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Abstract. Using boundary-integral projections for time-harmonic electromagnetic (EM) fields,
and their numerical implementation, we analyze EM resonance in slabs of two-phase dielectric pho-
tonic crystal materials. We characterize resonant frequencies by a complex Floquet–Bloch dispersion
relation ω = W (β) defined by the existence of a nontrivial nullspace of a pair of boundary-integral
projections parameterized by the wave number β and the time-frequency ω. At resonant frequen-
cies, the crystal slab supports a source-free EM field. We link complex resonant frequencies, where
the imaginary part is small, to resonant scattering behavior of incident source fields at nearby real
frequencies and anomalous transmission of energy through the slab. At a real resonant frequency,
the source-free field supported by the slab is a bound state. We present numerical examples which
demonstrate the effects of structural defects on the resonant properties of a crystal slab and surface
waves supported by a dielectric defect.
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1. Overview. Photonic crystals are material structures with spatially periodic
electromagnetic (EM) properties. A two-dimensional (2D) dielectric photonic crystal
slab (Figure 1.1) has dielectric permittivity that does not vary in the z direction, is
constant beyond some finite value of |x|, and is periodic in y. The photonic crystal
slabs in our study consist of an array of circular homogeneous rods embedded in a
matrix of a contrasting dielectric permittivity.

It is well known that photonic crystals may act as resonators. In previous work
[1], [2], we investigated resonant behavior in photonic crystal slabs. In particular, a
periodic channel defect in a slab whose period cell is shown in Figure 7.3(3b) below
resulted in the appearance of narrow ranges of frequency values over which the steady-
state field in the crystal exhibited amplitudes that were many times greater than the
amplitude of the polarized, time and space harmonic incident EM source field [2]. The
dielectric materials that we consider have no losses or gains; thus the phenomenon is
due solely to resonant behavior in the scattering by the crystal. Over these narrow
frequency ranges, the transmission of energy through the slab is either enhanced or
inhibited, producing “spikes” in the transmission coefficient (as in Figures 7.1(5) and
7.3(3a) below). The exploitation of photonic crystal resonances in the engineering of
photonic devices has received much attention in the literature in recent years. See,
for example, [3] and [4] for applications to filters and transmission enhancement. The
connection between the structure of transmission dips and properties of quasi-guided
eigenmodes is investigated in [5] for square-patterned slabs on a substrate.
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RESONANCE IN PHOTONIC CRYSTALS 323

L The  strip   S

x

y

Fig. 1.1. A cross section of a photonic crystal slab consisting of an array of homogeneous
dielectric rods standing perpendicular to the xy-plane. The rod structure is periodic in the y-
direction, with period L, and extends indefinitely as y → ±∞. The rod structure is finite in the
x-direction. Exterior to the rods is a homogeneous material of contrasting dielectric permittivity
extending to infinity to the right and left. Pseudoperiodic fields in the plane can be analyzed in the
strip S = {(x, y) : −∞<x<∞, 0≤y≤L} consisting of a single period of the dielectric permittivity
function.

A connection between resonant frequencies and proper eigenvalues is known for
Helmholtz resonators. Beale [6] shows that the (complex) resonant frequencies of a
cavity in R

3 with an opening converge to the eigenvalues (bound state frequencies) of
the closed cavity as the opening disappears.

In the present study, we link resonant scattering behavior in dielectric photonic
crystal slabs to certain complex frequencies with a small imaginary part at which
the structure supports a source-free field (the term “source” is defined precisely in
section 4). These are Bloch fields ψ(x, y) = ψ̃(x, y)ei(βy−ωt), with ψ̃(x, y) periodic in
y and real wave number β. If a source-free field exists for a real value of ω, the structure
sustains a traveling or standing wave along the slab that decays exponentially as |x| →
∞ so that the slab acts as a waveguide. We call such a field a localized field or a bound
state, localization being in the strip S = {(x, y) : −∞<x<∞, 0≤y≤L}, consisting
of one period of the dielectric permittivity function (Figure 1.1). Frequencies at which
the crystal slab supports a source-free field are called resonant frequencies, and they
are described by a dispersion relation ω =W (β). We take 	(ω) > 0 and prove that

(W (β)) ≤ 0 with equality if and only if the corresponding source-free field is a bound
state. If 
(W (β)) < 0, then the field grows exponentially as |x| → ∞, but decays in
time.

In numerical experiments with several structures, we find isolated values of the
wave number β for which the frequency ω = W (β) appears to be real, giving rise to
an isolated bound state. At nearby values of β, W (β) attains an imaginary part, and
sources at real frequencies near 	(W (β)) produce resonant scattering behavior. At
these frequencies, the transmission coefficient exhibits anomalous behavior (see Figure
7.1). We also find a wave number range over which we show that the imaginary part
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324 STEPHEN P. SHIPMAN AND STEPHANOS VENAKIDES

of the frequency is exactly zero (see Figure 7.2). Indeed, a slab nine rods thick yields
a real branch of the dispersion relation; all but the first rod have equal radii, and
the radius of the first rod is larger. The wave modes sustained by this structure are
mainly supported on the larger rod, demonstrating that waves can exist on a defective
surface of an otherwise perfect crystal.

Following the Floquet–Bloch theory, our mathematical investigation restricts the
analysis to a single period of the dielectric permittivity considered as a function of x
and y. Thus the problem is posed on the strip S = {(x, y) : −∞<x<∞, 0≤y≤L},
where L is the period in the y direction, as illustrated in Figure 1.1. Pseudoperiodic
boundary conditions then apply to the fields: ψ(x, L) = eiβLψ(x, 0) and ∂yψ(x, L) =
eiβL∂yψ(x, 0) for all values of x.

We use boundary-integral projections of Calderón’s type with pseudoperiodic
Green’s functions and Green’s identities on the strip S. In sections 3 and 4 we show
how these projections give rise to a system of two coupled integral equations that
relate the trace of the steady-state field and its normal derivative on the boundaries
of the rods to the trace of the source field and its normal derivative. The latter fields
constitute the forcing. The system is Fredholm of the second kind in the former fields;
that is, the integral operator involved is a compact perturbation of the identity.

The existence of a resonant frequency requires the existence of a nullspace of
the boundary-integral operator; the latter depends parametrically on the dielectric
structure and the parameters β (which we always assume to be real) and ω. To locate
resonant frequencies in section 7, we discretize the integral operator and search for
(β, ω) pairs for which it has an eigenvalue equal to zero. In this way, we calculate
numerically the dispersion relations ω=W (β). In some cases, ω is a real function of β,
so that the relation describes how the frequency of an x-localized wave traveling along
the slab depends on its Bloch wave number. In other cases, ω is a complex function
of β. We prove that, in this case, the corresponding fields become unbounded as
|x|→∞ (they decay as t→∞), and therefore do not represent bound states. They do,
however, force nearby real frequencies to exhibit resonant behavior. This phenomenon
is examined also in [5] using a scattering matrix for square-patterned slabs.

2. Free pseudoperiodic Green’s functions. We consider a lossless photonic
crystal that consists of an array of dielectric rods, each with the same constant dielec-
tric coefficient ε1 > 0, embedded in a matrix of a material with some other constant
dielectric coefficient ε0 > 0. The rods stand perpendicular to the xy-plane and do
not vary with z. The array is truncated to a finite width in the x-direction and ex-
tends periodically in the y-direction, with period 2π. Its planar cross section consists
of a finite union D of planar domains Dj (the cross sections of the rods) with C2

boundaries in the strip S = {(x, y) : 0 < y < 2π} that repeats periodically in the
y-direction. We let ∂S have an inward-pointing normal vector, and we let n(r) denote
the outward-directed normal vector to the boundary ∂D of D.

Let ψ(x, y)e−iωt be the out-of-plane component (electric or magnetic) of a polar-
ized time-harmonic electromagnetic field with nondimensionalized frequency1 ω in the
photonic crystal structure (it is constant in the z-direction). The Maxwell equations
then reduce to the Helmholtz equation

∇2ψ + ε1ω
2ψ = 0 (in D), ∇2ψ + ε0ω

2ψ = 0 (in S \ D̄)

1We use ω for the reduced time-frequency in this paper; it is equal to our k in [1] and [2]. It
relates to the physical frequency Ω (cycles per time) and period L by ω = ΩL/c, where c is the speed
of light.
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RESONANCE IN PHOTONIC CRYSTALS 325

and the matching conditions

lim
h→0

(ψ(r− hn(r)) − ψ(r+ hn(r))) = 0,(2.1a)

lim
h→0

(
∂ψ(r− hn(r))

∂n(r)
− ν

∂ψ(r+ hn(r))

∂n(r)

)
= 0,(2.1b)

on the boundary (r ∈ ∂D). In these equations, ∇2 = ∂2/∂x2 + ∂2/∂y2, ν = 1 in the
electric polarization case, and ν = ε1/ε0 in the magnetic polarization case.

We will consider Helmholtz fields ψ that are pseudoperiodic in y. This means
that, for some real number β, ψ = eiβyψ̃, where ψ̃ is periodic in y with the same
period (2π) as the crystal.

First, we present the fundamental pseudoperiodic solutions of the Helmholtz equa-
tion.

Theorem 2.1. Let ε and β be real numbers and ω a complex number such that,
for all integers m, εω2−(m + β)2 �= 0. For each integer m, let µm be defined by

µ2
m − (m + β)2 + εω2 = 0,

with 	(µm) < 0 for all but a finite number of values of m. Then the series

G(r) = − 1

4π

∞∑
m=−∞

1

µm
exp (µm|x| + i(m + β)y)

converges and is of class C∞ for all r = (x, y) ∈ R
2 \ {(0, 2πn) : n ∈ Z} and

∇2G + εω2G = −
∞∑

n=−∞
δ(x, y − 2πn)e2πniβ ,

where δ is the Dirac delta-function in R
2 with unit impulse at the origin.

Proof. We first consider the case in which 	(µm) ≤ 0 for all m ∈ Z. Then
the series defining G(r) converges to a tempered distribution on R

2. This is seen as
follows: Let φ(x, y) be a function of Schwartz class. Then, for m large enough so that
	(µm) < 0, we have

(2.2)

∣∣∣∣∫∫ 1

µm
exp(µm|x| + i(m + β)y)φ(x, y) dx dy

∣∣∣∣
≤ 1

|µm|
∫

e�(µm)|x|
∫

|φ(x, y)| dy dx ≤ −2A

|µm|	(µm)
,

where A is such that

sup
(x,y)∈R2

(1 + y2)|φ(x, y)| < A

(∫
(1 + z2)−1dz

)−1

.

Since 	(µm)/m = O(1) as m → ∞, the series for G(r) converges to a tempered
distribution.

Let Ĝ(s), where s = (s1, s2), be the Fourier transform of G(r):

Ĝ(s) = − 1

4π

∞∑
m=−∞

−2

s2
1 + µ2

m

δ(s2 − (m + β));
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326 STEPHEN P. SHIPMAN AND STEPHANOS VENAKIDES

[(∇2 + εω2)G]̂ (s) =
1

2π

∞∑
m=−∞

−s2
1 − (m + β)2 + εω2

s2
1 + µ2

m

δ(s2 − (m + β))(2.3)

= − 1

2π

∞∑
m=−∞

δ(s2 − (m + β))

=⇒ (∇2 + εω2)G = − 1

2π
δ(x)

∞∑
m=−∞

ei(m+β)y

= − 1

2π
δ(x)eiβy

∞∑
m=−∞

eimy = −δ(x)eiβy
∞∑

n=−∞
δ(y − 2πn)(2.4)

= −
∞∑

n=−∞
e2πniβδ(x, y − 2πn).

The result holds if we replace 1/µm exp(µm|x| + i(m + β)y) in G(r) with
−1/µm exp(−µm|x| + i(m + β)y) for a finite number of integers m, because this
amounts to adding a finite number of functions

ψm =
1

µm
(e−µm|x| + eµm|x|)ei(m+β)y =

1

µm
(e−µmx + eµmx)ei(m+β)y,

which satisfy (∇2 + εω2)ψm = 0.
Finally, we note that the ellipticity of ∇2 + εω2 implies that any distribution

solution on a domain must be a function of class C∞. Thus G(r) is of class C∞ on
R

2 \ {(0, 2πn) : n ∈ Z}.
For our purposes, we make the following choices of the sign of µm. For real values

of ω (such that (m + β)2 − εω2 �= 0 for all integers m), we choose µm such that G(r̂)
is a radiating Green’s function. Thus, for the finite number of consecutive integers m
such that (m + β)2 − εω2 < 0 (it is possible that there are no such values of m), we
take µm to lie on the positive imaginary axis; these values of m give the finite number
of outwardly propagating modes. For all other values of m, we take µm < 0; these
give the decaying modes.

In our investigations, we will consider continuous perturbations of ω into the
lower-half complex plane, and we allow the values of µm to vary analytically with ω.
As ω attains a negative imaginary part, the finite number of values of µm that gave
the propagating modes now attain a positive real part and therefore grow as |x| → ∞.
For all other values of m, µm attains a negative imaginary part.

Figure 2.1 shows the number of propagating modes for real values of β and ω.
Pairs (β, ω) for which there are no propagating modes and perturbations of these in
the imaginary ω direction admit no scattering (extended) EM fields in the strip S.

We will make use of the set of Helmholtz fields which, to the right and left of the
scatterer, are equal to a superposition of modes that build the Green’s functions G
that we defined in Theorem 2.1.

Definition 2.2. We say that a function ψ is in the class E(β, ω, ε) if its domain
contains {(x, y) : |x| > x∗} for some x∗ > 0 and

ψ(x, y) =

∞∑
m=−∞

A±
m exp (µm|x| + i(m + β)y) for ± x > x∗
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RESONANCE IN PHOTONIC CRYSTALS 327

0
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β = 1/2

β − axis

ω axissqrt (ε) −

β = −1/2

Fig. 2.1. The number of propagating modes for real values of β and ω. The pattern is repeated
periodically in β, with period 1. For fixed β and ω, there is a propagating mode for each m such
that |√εω| > |m + β|.

for some complex numbers A±
m, where µm =

(
(m + β)2 − εω2

)1/2
with the sign deter-

mination described above.
Remark. The role of the class E(β, ω, ε) is to continue analytically into the complex

ω-plane as |x| → ∞ the standard outgoing radiation condition that applies when
ω is real: E(β, ω, ε) contains the radiating fields when ω is real and their analytic
continuations into the complex ω-plane.

3. The boundary-integral projections. Let ξ ∈ H1(∂D) and η ∈ L2(∂D)
be given (H1 is the linear space of functions on ∂D with square-integrable arclength
derivatives), and denote ξ = (ξ, η)t. For any point r̂ in the strip S exterior to D,
define

ψ(r̂) =

∫
∂D

(
∂G(r̂− r)

∂n(r)
ξ(r) −G(r̂− r)η(r)

)
ds(r) (r̂ exterior to D).(3.1)

This field is an element of E(β, ω, ε). For r̂ ∈ D, define

ψ(r̂) =

∫
∂D

(
−∂G(r̂− r)

∂n(r)
ξ(r) + G(r̂− r)η(r)

)
ds(r) (r̂ ∈ D).(3.2)

Both fields satisfy the Helmholtz equation (in the variable r̂) in their respective do-
mains.

Let r̂ now be a point on ∂D, and consider the limits to r̂ of these exterior and
interior fields and their normal derivatives:

ψe(r̂) =

 ψe(r̂)

∂nψe(r̂)

 :=

 lim
h→0+

ψ(r̂+ hn(r̂))

lim
h→0+

∂ψ

∂n(r̂)
(r̂+ hn(r̂))

 ,

ψi(r̂) =

 ψi(r̂)

∂nψi(r̂)

 :=

 lim
h→0+

ψ(r̂− hn(r̂))

lim
h→0+

∂ψ

∂n(r̂)
(r̂− hn(r̂))
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328 STEPHEN P. SHIPMAN AND STEPHANOS VENAKIDES

These limits are again in H1(∂D) × L2(∂D). See the appendix for a more detailed
discussion of these limits.

The limit of the first-order normal derivatives of the Green’s function produces
singular contributions according to the Plemelj formula, and we obtain

ψe = 1
2 (I + H)ξ,

ψi = 1
2 (I −H)ξ,

in which H is an integral operator from H1(∂D) × L2(∂D) to itself defined by

(Hξ)(r̂) = 2


∫
∂D

(
∂G(r̂− r)

∂n(r)
ξ(r) −G(r̂− r)η(r)

)
ds(r)

lim
h→0

∫
∂D

∂G(r̂+ hn(r̂) − r)
∂n(r̂)∂n(r)

ξ(r)ds(r) −
∫
∂D

∂G(r̂− r)
∂n(r̂)

η(r)ds(r)

 .

(3.3)

H has the form

H

[
ξ

η

]
= 2

[
K −J

L −K ′

][
ξ

η

]
,

in which the entries of the matrix are integral operators on ∂D. The integral kernels
of J , K, and K ′ are G(r̂ − r), ∂G(r̂ − r)/∂n(r), and ∂G(r̂ − r)/∂n(r̂), respectively.
By integration by parts and using the identity

∂2G(r̂− r)
∂n(r̂)∂n(r)

+
∂2G(r̂− r)
∂s(r̂)∂s(r)

= −n(r̂) · n(r)(∂2
x + ∂2

y)G(r̂− r),

one can show that the integral kernel of L is

n(r̂) · n(r)εω2G(r̂− r) +
∂G(r̂− r)

∂s(r̂)

d

ds
,

where s is the arclength parameter and ∂G/∂s is a principal-value kernel (see the
proof of Theorem 2.1 in [2]).

Theorem 3.1. H is a bounded linear operator from H1(∂D)×L2(∂D) into itself,
the operators

Pe = 1
2 (I + H),

Pi = 1
2 (I −H)

are complementary projections, and

H2 = I.

Proof. Let us consider a solution ψ of ∇2ψ + εω2ψ = 0 defined in D that has
a continuous extension to D whose restriction to ∂D is in H1(∂D) and such that
limh→0− ∂ψ/dn(r)(r + hn(r)) exists and belongs to L2(∂D). Then Green’s identity
holds: For r̂ ∈ D,

ψ(r̂) =

∫
∂D

(
−∂G(r̂− r)

∂n(r)
ψ(r) + G(r̂− r)∂ψ(r)

∂n(r)

)
ds(r).(3.4)
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RESONANCE IN PHOTONIC CRYSTALS 329

Green’s identity says that (3.2) holds if we put ψ and ∂nψ in place of ξ and η, and
therefore

P 2
i (ξ) = Pi(ψi) = ψi = Pi(ξ),

and thus P 2
i = Pi.

Now let a solution ψ of ∇2ψ + εω2ψ = 0 such that ψ ∈ E(β, ω, ε) be defined in
S \D, and suppose that ψ has a continuous extension to D whose restriction to ∂D is
in H1(∂D) and such that limh→0− ∂ψ/dn(r)(r+hn(r)) exists and belongs to L2(∂D).
Again, Green’s identity holds: For r̂ ∈ S \D,

ψ(r̂) =

∫
∂D

(
∂G(r̂− r)

∂n(r)
ψ(r) −G(r̂− r)∂ψ(r)

∂n(r)

)
ds(r).(3.5)

The contribution from the upper and lower sides of the strip S cancel because of the
pseudoperiodicity of ψ and Gε. Straightforward calculation shows that the contri-
butions from vertical line segments truncating the strip on the left and right vanish
identically as the points of truncation tend to infinity, because both G and ψ are in
E(β, ω, ε). Again, we find that P 2

e = Pe by putting ψ and ∂nψ in place of ξ and η
in (3.1).

It is straightforward to calculate that H2 = I.
The operators in Theorem 3.1 are boundary-integral projections of Calderón’s type.

See Calderón [7], Seeley [8], and Ryaben’kii [9]. Nédélec [10] derives the Calderón’s
projections for the full harmonic Maxwell equations for a bounded domain in R

3.

4. The Fredholm system of boundary-integral equations. We describe
the EM scattering by a photonic crystal slab in terms of the decomposition given by
the boundary-integral projections. We have seen that any pair of functions (ξ, η)t = ξ
in H1(∂D) × L2(∂D) can be expressed uniquely as the sum of the limiting values to
∂D of an interior Helmholtz field and its normal derivative and an exterior Helmholtz
field in E(β, ω, ε) and its normal derivative.

Definition 4.1. An exterior-source field ξ = φε0i has zero exterior component
in the above decomposition over the exterior medium (ε = ε0); that is,

P ε0
e φ

ε0
i = 0, P ε0

i φ
ε0
i = φε0i .

An interior-source field ξ = φε1e has zero interior component in the above decomposi-
tion over the interior medium (ε = ε1); that is,

P ε1
i φ

ε1
e = 0, P ε1

e φ
ε1
e = φε1e .

In other words, when the sources are in the exterior, the source field extends
from ∂D to a Helmholtz field over the medium ε0 in the interior. Similarly, when the
sources are in the interior, the source field extends from ∂D to a Helmholtz field of
class E(β, ω, ε1) over the medium ε1 in the exterior.

Remark. In our numerical calculations of transmission in section 7, we use plane-
wave source fields from the left at real frequencies ω; that is,

ψε0i = exp
(
i
√

ε0ω2 − (m + β)2 x + i(m + β)y
)
, ψε1e = 0.

A solution to the scattering problem has total exterior and interior fields ψext and
ψint, with traces (field and normal derivative) on ∂D given by

ψext = ψε0e + φε0i , ψint = ψε1i + φε1e ,(4.1)
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330 STEPHEN P. SHIPMAN AND STEPHANOS VENAKIDES

where ψε1i and ψε0e are the traces of the interior and exterior scattered fields. The
field ψε1i extends to a Helmholtz field in the interior, and ψε0e extends to a Helmholtz
field of class E(β, ω, ε0) in the exterior. When ω is real, the exterior extension of ψε0e
either decays or satisfies the outward radiation condition as |x| → ∞.

The matching conditions at the interface of the two media are given by[
ψint(r̂)

∂nψint(r̂)

]
=

[
1 0

0 ν

] [
ψext(r̂)

∂nψext(r̂)

]
.(4.2)

We write the matching conditions in short form by defining Γ = [ 1 0
0 ν ] and ψ =

[
ψext(r̂)
∂nψext(r̂)

] on ∂D and inserting them into (4.1) to obtain

ψ = ψε0e + φε0i , Γψ = ψε1i + φε1e .(4.3)

We apply the projections P ε0
i and P ε1

e to the two equations, respectively,

P ε0
i ψ = φε0i and P ε1

e Γψ = φε1e .(4.4)

Definition 4.2. By the scattering problem at (β,ω), we mean the system of
equations (4.4) with the source fields (see Definition 4.1) in the right-hand sides be-
longing to the space H1(∂D) × L2(∂D). A scattering state or scattering field is a
Helmholtz field whose trace on ∂D is a solution of the system with a nonzero source.
If there exists a nontrivial solution ψ in the absence of sources (zero right-hand sides),
we call the frequency ω a resonant frequency (for the wave number β). The corre-
sponding Helmholtz field is necessarily in E(β, ω, ε0). If the field decays as |x| → ∞,
we call it a bound state.

Remarks. 1. Our definition of scattering state analytically continues the tradi-
tional scattering states at real frequencies into the complex ω-plane. This is possible
by our analytic continuation of the condition that defines the notion of an outgoing
radiating field (see the Remark after Definition 2.2). A scattering state is an analytic
function of ω, and a resonant frequency is a singularity of this function.

2. We say that a scattering field at a nonresonant real frequency near a resonant
frequency exhibits resonant behavior if it exhibits amplitudes in the crystal structure
that are large compared to the source amplitude.

3. We will need to consider only frequencies ω such that 	(ω) > 0. We will
prove in Theorems 5.1 and 5.2 that, in this case, a dielectric photonic crystal slab
supports only Helmholtz fields with 
(ω) ≤ 0 and that such a field decays as |x| → ∞
if 
(ω)=0, and is unbounded if 
(ω) < 0.

We add the two equations (4.4) to obtain

(P ε0
i + P ε1

e Γ)ψ = φε0i + φε1e .(4.5)

Inserting the expressions

P ε0
i = 1

2 (I + Hε0), P ε1
e = 1

2 (I −Hε1)

from Theorem 3.1, and letting φ = φε0i + φε1e represent the total source field, we
rewrite (4.5) as [

1

2
(I + Γ) +

1

2
(Hε0 −Hε1Γ)

]
ψ = φ.

D
ow

nl
oa

de
d 

07
/3

0/
13

 to
 1

30
.3

9.
16

8.
16

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



RESONANCE IN PHOTONIC CRYSTALS 331

Finally, we insert the expression (3.3) for Hε0 and Hε1 to obtain the following ex-
panded version of (4.5) (recall ψ = ψext):

ψext(r̂) +

∫
∂D

[
∂ (Gε1 −Gε0) (r̂− r)

∂n(r)
ψext(r)

− (νGε1 −Gε0)(r̂− r)∂ψext

∂n(r)
(r)

]
ds(r) = φ(r̂),(4.6a)

1 + ν

2

∂ψext

∂n(r̂)
(r̂) +

∫
∂D

[
∂2 (Gε1 −Gε0) (r̂− r)

∂n(r̂)∂n(r)
ψext(r)

− ∂ (νGε1 −Gε0) (r̂− r)
∂n(r̂)

∂ψext

∂n(r)
(r)

]
ds(r) =

∂φ

∂n(r̂)
(r̂).(4.6b)

This is a Fredholm equation of the second kind; cancellation in the difference of
the Green’s functions reduces the leading singularities of all the kernels to at most
logarithmic, making the corresponding operators of Hilbert–Schmidt class in L2(∂D)×
L2(∂D). Equation (4.6) can thus be solved for ψ in L2(∂D) × L2(∂D) whenever the
nullspace is trivial. The solution ψ necessarily belongs to H1(∂D)×L2(∂D); indeed,
(4.6) can be written as ψ = Mψ + 2(I + Γ)−1φ, where M consists of kernels with
at most logarithmic singularities, and is thus bounded from L2(∂D) × L2(∂D) to
H1(∂D) ×H1(∂D). In fact, M is bounded from Hs(∂D) ×Hs(∂D) to Hs+1(∂D) ×
Hs+1(∂D), and so ψ is C∞ if φ = 0, i.e., if ψ is a nullfield. In summary, if the source
field φ belongs to H1(∂D) × L2(∂D), then so does the field ψ.

Boundary integral equations of the second kind for EM fields have also been
derived by Müller [11], Colton and Kress [12], [13], and Nédélec [10].

Theorem 4.3. If the system

P ε0
e f = 0, P ε1

i f = 0

has only the trivial solution, then the scattering problem (4.4) is equivalent to the
Fredholm system (4.5) (equivalently, (4.6)).

Proof. Given (4.5), we may write

P ε0
i ψ = φε0i + f , P ε1

e Γψ = φε1e − f .
Applying P ε0

e to the first relation and P ε1
i to the second relation, we obtain

P ε0
e f = 0, P ε1

i f = 0.

These equations imply f = 0 by the hypothesis of the theorem.
A comparison of the conditions of the theorem with (4.4) allows us to reformulate

the theorem in a more physical way, as follows.
Theorem 4.4 (reformulated Theorem (4.3)). If the inverse dielectric structure

(physics terminology meaning the original geometry with the two dielectric materi-
als interchanged) does not support an electrically polarized field, then our scattering
problem (4.4) is equivalent to the Fredholm system (4.5) (equivalently, (4.6)).

5. Resonant frequencies and bound states. We have seen that the dielectric
structure supports a nonzero source-free electromagnetic field ψ at (β,ω) if and only
if the field satisfies

P ε0
i ψ = 0 and P ε1

e Γψ = 0,(5.1)
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332 STEPHEN P. SHIPMAN AND STEPHANOS VENAKIDES

where ψ(r) =
(

limh→0 ψ(r + hn(r)), limh→0 ∂nψ(r + hn(r))
)t

on ∂D. This implies
that

(P ε0
i + P ε1

e Γ)ψ = 0,(5.2)

so that (P ε0
i + P ε1

e Γ) has a nontrivial nullspace at the resonant frequency ω for wave
number β.

We now present a theorem that provides conditions for the existence of resonance
frequencies.

Theorem 5.1. Let the frequency ω and a real value of β be given, and assume
that (m + β)2 − εω2 �= 0 for all integers m. If P ε0

i +P ε1
e Γ has a nontrivial nullspace,

then at least one of the following holds:
(1) ω is a resonant frequency for the structure, with interior dielectric coefficient

ε1 and exterior coefficient ε0 for the wave number β, according to whether
ν = 1 or ν = ε1/ε0 in Γ, or

(2) ω is a resonant frequency for the inverse structure, with ε1 and ε0 switched,
for the wave number β.

If ω2 is real, then the corresponding source-free Helmholtz field ψ in E(β, ω, ε0) or
E(β, ω, ε1) decays to zero as |x| → ∞ and is therefore an x-localized field (a bound
state in the strip S). Otherwise, 
(ω2) < 0 and ψ becomes unbounded as |x| → ∞.

Remarks. 1. In our numerical studies, we will be interested only in the case in
which 	(ω) > 0 and 
(ω) is small and negative. Assuming 	(ω) > 0, the condition

(ω2) < 0 is equivalent to 
(ω) < 0.

2. Suppose that the pair (β0, ω0) with ω0 > 0 admits a bound state and that
the Green’s function has no propagating modes (see Figure 2.1). Then, for (β, ω) in
a neighborhood of (β0, ω0), the Green’s function has only decaying modes, so that
all functions in E(β, ω, ε0) are decaying. This implies that, in a vicinity of β0 (we
always assume β is real), a relation ω = W (β) describing resonant frequencies must
be real-valued and must therefore be a dispersion relation for bound states.

Proof. We assume that (5.2) holds for some nonzero ψ. Theorem 4.3, with
both source fields in (4.4) taken to be zero, implies that equations (5.1) hold (giving
statement (1) in Theorem 5.1) or that there exists a nonzero f such that P ε0

e f = 0
and P ε1

i f = 0 (giving statement (2) in Theorem 5.1).
We defer the proof of the condition on ω2 and the behavior of the fields as |x| → ∞

to the proof of Theorem 5.2.
Theorem 5.2. Suppose that ψ ∈ E(β, ω, ε0) is pseudoperiodic in y, is not iden-

tically zero, and satisfies ∇2ψ + εω2ψ = 0 in S \ ∂D (where ε = ε1 in D and ε0
otherwise) and the matching conditions (4.2) on ∂D. Then 
(ω2) ≤ 0. In addition,
|ψ| → 0 as |x| → ∞ if and only if ω2 is real-valued.

Proof. Let T denote the finite strip {(x, y) : −x0 ≤ x ≤ x0, 0 ≤ y ≤ 2π}, where
x0 > x∗ > 0 and x∗ is given in Definition 2.2, and let ∂T be its boundary with
outward-pointing normal vector n. We also take n pointing outward on ∂D. The
divergence theorem gives∫

∂T

ψ∂nψds +

∫
∂D

(
ψint∂nψint − ψext∂nψext

)
ds =

∫∫
T

(∇ψ · ∇ψ + ψ∇2ψ
)
dA.

Using the relation ψ∂nψ = ψ̃∂nψ̃ + iβny|ψ̃|2 (ny is the y-component of the normal
vector n), we see that the integrals over the top and bottom parts of ∂T cancel, and
the integral over ∂T becomes an integral over ΓL ∪ ΓR, where ΓL and ΓR are the left
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RESONANCE IN PHOTONIC CRYSTALS 333

and right sides of ∂T . On the right-hand side, we use the Helmholtz equation. We
now have

∫
ΓL∪ΓR

ψ∂nψds +

∫
∂D

(
ψint∂nψint − ψext∂nψext

)
ds =

∫∫
T

(|∇ψ|2 − εω2|ψ|2) dA.

(5.3)

Using the conjugate equation for the interior of D, ∇2ψint+ε1ω
2ψint = 0, we compute

−
∫∫

D

|ψint|2(ε1ω
2 − ε1ω

2)dA = −
∫∫

D

(
ψintε1ω

2ψint − ψintε1ω
2ψint

)
dA

=

∫∫
D

(
ψint∇2ψint − ψint∇2ψint

)
dA =

∫
∂D

(
ψint∂nψint − ψint∂nψint

)
ds.

Therefore,



∫
∂D

ψint∂nψintds = −ε1
(ω2)

∫∫
D

|ψint|2dA.

Using this and the matching conditions ψint = ψext and ∂nψint = ν∂nψext on ∂D, we
can write the imaginary part of (5.3):



∫

ΓL∪ΓR

ψ∂nψds − ε1(1−ν−1)
(ω2)

∫∫
D

|ψ|2dA = −
(ω2)

∫∫
T

ε|ψ|2dA.(5.4)

By Definition 2.2, since ψ ∈ E(β, ω, ε0), there exist complex numbers A±
m such that

ψ(x, y) =

∞∑
m=−∞

A±
m exp (µm|x| + i(m + β)y) for ± x > x0.

Straightforward computation yields∫
ΓL∪ΓR

ψ∂nψds = 2π

∞∑
m=−∞

µm
(|A−

m|2 + |A+
m|2) e2�(µm)|x0|,

and, after splitting the right-hand side of (5.4) into an interior and an exterior integral,
we obtain

2π

∞∑
m=−∞


(µm)
(|A−

m|2 + |A+
m|2) e2�(µm)|x0|(5.5)

= −
(ω2)

(
ε1ν

−1

∫∫
D

|ψ|2dA + ε0

∫∫
T\D

|ψ|2dA
)

.

If 
(ω2) > 0, all modes are decaying in x (	(µm) < 0 for all m), and we obtain
a contradiction by letting x0 tend to ∞; therefore, 
(ω2) ≤ 0. If 
(ω2) = 0, then

(µm) > 0 for all propagating modes and 
(µm) = 0 for all decaying modes; therefore,
A±
m = 0 for all propagating modes, so that |ψ| → 0 as |x| → ∞. Conversely, if |ψ| → 0

as |x| → ∞, then A±
m = 0 for all nondecaying modes (those for which 	(µm) ≥ 0),

and thus the left-hand side of 5.5 decays exponentially as x0 → ∞. Letting x0 tend
to ∞ shows that 
(ω2) = 0.

Remarks. 1. The quantity 
∫
Γ
ψ∂nψ ds appearing in the proof of Theorem 5.2

is the time-averaged energy flow carried by ψ through Γ.
2. If 
(ω2) < 0, then ψ does not decay as |x| → ∞, and thus by the definition

of E(β, ω, ε), ψ becomes unbounded as |x| → ∞, and this completes the proof of
Theorem 5.1.
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334 STEPHEN P. SHIPMAN AND STEPHANOS VENAKIDES

6. Dispersion relations. We define a dispersion relation for a photonic crystal
slab to be a multivalued function ω = W (β) describing pairs (β, ω) for which ω is a
resonant frequency for wave number β. This means that the pair (5.1) is satisfied for

a nonzero field ψ(r) =
(

limh→0 ψ(r+ hn(r)), limh→0 ∂nψ(r+ hn(r))
)t

on ∂D, where
ψ is a pseudoperiodic source-free Helmholtz field in the class E(β, ω, ε0). If we are able
to eliminate the second alternative in Theorem 5.1, then the single equation (5.2) is
sufficient for defining a dispersion relation, as it would then imply the pair (5.1). In
the numerical examples below, we are able computationally to eliminate the second
alternative.

Because our operator is of the Hilbert–Schmidt class from L2(∂D) × L2(∂D), its
determinant is defined, and it depends analytically on β and ω. Thus, a necessary
condition for the pair (β, ω) to support a source-free field in the given crystal is

D(β, ω) := det(P ε0
i + P ε1

e Γ) = 0.(6.1)

The dispersion relation is therefore given by branches of D(β, ω) = 0. Whether this
condition is also sufficient depends on the inverse dielectric structure. Indeed, we
know from Theorem 5.1 that if the inverse structure does not support an electrically
polarized source-free field, then (6.1) does define a dispersion relation for fields in the
original structure.

In practice, we obtain dispersion relations by computing the curves λ(β, ω) = 0
numerically, where λ is an eigenvalue of P ε0

i + P ε1
e Γ. Suppose that zero is a simple

eigenvalue at the pair (β0, ω0). Then the smallest eigenvalue λ is an analytic function
of β and ω in a neighborhood of (β0, ω0), say λ = λ(β, ω). Suppose also that λ(β0, ω) �≡
0 near ω0. By the Weierstraß preparation theorem, there exists an integer n ≥ 1 such
that

λ(β, ω) = h(β, ω)(ωn + Wn−1(β)ωn−1 + · · · + W1(β)ω + W0(β))(6.2)

near (β0, ω0), where h and Wi (i = 0, . . . , n−1) are analytic functions and h �= 0 near
(β0, ω0). Thus, λ = 0 is equivalent to ωn+Wn−1(β)ωn−1 + · · ·+W1(β)ω+W0(β) = 0.
Let us consider the case in which n = 1 (this is when ∂λ/∂ω �= 0 near (β0, ω0)). Then
we have a relation

ω = W (β)

that describes the locus of (β, ω)-pairs for which λ = 0. For real values of β near β0,
the curve ω = W (β) in the complex ω-plane gives a dispersion relation; it is periodic
in β with period 1.

We made two assumptions in the preceding paragraph: that zero is a simple
eigenvalue at (β0, ω0), and that ∂λ/∂ω �= 0 there. Numerical calculations show that
both assumptions are true generically, giving rise to dispersion relations for simple
eigenvalues. When two branches cross, as in Figure 7.3(1a) and (2a) below, we see an
eigenvalue of multiplicity 2. We have not encountered a situation in which there is a
simple eigenvalue at some point (β0, ω0) and ∂λ/∂ω = 0 there, that is, ∂kλ/∂ωk = 0
for k < n and ∂nλ/∂ωn �= 0 for some n > 1 in (6.2). In this situation, (6.2) shows
that there would exist a dispersion relation defined by an equation that is algebraic
in ω and may have several branches emanating from (β0, ω0).

If ω = W (β) lies on the real ω-axis over a range of β-values, then we have a
dispersion relation for x-localized Helmholtz fields ψ in the crystal (bound states in
the strip S). The complex time-dependent electric or magnetic fields associated with
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RESONANCE IN PHOTONIC CRYSTALS 335

ψ are ψ(x, y)e−iωt = ψ̃(x, y)ei(βy−ωt) (with ψ̃ periodic in y), which are Bloch waves
traveling along the photonic crystal slab. If ω0 = W (β0) is real but the dispersion
relation goes into the lower-half ω-plane for β �= β0, then there exists a bound state
just for the isolated pair (β0, ω0), and nearby pairs (β,W (β)) are complex resonant
frequencies. We demonstrate numerically below that both situations do occur.

One of the main phenomena observed in this study is that complex resonant
frequencies are linked to resonant scattering behavior and transmission anomalies at
nearby real frequencies. See also [5].

7. Numerical studies: Bound states, surface waves, and resonances. In
this section we present three examples that illustrate the connections between complex
dispersion relations, bound states and resonant frequencies, transmission anomalies,
and resonant behavior of real frequencies. In particular, we calculate a dispersion
relation for surface waves at bandgap frequencies on a thick structure approximating
a semi-infinite crystal, and we provide a mathematical context for understanding
resonant phenomena produced by a channel defect in a crystal slab.

We calculate the dispersion relations numerically as follows. We first search
for a pair (β0, ω0) at which P ε0

i + P ε1
e Γ has an eigenvalue that is practically zero:

λ(β0, ω0) ≈ 0. Then we increment β to β1 and search in a complex vicinity of ω0

for a value ω1 such that λ(β1, ω1) ≈ 0. We continue to increment β, and in this
way trace out a curve ω(β) represented by the computed points (βn, ωn) such that
λ(βn, ωn) ≈ 0. To find the value ωn, we simply compute the minimum of the smallest
eigenvalue λ(β, ω) of P ε0

i + P ε1
e Γ as ω varies over a grid about ωn−1, keeping β fixed

at βn, and then refine the search if necessary. We intend to develop a more efficient
gradient search method for future investigations. In the examples in subsections 7.1
and 7.2, we find the initial pair (β0, ω0) by taking β0 = 0 and computing the minimum
eigenvalue of P ε0

i +P ε1
e Γ, using MATLAB, on a grid of real values of ω in the interval

(0, 1). An initial bound state was easy to find. In the example of subsection 7.3,
we knew to search in the vicinity of a spike in the transmission graph that we had
computed in [2].

To show that λ(β, ω) actually achieves a value of zero, it suffices to fix β and
compute (numerically) a positive winding number of λ as an analytic function of ω
about some small closed curve in the complex ω-plane. We perform this verification
at selected points on the dispersion relations. We also check numerically that the
alternative (part (2)) in Theorem 5.1 does not hold.

To compute the eigenvalues of the boundary-integral operator P ε0
i + P ε1

e Γ, we
discretize the integral system using quadratic basis elements for the fields and point-
sampling of the equations. Complete details of these calculations are presented in [2].
Once we have obtained a numerical solution to (P ε0

i + P ε1
e Γ)ψ = φ, we compute the

scattering and bound (φ = 0) states using Green’s identities (3.4) and (3.5).
In all three examples, we study electrically polarized fields with ε0 = 1 and

ε1 = 12.
In the figures, the fields in the crystals are represented by contour plots of their

magnitudes. White represents the maximal amplitude, and black represents an am-
plitude of zero. One y-period is shown, with the x-direction truncated outside the
support of the crystal slab.

7.1. A single string of rods. (Figure 7.1.) Our first example is a good il-
lustration of the connection between dispersion relations, bound states, and resonant
scattering phenomena. The period of our dielectric structure consists of a single rod in
air, so that the crystal slab degenerates into a string of rods running in the y-direction.
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1. β = 0; bound state frequency ω = W (0) ≈ 0.6691.
Bound state Nearby scattering state

maximum
amplitude
= 2. 7

2. β = 0.01; resonant frequency ω = 	(W (0.01)) ≈ 0.6690.
Scattering state near ω = 0.6690

maximum
amplitude
= 42.5

Scattering state away from ω = 0.6690

maximum
amplitude
= 1. 9

3. β = 0.12; resonant frequency ω = 	(W (0.12)) ≈ 0.6601.
Scattering state near ω = 0.6601

maximum
amplitude
= 4. 8

Scattering state away from ω = 0.6601

maximum
amplitude
= 2. 0

4.

omega = W(beta) in the

complex omega−plane
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Fig. 7.1. In the contour plots, one period in y of the crystal is shown, with the magnitude of the
electrically polarized fields plotted. 1. There is a bound state at (β = 0, ω = W (0) ≈ 0.6691). There
is no unusually high amplification of an incident plane-wave source (of amplitude 1) for β = 0
at frequencies ω near the bound-state frequency. 2,3. When �(W (β)) < 0, incident plane-wave
sources are amplified in the rod at frequencies near the real part of W (β). A smaller imaginary part
corresponds to greater amplification. The field structure at resonant frequencies is similar to that
of the bound state. 4. The dispersion relation W (β) plotted in the complex ω plane for real values
of beta from β = 0 to β = 0.38. 5. Spikes in the transmission coefficient near ω = (W (β)) for
β > 0, where �(W (β)) < 0.
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RESONANCE IN PHOTONIC CRYSTALS 337

We find numerically a y-periodic (this means β = 0) bound state at ω ≈ 0.6691.
This is a standing wave that exists in the absence of any sources. However, as β moves
away from zero, the bound state disappears and the dispersion relation ω = W (β) en-
ters the lower-half complex ω-plane (Figure 7.1(4)). In place of a bound state, we find
instead resonant scattering states at real frequencies near the real part 	(W (β)) of
the complex resonant frequency on the dispersion relation. These states are sustained
by plane-wave source fields that are amplified as they experience resonant scatter-
ing within the dielectric structure. Coinciding with these large fields are anomalies
(spikes) in the transmission coefficient2 T (β, ω) for real values of ω near 	(W (β)),
for a fixed value of β (see Figure 7.1(5)). These spikes consist of a drop to 0% trans-
mission (T =0) to the left of the frequency of the periodic bound state that exists at
β = 0, followed by a sharp increase to 100% transmission (T = 1) to the right. As
|β| decreases to zero, the width of the spike decreases and the resonant amplification
of the scattering fields increases. The phenomena become more and more localized
about the bound-state frequency. At β = 0, the transmission anomaly and resonant
behavior disappear, and we have in their place the bound state.

We find that, for ω0 ≈ 0.6691, T (β, ω0) ≈ 0.935 for values of β near but not
equal to zero (see Figure 7.1(5)). However, continuing our calculation of the curve
T (0, ω) through ω = ω0 gives T (0, ω0) ≈ 0.739. Thus we demonstrate numerically
that limβ→0 T (β, ω0) �= limω→ω0

T (0, ω), so that we cannot define the transmission
coefficient continuously at (0, ω0). This observation strengthens our belief that there
is a bound state at (0, ω0), that is, that 
(W (0)) is indeed exactly zero.

From Figure 7.1(4), the dispersion relation evidently has the form

ω = ω0 + a(β)β2,

where a is analytic and a(0) �= 0. (W (β) is symmetric about β = 0, as the Green’s
functions at ±β have the same set of modes, and the structure is symmetric in y.)

7.2. Surface waves. (Figure 7.2.) We investigate waves on the surface of a
semi-infinite photonic crystal. We seek waves at the interface between the left half-
plane containing air and the right half-plane filled with a square lattice of circular
rods. If we consider frequencies that cannot propagate through the infinite crystal,
or bandgap frequencies, it is reasonable to approximate the semi-infinite crystal by a
finite slab several rods thick (truncated in the x-direction but still periodic in y). To
capture surface waves at bandgap frequencies, we place a defect on the left surface of
the slab by making the first rod much larger than the others.

There appears to be a periodic (β = 0) bound state at ω ≈ 0.401, as the smallest
eigenvalue of P ε0

i +P ε1
e Γ is practically zero there. The field is localized at the defective

surface of the slab (see Figure 7.2(1))—it is a standing surface wave.
As β moves away from zero, the surface wave disappears, and we obtain a dis-

persion relation ω = W (β) with a very small negative imaginary part. At about
β ≈ 0.345, however, the relation enters a regime in which |W (β)| < minm∈Z(|β +m|),
which is the scenario in which all modes of the Green’s function decay in |x| and the
exterior medium admits no traveling waves. We deduce from Theorem 5.1 (or Theo-
rem 5.2) that this part of the dispersion relation is necessarily real and is therefore a

2Our transmission coefficient is the square root of the ratio of the energy transmitted through the

slab on the right to the energy of a plane-wave source field exp(i
√

ε0ω2 − (m + β)2 x + i(m + β)y)
incident upon the slab from the left. Details of how we calculate the transmission coefficient are
given in [2].
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1. A bound state at β = 0, ω ≈ 0.401: a standing surface wave.

2. A scattering state for β = 0 at a frequency near that of the bound state in (1).

amplitude
maximum

=2.0

3. A scattering state at β = 0.23, ω ≈ 0.368, where |
(W (β))| is very small.

amplitude
maximum

=25.8

4. A scattering state at β = 0.28, ω ≈ 0.358, near max |
(W (β))|.

amplitude
maximum

=6.2

5. A bound state at β = 0.40, ω ≈ 0.335: a traveling surface wave.

6.
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7.

omega = W(beta) in the

complex omega−plane
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0
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x10−4

Fig. 7.2. A crystal slab with a defect on the left surface, where one rod is bigger than the rest.
In the contour plots, one period in y of the crystal is shown, with the magnitude of the electrically
polarized fields plotted. 1,2. There is a periodic (β = 0) bound state, which is a standing surface
wave localized in the large rod at the surface of the crystal slab. At frequencies near that of the
surface wave, incident plane-wave sources are not amplified in the rod. 3,4. When �(W (β)) < 0,
incident plane-wave sources (with amplitude 1) at frequencies near (W (β)) resonate in the first rod.
5. A bound state at parameter values on the dispersion relation, where ω = W (β) is necessarily real
and the strip admits no scattering (extended) states. 6. (W (β)) plotted against β. �(W (β)) = 0
when (W (β)) < |β| (0.345 < |β| < 0.5). 7. ω = W (β) plotted in the complex ω-plane.
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dispersion relation for x-localized fields. In fact, in this regime, there are no scattering
(extended) states in the strip (see Remark 2 following Theorem 5.1).

We therefore demonstrate the existence of a dispersion relation for waves traveling
along the surface of a photonic crystal slab. Our choice of eight rods to approximate
the semi-infinite crystal appears to be sufficient: Increasing the number of rods results
in no appreciable difference in the calculated curve. Thus, we are led to believe that
the dispersion relation for the semi-infinite crystal exists and that the dispersion
relation for the slab is a good approximation.

As in the case of the single string of rods in the previous example, we see again
how the complex part of the dispersion relation, which is very close to the real axis,
affects the scattering states at nearby real frequencies. We do not find anomalies in
the transmission as we did in that example; however, we believe that they are there
but are too sharp to be detected numerically because of the small size of the imaginary
part of the dispersion relation and the thickness of the slab.

7.3. A channel defect. (Figure 7.3.) In [2], we studied the effect that a periodic
channel through a photonic crystal slab has on the transmission coefficient and the
structure of the scattering states. Our intention was to study resonant behavior at
bandgap frequencies and modes propagating through the channel; however, we also
found intriguing sharp transmission spikes and resonant scattering fields in near–full-
transmission frequency regions. The phenomena are similar in behavior to those in our
previous two examples, and a similar analysis provides us with a better mathematical
understanding of them.

The (β,ω) pairs at which resonant behavior and transmission anomalies occur
for the crystal with a periodic channel are described by a dispersion relation ω =
W (β), which we calculate numerically.3 We demonstrate in [2] that both phenomena
disappear as the width of the channel decreases and the slab returns to its perfect
structure. In the present study, we find that, in place of resonant scattering states,
the perfect slab admits bound states, also described by a dispersion relation.

Our numerical calculations give us dispersion relations that lie practically on
the real ω-axis. However, they may have a small negative imaginary part that we
cannot resolve numerically. Based on our findings in the previous two examples,
we conjecture that the relation is identically real for the perfect slab (there is no
resonant amplification, and there are no transmission spikes) and that it has a very
small negative imaginary part for the slab with a periodic channel (there are high-
amplitude resonances and very sharp transmission spikes).

The structure of the resonant fields near ω = 	(W (β)) when 
(W (β)) is small
resembles the field of a nearby bound state, if such a bound state exists. See Figure
7.3(1) and (3), which shows the y-directional structure of a bound state and a resonant
scattering state. A typical scattering state at small values of β exhibits the structure
of an x-directional interference pattern, a point we discuss in [2].

In summary, we have a plausible explanation for the channel-induced resonant
behavior that we observed in [2]: There is a dispersion relation ω = W (β) for bound
states traveling along the perfect crystal slab. When a periodic channel is introduced,
the new (perturbed) relation ω = W (β) gives resonant frequencies with a small imag-
inary part. These are responsible for the observed buildup of large fields in the slab
and for the transmission anomaly near ω = 	(W (β)). In the limit of zero imaginary

3In [2], we scaled the frequency in this example by 1/6 to compare with the scale of the finer
period of one rod. We did not make that scaling here.
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1. a.
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3. a.
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Fig. 7.3. In the contour plots, a period in y of the crystal is shown, and the strip is truncated
in the x-direction. The magnitude of the electrically polarized fields is plotted. 1.a. Branches of
the dispersion relation for a perfect square-lattice crystal four rods thick. 1.b. The bound state at
β = 0.1 and ω ≈ 1.434. 2.a. Branches of the real part of the dispersion relation for the crystal
with a periodic channel containing an extra half-period of space after every six rows of rods. 2.b. A
resonant scattering state at β = 0.5 and ω ≈ 1.224. 3.a. An anomaly in the transmission coefficient
for β = 0.1. 3.b. A resonant scattering state at β = 0.1 and ω ≈ 1.3842 (slightly to the left of where
the two branches of the dispersion relation cross, on the lower branch). The amplitude of the field
in the crystal reaches about 49 times the amplitude of the incident field.
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RESONANCE IN PHOTONIC CRYSTALS 341

part, the anomaly occurs at a single point (the point of the bound state) and is not
observed through the numerical scattering experiment.

The numerical evidence indicates that the slab with a periodic channel supports
resonant frequencies that converge to bound state frequencies as the channel closes
up. A similar phenomenon is known for Helmholtz resonators, in which resonant
frequencies of a cavity with an opening converge to the bound state frequencies of the
closed cavity as the opening disappears (Beale [6]).

8. Appendix. Let D be a domain whose boundary C = ∂D is a closed curve
of class C2 with arclength parameterization γ(t), t ∈ [a, b], and outward-pointing
normal vector n(t) at γ(t). For sufficiently small values of ρ > 0, the function γρ(t) =
γ(t) − ρn(t) parameterizes a C1 closed curve Cρ contained in the interior of D.

The Green’s kernel G(r) (or its derivatives) takes a function φ on C to a function
ψρ on Cρ by

ψρ(r) =

∫
C

G(r̂− r)φ(r)ds(r),

where r̂ ∈ Cρ. This map can be realized as a map taking a function on [a, b] to another
by recycling notation and writing

ψρ(t) =

∫ b

a

G(γρ(t) − γ(s))φ(s) ds.

We make the identifications H1(C) ≡ H1([a, b]) and L2(C) ≡ L2([a, b]).
1. The singular part of the integral kernel G(γ(t) − γ(s)) is log |t − s|, and the

singular part of its derivative, d/dt log |t−s|, which has the Hilbert-transform
singularity, is a principal-value integral. Both are bounded operators from L2

to L2, so G(γ(t) − γ(s)) is a bounded operator from L2 to H1. G(γρ(t) −
γ(s)) and d/dtG(γρ(t)−γ(s)) are regularizations of these singular kernels, so
G(γρ(t) − γ(s)) converges to G(γ(t) − γ(s)) as ρ → 0 as bounded operators
from L2 to H1.

2. By the theory of the double-layer potential and the Plemelj formula, the
integral kernels

∂G(γρ(t) − γ(s))

∂n(γ(s))
, −∂G(γρ(t) − γ(s))

∂n(γ(t))
,

as applied to L2, are a regularization of their limiting form as ρ → 0, which
is 1/2 the identity operator plus a weakly singular integral kernel.

3. Using the identity

∂2G(r̂− r)
∂n(r̂)∂n(r)

+
∂2G(r̂− r)
∂t(r̂)∂t(r)

= −n(r̂) · n(r)(∂2
x + ∂2

y)G(r̂− r)

and the Helmholtz equation

(∂2
x + ∂2

y)G(r̂− r) + εω2G(r̂− r) = 0 for r̂ �= r,

we can rewrite the kernel ∂2G(r̂ − r)/∂n(r̂)∂n(r) for r̂ �∈ ∂D, applied to a
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function ξ ∈ H1:

(8.1)

∫
∂D

∂2G(r̂− r)
∂n(r̂)∂n(r)

ξ(r) ds(r)

=

∫
∂D

(
n(r̂) · n(r)εω2G(r̂− r)ξ(r) +

∂G(r̂− r)
∂t(r̂)

dξ

dt(r)
(r)

)
ds(r).

The kernel ∂G/∂t converges to a principal-value kernel as r̂→ ∂D, and, since
dξ/dt(r) ∈ L2, we see that the operator with kernel ∂2G(r̂ − r)/∂n(r̂)∂n(r)
converges to a bounded operator from H1 to L2 as r̂→ ∂D.
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