: Coupled lattices. Middle: The number of propagating harmonics for N = 2. The dashed line is the real part of
the complex dispersion relation in the regime of one propagating harmonic for M0 = 2, M1 = 1, γ0 = 1 and γ1 = 7. The
solid dot is an isolated point (κ0, ω0) at which ω0 is real. Right: Transmission coefficient for various values of κ near κ0.

The explicit nature of the dispersion relation makes it possible to obtain results concerning existence of guided
modes. In particular, in the case of period 2, one can prove that if γ0 = γ1 or γ0 = −γ1, then there exist no true
guided modes.

The right-hand graphs in the Figure show that a sharp resonance emanates from the guided-mode frequency ω0

as the wave number κ is perturbed from κ0. The anomaly widens as κ becomes larger. Using analytic perturbation
theory as in [4], we derive a rigorous asymptotic formula for the anomaly that is independent of the period N and,
in fact, describes transmission anomalies in a very general setting of scattering by periodic slab structures. This
analysis is described in another work [5].

The graph of transmission indicates that the transmitted energy reaches a maximum of 100% and a minimum
of 0% on the anomaly. This has also been observed in numerical calculations of the transmission of energy of
electromagnetic fields across a lossless periodic dielectric slab [5]. In that case, a proof of this feature is still
unavailable. In our discrete model, we can prove that the transmission anomaly does indeed reach 100% and 0%
as a function of ω for values of κ in a neighborhood of κ0. This holds if the γi are real and N = 2, assuming the
generic conditions

∂ det(B)
∂ω

(κ0, ω0) 6= 0,
∂a

∂ω
(κ0, ω0) 6= 0,

∂b

∂ω
(κ0, ω0) 6= 0. (13)

The proof involves first explicit calculations that reduce the dispersion relation to a real-valued function of real
pairs (κ, ω), and then an application of the Implicit Function Theorem.
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