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Abstract. Geometric construction with a straight edge, com-
pass, and other curves and devices was a major force in the devel-
opment of mathematics. In this paper the authors examine con-
structions with ellipses. Trisections using hyperbolas were known
to Papus and a trisection construction using a parabola was found
by Descartes. The authors give a trisection using ellipses.

1. Introduction

Mathematicians and philosophers of Ancient Greece studied the prob-
lem of trisecting a general angle, doubling the cube, and squaring
the circle. They tried to accomplish these constructions using only
a straight edge and compass. While these methods were unsuccessful,
they also examined allowing other constructions, devices, and curves.
For example, Archimedes is usually credited with a mechanical device
to trisect angles and with a construction using the spiral of Archimedes.
Pappus wrote of trisection constructions by Apollonius using conics,
and he gave two constructions with hyperbolas. Menaechmus, the dis-
coverer of conic sections, is supposed to have made his discovery while
working on the problem of doubling the cube. A collection of these
constructions are available on the University of St. Andrew’s website
[1] There were ancient solutions to the problems of trisecting a general
angle and doubling the cube, using a hyperbola and parabola. In this
paper we examine constructions using ellipses. Among the results we
show is that one can trisect a general angle and double the cube using
ellipses.

Another trisection construction is due to René Descartes in his 1637
La Geometrie. This construction uses a parabola and a circle relying on
the the triple angle formula [2]. It is similar in spirit to the trisection via
ellipses given in this paper. A version of Descartes’s trisection is shown
in Figure 1. The construction uses the parabola defined by y = 2x2

and the circle through the origin with center (1/2 cos(θ), 1). Solving
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Figure 1. Descartes’s trisection of θ = π
3
.

for the x-coordinates of the points of intersection gives the equation
x(4x3−3x−cos(θ)) = 0 or x(x−cos(θ))(x−cos(θ+2π/3))(x−cos(θ+
4π/3)), since a triple angle formula is cos(3θ) = 4cos3(θ) − 3cos(θ).
The trisection for π/3 is shown in Figure 1. There are four distinct
points of intersection although two are very close together.

Recent work by Carlos R. Videla explored the concept of constructabil-
ity when all conics are allowed. Extending straight edge and com-
pass constructions with all the conics, gives Videla’s notion of con-
ically constructible. Videla allows the construction of a conic when
the focus, directrix, and eccentricity are constructible. The conically-
constructible numbers may be obtained by parabolas and hyperbolas
alone. These conic constructions include ancient constructions of Pa-
pus and Menaechmus. Videla made the case that allowing a noncircular
conic to be constructed if its directrix, focus, and eccentricity are con-
structible is consistent with the constructions of the Ancient Greeks.
Ellipses are treated as extraneous as all the constructions can be ac-
complished with parabolas and hyperbolas. Among the results of this
paper, is that all the conic constructions can be accomplished with
ellipses alone.

We propose a mechanical device that will allow us to draw ellipses.
The device consists of pins and string and allows the construction of an
ellipse given the foci and a point on the ellipse. This approach is one
way to construct ellipses. Allowing the construction of an ellipse given
its directrix, focus, and eccentricity is another. These two approaches
will be shown to allow the same constructions.

2. Classical Constructions

The proof that it is impossible to trisect a general angle, double the
cube, or square the circle with a straight edge and compass alone is
a wonderful demonstration of the power of abstraction and beauty of
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modern mathematics. We think of the plane as the Cartesian plane
with coordinates. Start with an initial set of points P in the plane.
The initial set of points should include (0, 0) and (1, 0). The set of
points one may derive using only a straight edge and compass will
be called classically constructible points derived from P . If the set of
initial points P is clear or if P = {(0, 0), (1, 0)}, then we suppress
the reference to P . The set of all numbers that arise as the ordinate
or abscissa of classically constructible points is the set of classically

constructible numbers. Consider, for example, the question of whether
one can trisect an angle of measure θ. If A = (cos(θ), sin(θ)) is in the
original set of points P , then the angle determined by ∠ABC where
B = (0, 0) and C = (1, 0) has measure θ. The angle can be trisected
if (cos(θ/3) is a classically constructible number from P because then
one may construct the point A′ = (cos(θ/3), sin(θ/3)) and ∠A′BC.

We recall some of the facts about classically constructible numbers
taking some of the background notions from Hungerford [4]. It is one
of the founding observations that starting with an initial set of points
P the classically constructible numbers form a field, i.e., using straight
edge and compass constructions one may start with two numbers and
construct the sum, difference, product and quotient. Furthermore, if
(x, y) is a classically constructible point, it is a simple exercise to show
that (y, x) is a classically constructible point. It is useful to introduce
the notion of the plane of a field. If F is a subfield of the real numbers
R, then the plane of F is the subset of R2 consisting of all (x, y) with
x, y ∈ F . If P and Q are distinct points in the plane of F then the
line determined by P and Q is a line in F . Similarly, if P and Q are
distinct points in F then the circle with center P and containing Q is
a circle in F . It is a straightforward calculation that the intersection
points of two lines in F are points in the plane of F . Furthermore if a
circle in F is intersected with either a line in F or a circle in F , then
the intersection points are in the plane of F (r), where r is the square
root of an element of F [4].

Suppose one starts with an initial set of points P . The coordinates
of these points generate a subfield K of R. Since P contains (0, 0)
and (1, 0), K contains the rational numbers Q. The field of classically
constructible numbers derived from P can be completely characterized.
It is the smallest subfield of R containing K in which every positive
number has a square root. We will also call this field the field of

classically constructible numbers derived from K.
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3. Elliptic Constructions

Consider the following description of a mechanical device that will
allow the construction of an ellipse when one has the foci and a point
on the ellipse accessible. The device consists of a length of string with
a clip, which may be clipped to form a loop, and some pins.

(1) Given three points, one may insert pins in the three points,
tighten the string around the pins, and remove one pin. Keep the
string taut and use a pen to draw the curve around the two pins. The
result is a curve whose distance from any point on the curve to one
of the pins plus the distance from the same point on the curve to the
other pin is constant—an ellipse with the pins located at the foci, which
contains the third point.

Remark 3.1. If an ellipse is in standard position then its equation can
be given as

Ax2 + Cy2 + F = 0,

where C > A > 0. Let a =
√

F
A
, b =

√

F
C

and c =
√

a2 − b2. Then

the foci of the ellipse are at (±c, 0) and (a, 0) is a point on the ellipse.
The tightly stretched string wraps around the foci and reaches to a
point on the ellipse. It has length 2c + 2a. The directrix is given by
x = a2

c
and the eccentricty e = c

a
.

(2) Given two points, one may insert pins in the two points, tighten
the string around the pins, remove one pin, and use a pen to draw the
circle with center one point and the other on the circle.

In addition we may use the straight edge.
(3) Given two points, one may draw the line through the two points.
The operations 2 and 3 have the same result as the use of a compass

and straight edge. Which points can be reached by constructions with
a straight edge and pins and string? We may obtain the constructible
points as follows. Start with a set of points P = P0. Perform every
geometric construction on the set P0 allowed by 1, 2, and 3. Adjoin
to P0 all intersections of the ellipses, circles, and lines to obtain a set
of points P1. We can repeat the process an arbitrary number of times.
Once Pi is constructed, perform every geometric construction on the
set Pi allowed by 1, 2, and 3. We now adjoin to Pi all intersections
of the ellipses, circles, and lines to obtain a set of points Pi+1. The
elliptically constructible points derived from P is the union of the Pi’s.
We will use the term constructible to mean elliptically constructible
and use the term classically constructible for straight edge and compass
constructions.



GEOMETRIC CONSTRUCTIONS WITH ELLIPSES 5

We call the set of numbers that are the ordinate or abscissa of points
obtainable using a straightedge and pins and string, elliptically con-
structible. Every straightedge and compass construction is included in
construction with a straightedge and pins and string. Hence given a
set of points that includes (0, 0) and (1, 0), the elliptically constructible
numbers will be a field.

Analogous to the previous definitions for classical constructions is
the following. Suppose F is a subfield of the real numbers R. If O, P
and Q are distinct points in the plane of F , then the ellipse containing
O with foci P and Q is an ellipse in F .

Lemma 3.2. Suppose that F is a subfield of R in which every positive

number has a square root. If cos (θ) ∈ F , then rotation of the plane by

θ induces a bijection on the plane of F . If (r, s) is in the plane of F ,

then translation of the Cartesian plane by (r, s) induces a bijection on

the plane of F .

Proof. Note that if cos (θ) is in F , then sin (θ) is in F since sin2 θ = 1−
cos2θ. Let f be the rotation of the plane by an angle θ, then f(x, y) =
(x cos (θ) − y sin (θ), x sin (θ) + y cos (θ). If (x, y) is in the plane of F ,
then the image is in the plane of F . The inverse transformation of f
is rotation by −θ, therefore f is a bijection.
If g is translation by (r, s), then g(x, y) = (x + r, y + s) is a bijection
of the plane of F with inverse translation by (−r,−s). �

Lemma 3.3. Suppose that F is a subfield of R in which every posi-

tive number has a square root. Suppose an ellipse is described by the

equation ax2 + bxy + cy2 + dx + ey + f = 0 with a, b, c, d, e, f ∈ F .

If cos (θ) ∈ F , then the ellipse rotated about the origin by θ can be

expressed by an equation with coefficients in F .

Proof. Let θ be the angle of rotation. The transformed ellipse is de-
scribed by the equation a′x2 + b′xy + c′y2 + d′x + e′y + f ′ = 0, where
the coefficients are:

a′ = a cos2 (θ) + b sin (θ) cos (θ) + c sin2(θ),

b′ = 2(c − a) sin (θ) cos (θ) + b (cos2 (θ) − sin2(θ),

c′ = a sin2 (θ) − b sin (θ) cos (θ) + c cos2 (θ),

d′ = d cos (θ) + e sin (θ),

e′ = e cos (θ) − d sin (θ),

f ′ = f,

which are all field operations of elements of F . Therefore the coeffi-
cients are in F . �
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Proposition 3.4. Suppose that F is a subfield of R in which every

positive number has a square root. Consider an ellipse E described by

the equation ax2 + bxy + y2 + dx + ey + f = 0. The ellipse E is in F
if and only if a, b, d, e, and f are in F . If E is in F , then it may also

be rotated and translated to an ellipse in F in standard position.

Proof. Assume the ellipse is in F . Let the points (fx, fy) and (gx, gy) be

the focci and (x0, y0) be a point on the ellipse. Let d =
√

(fx − x0)2 + (fy − y0)2+
√

(gx − x0)2 + (gy − y0)2 which is an element of F . The coordinates of

a point on the ellipse will satisfy the equation
√

(fx − x)2 + (fy − y)2+
√

(gx − x)2 + (gy − y)2 = d
This equation is equivalent to Ax2 +Bxy +Cy2 +Dx+Ey +F = 0,

where the coefficients are:

A = 8 + 4d2 − 4f 2
x − 8fxgx + 4g2

x

B = 8 + 4d2 − 8f 2
x + 4f 2

y − 8fygy + 4g2
y

C = 8fxfy − 8fygx − 8fxgy + 8gxgy

D = 8fx + 4d2fx − 4f 3
x + 4fxf

2
y + 8gx + 4d2gx − 12f 2

xgx − 4f 2
y gx − 4fxg

2
x +

4g3
x − 4fxg

2
y + 4gxg

2
y

E = 8fy + 4d2fy − 4f 2
xfy + 4f 3

y − 4fyg
2
x + 8gy + 4d2gy − 12f 2

xgy − 4f 2
y gy +

4g2
xgy − 4fyg

2
y + 4g3

y

F = 4 + 4d2 + d4 − 4f 2
x − 2d2f 2

x + f 4
x + 4f 2

y + 2d2f 2
y − 2f 2

xf 2
y + f 4

y + 4g2
x +

2d2g2
x − 6f 2

xg2
x − 2f 2

y g2
x + g4

x + 4g2
y + 2d2g2

y − 6f 2
xg2

y − 2f 2
y g2

y + 2g2
xg

2
y + g4

y

Since the coefficients are obtained by field operations of elements in
F , the coefficients are in F .

For the converse, let Ax2 + Bxy + Cy2 + Dx + Ey + F = 0, be the
equation of the ellipse E with coefficients in F .

We rotate and translate the ellipse to standard form. The rotation
will be by an angle θ ∈ (−π

2
, π

2
]. Since the coefficients A, B, and C are

in the field F the cot (2θ) = A−C
B

is in F . Note that if B = 0 then θ is

0 or π
2
. So sin (2θ) = 1√

1+cot2 (2θ)
is also in F . Therefore sin (θ) is in F ,

and thus cos (θ) is as well. Also cos(−θ) and sin (−θ) are in F , so by
using Lemma 3.3 the ellipse rotated by −θ also has coefficients in F .
The equation of this rotated ellipse can be written as follows:

(x + x0)
2

a2
+

(y + y0)
2

b2
= 1,
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where x0, y0, a and b are all gotten by field operations on the coefficients
of the equation of the rotated ellipse. Translation by (x0, y0) gives the
ellipse in standard form so by Remark 3.1 E is in F . �

Theorem 3.5. Suppose that F is a subfield of R in which every positive

number has a square root. If E1 and E2 are ellipses in F then the

coordinates of the points of intersection of E1 and E2 are in a field

F (R), where R is the set of real roots of a quartic polynomial with

coefficients in F . If E is an ellipse in F and L is a line in F then the

coordinates of the points of intersection of E and L are in the field F .

Proof. First consider the intersection of two ellipses. Any two con-
structible ellipses E1 and E2 have equations of the form:

a1x
2 + b1xy + y2 + d1x + e1y + f1 = 0(3.1)

a2x
2 + b2xy + y2 + d2x + e2y + f2 = 0(3.2)

By Proposition 3.4 the coefficients are in F . Subtracting these two
equations leaves us with

(a1 − a2)x
2 + (b1 − b2)xy + (d1 − d2)x + (e1 − e2)y + f1 − f2 = 0

Solving for y,

(3.3) y = −f1 − f2 + (d1 − d2)x + (a1 − a2)x
2

(b1 − b2)x + (e1 − e2)

Putting this expression back into Equation 3.1 we get

(3.4) Ax4 + Bx3 + Cx2 + Dx + E = 0

Where the coefficients are:

A = −e1f2 + f 2
2 + e2f1 − 2f2f1 + f 2

1

B = d1e2 − d2e1 − b1f2 + 2d2f2 − 2d1f2 + b2f1 − 2d2f1 + 2d1f1

C = −b1d2 + d2
2 + b2d1 − 2d2d1 + d2

1 + a1e2 − a2e1 + 2a2f2 − 2a1f2

−2a2f1 + 2a1f1

D = a1b2 − a2b1 + 2a2d2 − 2a1d2 − 2a2d1 + 2a1d1

F = a2
2 − 2a2a1 + a2

1

So the x-coordinates of points of intersection are real roots of a quar-
tic polynomial with coefficients in F . If we let R be the set of real
roots of Equation 3.4 then the x-coordinates of the intersection of the
two ellipses is in F (R). Inserting those roots into Equation 3.3 gives
us the y-coordinates, but as field operations of the x-coordinates and
the coefficients which are in F , so each y-coordinate is already in F (R).

For the case of the intersection of a line and an ellipse, the points
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of intersection are roots of a quadratic polynomial in the coefficients,
so they remain in F .

�

To algebraically analyze the constructible numbers, we consider a
slightly different decomposition of the constructible points. Start with
an arbitrary set of points P . Allow arbitrary use of the constructions
using 2 and 3 to obtain the set of classically constructible points de-
rived from P . Call the set Q0. Allow constructions of ellipses and lines
in Q0 and adjoin the points of intersection to obtain a set of points Q′

0.
Then allow arbitrary constructions using 2 and 3 to obtain the set of
classically constructible points derived from Q′

0. Call this set of points
Q1. Now repeat the process. Start with the points Qi. Allow construc-
tions of an ellipses and lines in Qi and adjoin the points of intersection
to obtain a set of points Q′

i. Then allow arbitrary constructions using 2
and 3 to obtain the set of classically constructible points derived from
Q′

i. Call this set of points Qi+1. The union
⋃

Qi are the constructible
points.

We analyze the constructed numbers as follows. We construct a
nested sequence of fields Fi. Suppose one starts with an initial set of
points P . The field of classically constructible numbers derived from P
is a field F0. Let R be the set of real roots of quartic polynomials with
coefficients in Fi obtained from the intersections of ellipses in Fi. Let
Fi+1 be the classically constructible numbers derived from R∪Fi. The
elliptically constructible numbers derived from P is the union

⋃

Fi. In
the chain of fields that union to the constructible numbers,

(3.5) F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fi ⊂ Fi+1 ⊂ · · ·

classical constructions in the plane of Fi can only produce numbers in
Fi while elliptic constructions in the plane of Fi may produce numbers
in Fi+1. Each of the fields Fi in the chain has the property that every
positive number in the field Fi has its square root in the field Fi.

Lemma 3.6. Suppose that a field F has the property that every positive

number in F has its square root in F . If an ellipse is in F , then the

string length and major axis are in F .

Proof. If the ellipse is in F then its focci are constructible. The line L
passing through the focci intersects the x-axis or runs parallel to the
x axis. If L is parallel to the x-axis we say that θ equals 0, otherwise
cos (θ), where θ is the angle between L and the x-axis, is constructible.
By Lemma 3.4, if we rotate and translate the ellipse, we get another
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ellipse in F , which is in standard position and whose equation is

Ax2 + Cy2 + F = 0

with coefficients in F . By Remark 3.1, the major axis and string length
are in F . �

Theorem 3.7. Suppose that a field F has the property that every pos-

itive number in F has its square root in F . An ellipse is in F if and

only if the directrix and focus are in the plane of F and the eccentricity

is in F .

Proof. We may rotate and translate an ellipse in F to get another
ellipse in F , which is in standard position (as we did in the proof of
Lemma 3.6). By Remark 3.1 the directrix and eccentricity are in F .

For the converse, let (fx, fy) be the coordinate of the focus. Consider
the line perpendicular to the directrix that passes through the focus.
Let (dx, dy) be the coordinate of the point on the directrix that the
perpendicular intersects. Two points on the ellipse satsify the following
two equations:

(fx − x)2 − (fy − y)2 = e2((dx − x)2 + (dy − y)2)

y − dy =
dy − fy

dx − fx

(x − dx)

From these equations we get two points on the ellipse whose coordinates
are the roots of quadratic equations with coefficients in F , so they are in
the plane of F . On the line that passes through the focci, the distance
between one point and the known focus is the same as the distance
between the other point and the other focus, so the other focus is in
the plane of F . Therefore, the ellipse is in F . �

Theorem 3.7 shows the equivalence of allowing the construction of
an ellipse given its foci and a point on the ellipse and allowing the con-
struction given the directrix, focus, and eccentricity. This observation
is important since it may be considered the link between the ancient
rules and the pins and string construction, showing that pins and string
is a valid ancient Greek construction.

4. Trisection of the general angle

Start with an angle of measure θ. The points B = (0, 0) and
C = (1, 0) are constructible points, and we may construct the angle
∠ABC, with A = ( cos (θ), sin (θ)). Hence , cos (θ) is constructible. To
obtain the angle of measure θ/3, we will produce the number cos(θ/3).

The number the sin(θ/3) can then be produced as
√

1 − cos2(θ/3).
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Figure 2. Trisection of θ = π
3

The angle ∠A′BC with A′ = ( cos (θ/3), sin (θ/3)) trisects the ∠ABC.
Therefore given q = cos (θ), we must produce cos(θ/3). By a triple
angle formula, cos(θ/3) is a real solution to the equation

4x3 − 3x − q = 0.

The other roots are cos(θ/3 + 2π/3) and cos(θ/3 + 4π/3).

Theorem 4.1. The general angle can be trisected.

Proof. Suppose cos (θ) ∈ Fi, where Fi is one of the fields in the chain
3.5 that union to the constructible numbers. We show that cos (θ/3) ∈
Fi+1. Let q = cos (θ) and consider the following ellipses with coeffi-
cients in Fi:

2x2 + 4y2 − qx + 2py + 2 = 0

6x2 + 4y2 + (2p − 4)y − (2 + q)x − p − 1 = 0.(4.1)

We can use Equation 3.4 to find a polynomial whose real roots are
the x-coordinates of the points of intersection. It is

4x4 − 4x3 − 3x2 + (3 − q)x + q = 0

which factors as 1
4
(4x3 − 3x − q)(x − 1) = 0. One of the solutions is

cos (θ/3). �

The example of the trisection of θ = π
3

is shown in Figure 2. In

Equations 4.1, q = 1
2
. There are four distinct points of intersection,

although two are very close together.

5. Cube roots and doubling the cube

The ability to construct a cube whose volume is double a given cube
is the same as the ability to multiple a side length by the 3

√
2. Of

course, 2 ∈ Q ⊂ F0. where F0 is the first field in 3.5.
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Figure 3. Constructing the 3
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Theorem 5.1. If a is a constructible number, then so is 3
√

a.

Proof. Suppose a ∈ Fi. Consider the following equations of ellipses
with coefficients in Fi:

2x2 + y2 − ax + 2
√

2y + 1 = 0(5.1)

3x2 + y2 − ax + (1 + 2
√

2)y +
√

2 = 0

We can use Equation 3.4 to find the polynomial whose real roots are
the x-coordinates of the points of intersection:

x4 − ax = 0.

The real roots are 0 and 3
√

a. �

To doubling the cube, we need to let a = 2 in Equations 5.1. This
gives the two ellipses shown in Figure 3.

6. Regular Polygons and the Constructible Numbers

Gauss determined that a regular n-gon can be constructed with a
straight edge and compass if φ(n) is a power of 2, where φ is the Euler
φ function. The first complete proof that a regular n-gon is classically
constructible if and only if φ(n) is a power of 2 was by Pierre Wantzel
in 1837. The regular polygons that can be constructed with a straight
edge and pins and string can also be determined.

To outline which points in the plane are constructible requires a
foray into the complex numbers. This argument is the same as in [3].
We interpret the points in the plane as the Gaussian plane of complex
numbers, i.e., we interpret (x, y) as x+ iy. The essential needed points
are that we can trisect the general angle and construct cube roots of a
constructible (real) number. We can then construct the cube roots of

a constructible (complex) number, e.g., one
3
√

reθi is 3
√

r e
θ

3
i. We can
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construct the square root by ruler and compass. Since fourth degree

polynomials can be solved by use of cube and square roots, the field of

constructible complex numbers is the smallest subfield of C closed under

conjugation, square roots and cube roots.

Theorem 6.1. A regular polygon with n sides is constructible if and

only if φ(n) = 2s3t.

The proof follows the familar proof quadratic extensions and is given

in [3]. The regular heptagon is elliptically constructible but not classi-

cally constructible

References

[1] http://www-groups.dcs.st-and.ac.uk/˜history/HistTopics/Trisecting an angle.html
[2] Yates, Robert C., ”The Trisection Problem” National Mathematics Magazine,

15(1941)191-202.
[3] Videla, Carlos R., ”On Points Constructible from Conics,” Mathematical In-

telligencer, 19(1997) 53–57.
[4] Hungerford, Thomas W., Algebra, New York: Springer 1997.

Department of Mathematics, Tulane University, New Orleans, LA,

70118 USA

Department of Mathematics, Louisiana State University, Baton Rouge,

LA, 70803 USA


