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We provide a platform to examine the effect
of inclusion geometry on three-dimensional
metamaterial crystals to tune frequency-dependent
effective properties for control of leading order
dispersive behaviour. The crystal is non-magnetic
and made from all dielectric components. The
design provides novel dispersive properties using
subwavelength resonances controlled by the geometry
of the media. We numerically calculate the effective
tensors of the metamaterial to identify frequency
intervals where the metamaterial exhibits band gaps
as well as intervals of normal dispersion and double
negative dispersion. The frequency intervals can
be explicitly controlled by adjusting the geometry
and placement of the dielectric inclusions within the
period cell of the crystal.

1. Introduction and problem set-up

(a) Introduction
Metamaterials exhibit novel properties not found in
nature. These properties are generated by periodically
patterned composite material crystals. When the period
of the crystal is less than the wavelength of incident
radiation, interesting interactions occur between the
material and the electromagnetic waves. This provides
the opportunity for manipulation of structural geometry

2022 The Authors. Published by the Royal Society. All rights reserved.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

13
 J

ul
y 

20
22

 

http://crossmark.crossref.org/dialog/?doi=10.1098/rspa.2022.0194&domain=pdf&date_stamp=2022-07-13
mailto:abiti_adili@uml.edu
http://orcid.org/0000-0001-6451-6960
http://orcid.org/0000-0003-1724-5197
http://orcid.org/0000-0002-1382-3204
http://orcid.org/0000-0002-8027-5789


2

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20220194

..........................................................

to obtain novel dispersive properties. One such property is exhibited by the double negative
metamaterial which has frequency-dependent negative effective magnetic permeability and
negative effective dielectric permittivity. Metamaterials with double negative effective properties
have a wide range of applications ranging from biomedical imaging to optical lithography and
data storage. In 1968, the novel properties of materials were studied under the assumption of
negative dielectric constant and negative magnetic permeability [1]. The double negative effective
properties of a periodic array of non-magnetic metallic split-ring resonators at microwave
frequency were studied in [2]. The double negative properties of metamaterials made from arrays
of metallic posts and split-ring resonators were experimentally demonstrated in [3]. Double
negative properties of materials were obtained for metallic resonators with different geometric
structures in [4–9]. Negative refractive properties of metamaterials obtained by employing
dielectric material with large permittivity were studied in [10–12].

The appearance of double negative properties of metamaterials made from high dielectric core
with plasmonic coating at optical frequencies was explored in [13–15]. Metamaterial crystals
with double negative effective properties were obtained using periodic array of unit cells
consisting of two different inclusions in [16,17]. Negative bulk dielectric permeability at infrared
and optical frequencies using special configurations of plasmonic nanoparticles was studied
in [18,19].

The dispersion relation and convergent power series representation for a propagating Bloch
wave in a periodic medium with a single high contrast inclusion were obtained in [20–22].
The leading order terms give the effective dispersion relation of the metamaterial while the
higher order terms give the corrections necessary for the diffraction due to inclusions of finite
size. In the optical frequency regime, convergent power series solutions recovering dispersion
relations were derived for all dielectric constituents that deliver double negative dispersive
properties for transverse electric modes propagating transverse to prismatic rods [17]. For these
configurations, the direction of power flow is opposite to that of phase velocity. Their frequency-
dependent refractive properties were subsequently engineered in the time domain for controlling
the direction of signals [23]. A setting for which the appearance of artificial magnetism for
describing scattering problems for three-dimensional metamaterials using high dielectric constant
inclusions was introduced and rigorously established in [24]. For three-dimensional metallic split-
ring geometries, the rigorous proof of effective magnetic permeability was recently given in [25].
Recently, the rigorous mathematical realization of double negative metallic media using two scale
expansions for microwave frequencies was obtained in [26].

This paper analyses metamaterial crystals constructed using all dielectric materials in the
near infrared–optical regime. Our choice of dielectric constituents is motivated by the work
of [17]. The novelty of this work is that we focus on fully three-dimensional materials and
the results are directly obtained from Maxwell’s equations using power series expansions of
the electromagnetic fields. The wavelength of light propagating through the periodic crystal
is λ and the period of the crystal is d. For metamaterials, the crystal is subwavelength, i.e.
the period of the structure is below the wavelength of operation, so 2πd/λ < 1. We treat a
non-magnetic host dielectric M impregnated with an infinite periodic array of non-magnetic
inclusions with different dielectric properties. Inside any period the host material contains two
types of non-magnetic included phases: one with a high dielectric constant denoted by R and the
other featuring a frequency-dependent dielectric constant denoted by P. The three-dimensional
period cube containing distinct inclusions of P and R is shown in figure 1 and a coated sphere
geometry with core R coated with P is shown in figure 2. The leading order behaviour of the
electromagnetic field inside a metamaterial made from these configurations is propagating plane
waves with polarization given by averaged electric and magnetic fields. The plane waves can
propagate across frequency bands determined explicitly to leading order by a dispersion relation
given in terms of frequency-dependent effective magnetic permeability and permittivity. The
averaged electric field is the usual average of the electric field over the period cell; however,
the averaged H field is based on a geometric average over the period introduced in [24] for
periodic subwavelength high dielectric materials associated with artificial magnetization; see
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Figure 1. Period cell. (Online version in colour.)

P

R

M

Figure 2. Unit cell with a coated spherical inclusion. (Online version in colour.)

(2.8) and (2.9) of §2b. The frequency-dependent effective dielectric permittivity and magnetic
permeability are described by two types of subwavelength resonances: a plasmon resonance
generating frequency-dependent positive or negative effective dielectric properties and an
artificial magnetic resonance generating a frequency-dependent effective magnetic permeability;
see §2c. The plasomnic response of the metamaterial is due to the frequency dependence of
the dielectric inclusion exciting a structural electric resonance of the electromagnetic crystal at
certain frequencies. The structural resonance was calculated through generalized electrostatic
resonances for periodic crystals [16,17,27]. This approach is motivated by the seminal work of
[28,29] that introduces similar resonances to obtain bounds on frequency-independent effective
transport properties. For dilute suspensions such resonances can be found in [30]. The magnetic
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resonances were mathematically identified and explained in the three-dimensional context in [24];
see also [31,32]. Here, we show how to employ these two resonances to rationally design double
negative materials. We numerically calculate the effective properties for metamaterial crystals
made from coated sphere geometries and identify frequency intervals in the optical regime where
the metamaterial exhibits double negative behaviour. Here, the term double negative refers to
simultaneously negative effective magnetic permeability and dielectric permittivity, implying
that the propagation of energy is opposite to the direction of phase velocity. This is demonstrated
in §2d.

(b) Problem set-up
The Maxwell system takes the form

∇ × E = −μd
∂H
∂t

,

∇ · (εdE) = 0,

∇ × H = εd
∂E
∂t

and ∇ · H = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1.1)

Here, E denotes the electric field and H = B/μ0, where B is the magnetic field. The host and
inclusions are non-magnetic and μd :=μ0 everywhere in the crystal where μ0 is the free space
value.

We express Maxwell’s equations in terms of relative dielectric permittivity and magnetic
permeability. And the dielectric constant εd(x) of the metamaterial crystal of period length d with
period cell Yd = (0, d)3 is given by εd = ε0ε

d
rel, where ε0 is the dielectric constant in free space and

the relative dielectric permittivity

εd
rel =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
εp,rel(ω) = 1 −

ω2
p

ω2 in P,
εr,rel

d2 in R,

1 in M.

(1.2)

Here, εp,rel and εr,rel represent the dielectric constants of the inclusions P and R, respectively,
and unity is the relative dielectric constant for free space. The material characterized by εp,rel
is frequency dependent like gold or aluminium for near infrared and optical frequencies. To
illustrate the idea, εp,rel is represented by a Drude model without damping where ωp is the plasma
frequency. The material inside inclusion R is a frequency-independent dielectric material.

We consider periodically modulated waves propagating through the crystal:

E(x, t) = E(x) e(ikk̂·x−iωt) and H(x, t) = H(x) e(ikk̂·x−iωt), (1.3)

where E(x) and H(x) are periodic, k̂ is the direction of wave propagation and |k̂| = 1, k is the
wavenumber, and ω is the frequency. Writing

E(x) = E(x) eikk̂·x and H(x) = H(x) eikk̂·x,

and rescaling y = x/d, we have the problem posed in the unit cell Y = (0, 1)3 given by

∇ × E = idωμ0H, [H] = 0,

∇ × H= −idωε0ε
d
relE , [n × E] = 0,

∇ · ε0ε
d
relE = 0, [n · ε0ε

d
relE] = 0

and ∇ · H= 0,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(1.4)

where the notation [·] indicates transmission conditions across interfaces between materials.
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In this paper, power series expansion of the waves in the small parameter η= dk = 2πd/λ is
used to investigate dispersion associated with subwavelength crystals. We expand the electric
field, magnetic field and non-dimensional square frequency as

E(y) = e0(y) eiηk̂·y + e1(y)η eiηk̂·y + e2(y)η2 eiηk̂·y + · · · ,

H(y) = h0(y) eiηk̂·y + h1(y)η eiηk̂·y + h2(y)η2 eiηk̂·y + · · ·
and ω=ω0 + ω1η + ω2η

2 + · · · ,

where e0, e1, . . . and h0, h1, . . . are periodic. The expansions are substituted into (1.4) and the
leading order terms e0, h0 together with the leading order dispersion relation relating ω0 to k
are seen to describe plane wave propagation inside the metamaterial. They give the leading
order behaviour for propagating electromagnetic waves inside the subwavelength medium for
2πd/λ < 1.

2. Main results

(a) Characterization of leading order terms
The asymptotic analysis (see §§3b and 3e) shows that the leading order terms e0 and h0 are
characterized by solutions to quasi-static electromagnetic problems that can be written in terms
of electrostatic and magnetostatic resonances.

Theorem 2.1. The leading order H field, h0, is continuous and divergence free in Y. Moreover, there is
a periodic potential w and constant vector c such that h0 = ∇w + c on Y \ R with 	w = 0 there. Inside R,
the quasi-static magnetic field h0 solves the Helmholtz equation

∇ × ∇ × h0 = ξ0h0 in R, (2.1)

where ξ0 = εr,rel ω
2
0/c

2.

The effective magnetic activity is determined by the volume average of the leading order term
h0. This is described with the aid of the geometric average

∮
h0 of h0. To describe the geometric

average consider a smooth vector field v defined on Y/R and periodic on the boundary of Y and
introduce ∫

Γk,x

v · ẽk d�,

with Γk,x being a curve connecting two points x and x + ẽk on opposite faces of the unit cube
Y and arclength element d�. Here, Γk,x can be any such curve lying outside of R. The geometric
average

∮
v exists if (∮

v

)
· ẽk :=

∫
Γk,x

v · ẽk d�

is a unique constant vector independent of the choice of Γk,x, k = 1, 2, 3. This is always the case
when ∇ × v = 0 in Y \ R (see [31]). When ∇ × v = 0 in Y then

∮
v = ∫

Y v.
For h0, one has the following.

Corollary 2.2. The geometric average of h0 is c, where the constant vector c is defined in theorem 2.1.

The effective magnetic permeability [24,31,32] is defined to be the tensor μeff = μeff(ω0) relating
the volume average to the geometric average of the h0 field given by

μeff

(∮
h0

)
=

∫
Y

h0(y) dy. (2.2)

The explicit formula for μeff is given in theorem 2.7 and is constructed in §3e.
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The e0 field is the quasi-static electric field inside a periodic composite. We can write e0 as the
sum of a potential gradient ∇χ and a constant vector ẽ where χ is periodic on Y. We set

ap(y) =
{

1 y ∈ M

εp,rel(ω0) y ∈ P
(2.3)

and we have the following.

Theorem 2.3. The leading order term e0 satisfies

∇ × e0 = 0 in Y,

e0 = ∇χ + ẽ in Y

and e0 = 0 in R,

⎫⎪⎪⎬
⎪⎪⎭ (2.4)

with ẽ = ∫
Y e0 dy and the potential χ satisfies

∇ · (ap(∇χ + ẽ)) = 0 in M ∪ P

and n · εp,rel(ω0)(∇χ + ẽ)
∣∣
∂P− = n · (∇χ + ẽ)

∣∣
∂P+ ,

}
(2.5)

with

χ + ẽ · x = 0 in R, (2.6)

where |∂P− and |∂P+ denote evaluation of quantities on the boundary of P from the inside and outside,
respectively, and x = (x1, x2, x3) in the space.

We note that χ depends linearly on ẽ and in the sequel we indicate this by writing χ = χ ẽ. The
effective dielectric constant gives the linear map between an imposed constant electric field and
the resulting average dielectric displacement seen by an observer outside the unit period cell and
is denoted by εeff = εeff(ω0) given by

εeff

∫
Y

e0 dx =
∫
∂Y

xn · e0 ds, (2.7)

where ∂Y denotes the boundary of Y and ds is the surface area element. This formula was obtained
earlier in the absence of frequency dependent dielectric inclusions in [24,31,32]. The explicit
formula for εeff as a function of ω0 is given in theorem 2.7 and constructed using generalized
electrostatic resonances in §3e.

(b) Homogenized fields
Theorem 2.4. (1) The plane waves (homogenized H field) Hhom(x, t) and the homogenized magnetic

field Bhom(x) are given by

Hhom(x, t) = (
∮

h0) e(ikk̂·x−iω0t)

and Bhom(x, t) =μ0μeffHhom(x, t),

⎫⎪⎬
⎪⎭ (2.8)

where μeff is the effective magnetic permeability tensor.
(2) The plane waves (homogenized E field) Ehom(x, t) and the homogenized electric displacement field

Dhom(x) are given by

Ehom(x, t) =
∫

Y
e0 dx e(ikk̂·x−iω0t)

and Dhom(x, t) = ε0εeffEhom(x, t),

⎫⎪⎬
⎪⎭ (2.9)

where εeff is the effective dielectric permittivity tensor.
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The homogenized fields are the plane wave solutions of Maxwell’s equations for the homogeneous
effective media:

∇ × Ehom = −μ0μeff
∂Hhom

∂t
,

∇ · Dhom = 0,

∇ × Hhom = ε0εeff
∂Ehom

∂t

and ∇ · Hhom = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.10)

The homogenized dispersion relation for the electromagnetic waves travelling through the
metamaterial crystal is given by the following theorem.

Theorem 2.5. For given k̂ and k, the frequencies ω0 for which plane waves can propagate with
polarization

∮
h0 in the direction k̂ at wavelength λ= k/2π are the roots of the equation

det

[
k2A(ω0) + ω2

0
c2 μeff(ω

2
0)

]
= 0, (2.11)

with Aij(ω0) = Eipmk̂pEmnj[ε
−1
eff (ω0)]npk̂p, i, p, m, n, j = 1, 2, 3 where Eipm and Emnj are the symbols for the

Levi-Civita tensors.
An admissible polarization of the (homogenized H field) Hhom(x, t) field

∮
h0 lies in the null space of the

matrix [
k2A(ω0) + ω2

0
c2 μeff(ω

2
0)

]
. (2.12)

Using equation (2.11), we will find crystal geometries having frequency regimes where μeff
and εeff are both positive, both negative or band gaps for the metamaterial.

Elimination of Ehom or Hhom from (2.10) gives the following.

Theorem 2.6. The homogenized fields satisfy the following vector wave equations for a homogeneous
effective medium. Hhom(x, t) satisfies

∇ × ε−1
eff ∇ × Hhom(x, t) = − 1

c2 μeff
∂2Hhom(x, t)

∂t2 , (2.13)

and Ehom(x, t) satisfies

∇ × μ−1
eff ∇ × Ehom(x, t) = − 1

c2 εeff
∂2Ehom(x, t)

∂t2 . (2.14)

(c) Effective property tensors as functions of frequency
Theorem 2.7. (1) The effective magnetic permeability tensor μeff is given by

μeff(ω0) =
∞∑

n=1

ω2
0/c

2

λnε
−1
r,rel − ω2

0/c
2

(∫
Y
φn

)
⊗
(∫

Y
φn

)
+ I3, (2.15)

where
∮
φn = 0 and (λn,φn), n = 1, 2, . . . are the eigenpairs of the following eigenvalue problem:

∇ × ∇ × φn = λnφn in R,

φn = ∇ϕn in Y \ R

and 	ϕn = 0 in Y \ R

⎫⎪⎪⎬
⎪⎪⎭ (2.16)

with scalar potentials ϕn periodic on Y and on the boundary of R one has continuity of the normal
components φn · n|− = ∇ϕn · n|+, where |+ and |− denote limits from the inside and outside of the
boundary of R and n is the outward directed unit normal to the boundary.
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(2) The effective dielectric permittivity tensor εeff is given by

εeffẽ · ẽ = (εp,rel(ω0)θP + θM
)
ẽ · ẽ

+ θY\R

∞∑
n=1

(
1 + μn(εp,rel(ω0) − 1)

)
(an + bn)2

+
∫

M
∇q · ∇q + εp,rel(ω0)

∫
P

∇q · ∇q, (2.17)

where

an = −ẽ ·

∫
M

∇ψμn
+ εp,rel(ω0)

∫
P

∇ψμn

1 − μn + εp,rel(ω0)μn
(2.18)

and

bn = −

∫
M

∇q · ∇ψμn
+ εp,rel(ω0)

∫
P

∇q · ∇ψμn

1 − μn + εp,rel(ω0)μn
. (2.19)

Here, θP, θM, θY\R are the volumes of P, M and Y \ R, respectively, and ψμn are the electrostatic
eigenfunctions associated with the eigenvalues 0 ≤μn ≤ 1 of the generalized electrostatic resonance
eigenvalue problem [17,27]:

	ψμn = 0 in Y \ R,

μn∇ψμn · n
∣∣
∂P+ = (μn − 1)∇ψμn · n

∣∣
∂P−

and ψ
μn

∣∣+
∂R

= 0,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.20)

andψμn is continuous in Y \ R, and satisfies periodic boundary conditions on Y. The Y-periodic continuous
function q with square integrable derivatives satisfies 	q = 0 in Y \ R and q = −ẽ · x in R.

(d) Simulation
To frame the discussion, if we assume that the material is isotropic, then for this medium, the
dispersion relation is given by

ξ0 = εr,relk
2ε−1

eff μ
−1
eff , (2.21)

where εeff, μeff are constants appearing in the formulae for εeff = εeffI3 and μeff =μeffI3. Equation
(2.21) shows the existence of ξ0 such that both εeff and μeff are negative. As a demonstration, we
considered cases where the metamaterial consists of unit cells in which the plasmonic coating and
high dielectric core are concentric spheres located at the centre of the cube as shown in figure 2.

In numerical computation of effective magnetic permeability, the following equivalent form of
the formula (2.15) is used:

μeff(ξ0) := I3 + 1
4

∑
n∈N

ξ0

1 − αnξ0

(∫
R

y × fn dy
)

⊗
(∫

R
y × fn dy

)
, (2.22)

where (αn, fn) are the eigenpairs of the following eigenvalue problem:
∫

Y
∇Θf : ∇Θg dx + 1

4

(∫
R

x × f dx
)

·
(∫

R
x × g dx

)
= α

∫
Y

f · g dx, (2.23)

where g is a vector valued square integrable function such that

g = 0 in Y \ R and ∇ · g = 0.

In equation (2.23), for any function h, Θh is constructed as follows:

−	Θh = h, in Y,
∫

Y
Θh = 0, (2.24)
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Figure 3. The case for R= 0.26, r = 0.156. (Online version in colour.)

where Θh is periodic. The numerical solutions of both (2.23) and (2.24) are obtained by applying
the finite-element method (FEM) via FELICITY [33] in MATLAB. In order to accommodate the
divergence free condition for the solution of (2.23), the solution space is discretized using the
lowest order Raviart–Thomas finite elements. The solution space for (2.24) is discretized by using
first-order Lagrange elements.

In order to compute the effective dielectric tensor formula (2.17), we need to compute both the
eigenpairs (ψμn ,μn) and q. The eigenpairs (ψμn ,μn) are found by solving (2.20) and the periodic
function q is computed by solving the equation

	q = 0, q
∣∣
∂R+ = −ẽ · x. (2.25)

Both problems (2.20) and (2.25) are solved via FELICITY [33] in MATLAB by applying FEM. The
solution spaces are discretized by using first-order Lagrange elements.

For the inclusions, we chose dielectric constant εr,rel = 1 and ξp = 3 × 1015 for the plasmon
frequency of the plasmonic coating which was assumed to be made of gold. We considered
five different cases where the geometry is given by different radii for the concentric spherical
inclusions. In the first three cases, we identified two intervals for ξ0/ξp =ω2

0/ω
2
p, where εeff and

μeff are negative. This corresponds to the wave propagating in the direction opposite to the wave
velocity. This is seen in [23] for transverse magnetic transmission.

The first three cases, shown in figures 3–5, demonstrate the intervals where both effective
magnetic permeability and effective dielectric permittivity exhibit negative behaviour. In these
graphs, R and r denote the radii of the plasmonic and high dielectric inclusions, respectively.

To illustrate other behaviours of effective properties, we identified two frequency intervals,
shown in figure 6, where we observe that the effective magnetic permeability is positive while
the effective dielectric permittivity remains negative. These intervals correspond to band gaps.
Figure 7 illustrates the case of a frequency interval where both effective properties exhibit
positive behaviour and waves propagate along the direction of the phase velocity. In this case,
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we observe that the effective dielectric permittivity exhibits positive behaviour when ξ0 is close
to the plasmon frequency of the gold.

By writing the formula (2.22) as

μeff

(
ω2

0

ω2
p

)
= I3 + 1

4

∑
n∈N

ω2
0/ω

2
p

(1/ξp) − αn(ω2
0/ω

2
p)

(∫
R

y × fn dy
)

⊗
(∫

R
y × fn dy

)
, (2.26)

it can be seen that, except for the poles of effective permeability tensor that are very close to 0, the
graph of effective permeability is a horizontal line in all of the cases considered.

Figure 3 illustrates the case where the plasmonic inclusion has radius R = 0.26 and
the high dielectric inclusion has radius r = 0.156. For this case, we identify two frequency
intervals [0.17033, 0.171277] and [0.17128, 0.17207] where both effective tensors are negative.
Figure 4 illustrates the case where the plasmonic inclusion has radius R = 0.3 and the high
dielectric inclusion has radius r = 0.12. Here, we have identified two frequency intervals
[0.117425, 0.120897] and [0.121006, 0.1215221] where both effective tensors are negative. Figure 5
illustrates the case where the plasmonic inclusion has radius R = 0.45 and the high dielectric
inclusion has radius r = 0.27. For this case, we identify two frequency intervals [0.207610, 0.2105]
and [0.210773, 0.21203] where both effective tensors are negative. Figure 6 illustrates the case
where the plasmonic inclusion has radius R = 0.35 and the high dielectric inclusion has radius r =
0.14. For this case, we identify two frequency intervals [0.25797, 0.259008] and [0.25910, 0.26041]
where the effective magnetic permeability is positive while the effective dielectric permittivity
is negative. Figure 7 illustrates the case where the plasmonic inclusion has radius R = 0.45
and the high dielectric inclusion has radius r = 0.18. For this case, we identify a frequency
interval [0.94342, 0.95728] where both the effective magnetic permeability tensor and the effective
dielectric tensor are positive.

3. Proof of results

(a) Leading order terms in power series and metamaterial
We carry out the analysis for the configuration shown in figure 1, noting that a nearly identical
analysis can be carried out for the coated sphere geometry with the obvious modifications.
To expedite the asymptotic analysis, we introduce the non-dimensional square frequency ξ =
(εr,relω

2)/c2, square plasma frequency ξp = (ω2
pεr,rel)/c2 and period size ρ = d/√εr,rel, where ωp

is the plasmon frequency of the inclusion P. The non-dimensional wavenumber is written τ =√
k2εr,rel.

We now recover the homogenization theorems. Substitution of

E(y) = e0(y) eiηk̂·y + e1(y)η eiηk̂·y + e2(y)η2 eiηk̂·y + · · · ,

H(y) = h0(y) eiηk̂·y + h1(y)η eiηk̂·y + h2(y)η2 eiηk̂·y + · · ·
and

√
ξ =

√
ξ0 +

√
ξ1η +

√
ξ2η

2 + · · ·
into (1.4) gives the following.

— In R

τ [(∇ × e0 + iηk̂ × e0) + η(∇ × e1 + iηk̂ × e1) + · · · ]

= iηn0(
√
ξ0 +

√
ξ1η + · · · )(h0 + ηh1 + · · · ), (3.1)

η[(∇ × h0 + iηk̂ × h0) + η(∇ × h1 + iηk̂ × h1) + · · · ]

= −iτn−1
0 (
√
ξ0 +

√
ξ1η + · · · )(e0 + ηe1 + · · · ). (3.2)
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— In P

τ [(∇ × e0 + iηk̂ × e0) + η(∇ × e1 + iηk̂ × e1) + · · · ]

= iηn0(
√
ξ0 +

√
ξ1η + · · · )(h0 + ηh1 + · · · ), (3.3)

τ [(∇ × h0 + iηk̂ × h0) + η(∇ × h1 + iηk̂ × h1) + · · · ]

= −iηn0
−1(
√
ξ0 + η

√
ξ1 + · · · )(1 − ξ∗)(e0 + ηe1 + · · · ), (3.4)

where

ξ∗ = ξp

(
√
ξ0 + η

√
ξ1 + · · · )2 .

— In M

τ [(∇ × e0 + iηk̂ × e0) + η(∇ × e1 + iηk̂ × e1) + · · · ]

= iηn0(
√
ξ0 +

√
ξ1η + · · · )(h0 + ηh1 + · · · ), (3.5)

τ [(∇ × h0 + iηk̂ × h0) + η(∇ × h1 + iηk̂ × h1) + · · · ]

= −iηn0
−1(
√
ξ0 +

√
ξ1η + · · · )(e0 + ηe1 + · · · ). (3.6)

— On R–M interface

n · (e0 + ηe1 + · · · )
∣∣
∂R− = ρ2n · (e0 + ηe1 + · · · )

∣∣
∂R+ , (3.7)

n × (e0 + ηe1 + · · · )
∣∣
∂R− = n × (e0 + ηe1 + · · · )

∣∣
∂R+ . (3.8)

— On P–M interface

n ·
[(√

ξ0 + η
√
ξ1 + · · ·

)2 − ξr

]
(e0 + ηe1 + · · · )

∣∣
∂P−

= n ·
(√
ξ0 + η

√
ξ1 + · · ·

)2
(e0 + ηe1 + · · · )

∣∣
∂P+ , (3.9)

n × (e0 + ηe1 + · · · )
∣∣
∂P− = n × (e0 + ηe1 + · · · )

∣∣
∂P+ . (3.10)

We also have

— In R

(∇ · e0 + iηk̂ · e0) + η(∇ · e1 + iηk̂ · e1) + · · · = 0. (3.11)

— In P

εp,rel[(∇ · e0 + iηk̂ · e0) + η(∇ · e1 + iηk̂ · e1) + · · · ] = 0. (3.12)

— In M

(∇ · e0 + iηk̂ · e0) + η(∇ · e1 + iηk̂ · e1) + · · · = 0. (3.13)

— On R–M interface

n · 1
ρ2 ei

∣∣
∂R− = n · ei

∣∣
∂R+ . (3.14)

— On P–M interface

n · εp,relei
∣∣
∂P− = n · ei

∣∣
∂P+ . (3.15)
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We now collect like order terms with the same powers of η. We first recover theorem 2.3 by
collecting zeroth-order terms in (3.1), (3.3) and (3.5), to get

τ (∇ × e0) = 0 in R,

τ (∇ × e0) = 0 in P

and τ (∇ × e0) = 0 in M.

⎫⎪⎪⎬
⎪⎪⎭ (3.16)

From (3.8), (3.10) and (3.15), we have

n × e0
∣∣
∂R− = n × e0

∣∣
∂R+ ,

n × e0
∣∣
∂P− = n × e0

∣∣
∂P+

and εp,rel(ω0)n · e0
∣∣
∂P− = n · e0

∣∣
∂P+ .

⎫⎪⎪⎬
⎪⎪⎭ (3.17)

From (3.11) to (3.14), we have

∇ · εp,rele0 = 0 in P,

∇ · e0 = 0 in M,

∇ · e0 = 0 in R

and n · e0
∣∣
∂R− = 0.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.18)

Using (3.16), we find ∫
Y

|∇ × e0|2 dy = 0. (3.19)

So ∇ × e0 = 0 in Y and e0 can be written as

e0 = ∇χ ẽ + ẽ in Y, (3.20)

where χ ẽ is a Y-periodic potential with square integrable gradient and ẽ is a complex vector. Since∫
Y ∇χ ẽ = 0, we get that

∫
Y e0 = ẽ. Using (3.18) and (3.20), we observe that

∫
R

|e0|2 dy = 0, (3.21)

and this implies that e0 = 0 in R and we have established theorem 2.3.
We show that the transmission problem given by (2.5) and (2.6) follows from the asymptotic

expansions. From e0 = ∇χ ẽ + ẽ = 0 in R, we discover that χ ẽ + ẽ · x = c0 in R, where c0 is a
constant scalar. We are free to choose the constant c0 = 0 and from continuity of the potential
across the boundary of R we get

(χ ẽ + ẽ · x)
∣∣
∂R+ = 0, (3.22)

and (2.6) follows. The transmission problem given by (2.5) and (2.6) now follows on setting e0 =
∇χ ẽ + ẽ and applying the last equation in (3.17) together with the first two equations in (3.18).

From linearity χ ẽ depends linearly on ẽ and we can write ẽ =∑3
k=1 ekẽk, for scalars ek and

χ ẽ =
3∑

k=1

ekφ
k, k = 1, 2, 3, (3.23)

where the potentials φk, k = 1, 2, 3 solve

∇ · [ap(y)(∇φk + ẽk)] = 0 in M ∪ P

n · εp,rel(ω0)(∇φk + ẽk)
∣∣
∂P− = n · (∇φk + ẽk)

∣∣
∂P+

⎫⎬
⎭ (3.24)

and

φk + xk
∣∣
∂R+ = 0. (3.25)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

13
 J

ul
y 

20
22

 



15

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20220194

..........................................................

Given ṽ =∑3
k=1 vkẽk set v0 = ∇χ ṽ + ṽ, where χ ṽ =∑3

k=1 vkφ
k. The effective bilinear form

describing the effective property is defined by

εeffẽ · ṽ =
∫

Y
εd

rel(∇χ ẽ + ẽ) · (∇χ ṽ + ṽ) dy. (3.26)

An integration by parts of (3.26) recovers the equivalent formulation of the effective dielectric
constant given in (2.7).

Now, we recover theorem 2.1. Collecting the zeroth-order terms of η from (3.1) to (3.15), we
have

∇ × h0 = 0 in P,

∇ × h0 = 0 in M,

∇ · h0 = 0 in Y

and [h0] = 0 on ∂P and ∂R.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.27)

Finally, we write (3.2) as

(∇ + iηk̂) × (h0 + ηh1 + · · · ) = −i
n−1

0
ρ

(√
ξ0 + η

√
ξ1 + · · ·

)
(e0 + ηe1 + · · · ). (3.28)

By applying the differential operator (∇ + iηk̂)× to both sides of (3.28) and collecting the zeroth-
order and first-order terms of η, we find that

∇ × ∇ × h0 = ξ0h0 in R. (3.29)

Since h0 is divergence free on Y and ∇ × h0 = 0 on Y \ R, there is a potential w and a constant
vector c such that h0 = ∇w + c on Y \ R with 	w = 0 there and periodic on the boundary of Y.
Theorem 2.1 now follows.

To see theorem 2.2 note that since h0 = ∇w + c, where w is periodic on the boundary of Y, then
direct calculation shows

∮
h0 = c for any choice of Γk, k = 1, 2, 3.

(b) Derivation of homogenized fields
We focus now on recovering the homogenized equations (2.10) from the expansions. We collect
terms of the first order in η in (3.1), (3.3) and (3.5), and get

τ (∇ × e1) = i
√
ξ0n0h0 in R,

τ (∇ × e1 + ik̂ × e0) = i
√
ξ0n0h0 in P

and τ (∇ × e1 + ik̂ × e0) = i
√
ξ0n0h0 in M.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.30)

We integrate the equations in (3.30) over the regions R, P and M, respectively. The summation of
these three integrals gives

τ

∫
Y

ik̂ × e0 dy = in0
√
ξ0

∫
Y

h0 dy. (3.31)

Collecting terms of second order in η in (3.2) and first order in η in (3.4) and (3.6) gives

∇ × h1 + ik̂ × h0 = −iτn−1
0 (
√
ξ1e1 +

√
ξ0e2) in R,

τ (∇ × h1 + ik̂ × h0) = −iεp,rel(ξ0)
√
ξ0n−1

0 e0 in P

and τ (∇ × h1 + ik̂ × h0) = −i
√
ξ0n−1

0 e0 in M.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.32)

On setting e∗,i = ∇φi + ẽi, i = 1, 2, 3, we have

e∗,i = 0 in R, ∇ · e∗,i = 0 in Y and
∫

Y
e∗,i = ẽi, i = 1, 2, 3. (3.33)
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We multiply equations in (3.32) by e∗,i and then integrate them over the regions R, P and M,
respectively. Adding the integrals together gives

τ

(∫
Y

∇ × h1 · e∗,i dy +
∫

Y
ik̂ × h0 · e∗,i dy

)
= −in−1

0

√
ξ0

∫
Y
εd

rel(ξ0, y)e0 · e∗,i dy. (3.34)

Applying the definition of the effective magnetic permeability (2.2) to the equation (3.31), we
obtain

τ k̂ ×
(∫

Y
e0

)
= n0

√
ξ0μeff

(∮
h0

)
. (3.35)

Note that ∇ × e0 = 0 in Y implies ∇ × e∗,i = 0 in Y. So we can show ∇ · (e∗,i × k) = 0. Therefore,
an application of lemma 4.5 of [24] to the second term of the left-hand side of (3.34) gives

iτ
∫

Y
k̂ × h0 · e∗,i dy = iτ

∫
Y

h0 · (k̂ × e∗,i)

= iτ (k̂ ×
∮

h0) · ẽi. (3.36)

A direct calculation gives ∫
Y

∇ × h1 · e∗,i = 0. (3.37)

Finally, applying (3.37) and (3.36) in (3.34) gives

iτ (k̂ ×
∮

h0) · ẽi = −in−1
0

√
ξ0

∫
Y
εd

rel(ξ0, y)(∇χ ẽ + ẽ) · e∗,i dy. (3.38)

From linearity, we express the effective dielectric permittivity tensor εeff as

[εeff]ij :=
∫

Y
εd

rel(ξ0, y)e∗,i · e∗,j dy, (3.39)

and (3.38) and (3.39) give ∫
Y

e0 dy = −τ n0√
ξ0

ε−1
eff (k̂ ×

∮
h0). (3.40)

Substituting (3.40) into (3.35) gives

− τ 2k̂ × ε−1
eff k̂ ×

∮
h0 = ξ0μeff

∮
h0, (3.41)

which then yields

∇x × ε−1
eff ∇x ×

∮
h0 eikk̂·x = ω2

0
c2 μeff

∮
h0 eikk̂·x. (3.42)

Multiplying by e−iω0t both sides of (3.42) and noting that Hhom(x, t) =
(∮

h0

)
e(ikk̂·x−iω0t)

completes the proof of (2.13).
By expressing

∮
h0 in (3.35) and using (3.38), we get

∇x × μ−1
eff ×

∫
Y

e0 eikk̂·x = ω2
0

c2 εeff

∫
Y

e0 eikk̂·x.

Multiplying by e−iω0t both sides and noting that Ehom(x, t) =
∫

Y
e0 dx e(ikk̂·x−iω0t) completes the

proof of (2.14).
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(c) Derivation of Maxwell’s system for homogenized fields

Using equations (3.35), (3.40), and n0 = √
μ0/ε0, c = 1/

√
μ0ε

2
0,

√
ξ0 = (ω0/c)√εr,rel, we find

∇x ×
(∫

Y
e0 eikk̂·x

)
= iε0ω0μeff(

∮
h0 eikk̂·x)

and

∇x × (
∮

Y
h0 eikk̂·x) = −iμ0ω0εeff

(∫
e0 eikk̂·x

)
.

Finally, multiplying by e−iω0t both sides of the above equations and using (2.8) and (2.9) complete
the proof of the first and the third equations in (2.10). The second and the fourth equations of
(2.10) are the direct consequence of applying the divergence operator to Hhom and Ehom in (2.8)
and (2.9).

(d) Demonstration of dispersion relation
Using Einstein summation notation and Levi-Civita tensor notations, we have

ξ0μeff(ξ0)
∮

h0 = ξ0
[
μeff(ξ0)

]
ij

[∮
h0

]
j

(3.43)

and (
k̂ × [ε−1

eff (ξ0)k̂ ×
∮

h0
])

i
= Eipmk̂pEmnj

[
ε−1

eff (ξ0)
]

np k̂p

[∮
h0

]
j
, (3.44)

where i, p, m, n, j = 1, 2, 3. So equation (3.41) is written by components as

0 = τ 2 k̂ × ε−1
eff (ξ0)k̂ ×

∮
h0 + ξ0μeff(ξ0)

∮
h0

= τ 2Eipmk̂pEmnj
[
ε−1

eff (ξ0)
]

np k̂p[
∮

h0]j + ξ0
[
μeff(ξ0)

]
ij

[∮
h0

]
j
. (3.45)

Equation (3.45) implies that the determinant equation for ξ0 at a given wavenumber k can be
written as

det[τ 2A + ξ0μeff(ξ0)] = 0

and Aij = Eipmk̂pEmnj
[
ε−1

eff (ξ0)
]

np k̂p,

⎫⎬
⎭ (3.46)

where i, p, m, n, j = 1, 2, 3. Noting that τ 2 = k2εr,rel, ξ0 = (ω2
0/c

2)εr,rel completes the proof.

(e) Effective property tensors and their meaning as explicit functions of ξ0
The effective permittivity (2.2) and its formula (2.15) follows from an eigenfunction expansion of
h0. Here, we use the eignfunctions given in theorem 2.7. These eigenfunctions form an complete
orthonormal system with respect to the inner product (h, w) := ∫

Y h · w dy, i.e. (φi,φj) = δij. It is
easily seen as in [24] that h0 − ∮

h0 lies in the span of {φn} and we write h0 =∑∞
j=1 cjφj + c, where

c = ∮
h0 and determine the coefficients cj. Substitution into (2.1) gives

cj = ξ0 c · ∫
Y φj

λi − ξ0
. (3.47)

So

h0 =
∞∑

j=1

ξ0 c · ∫
Y φj dx

λi − ξ0
φj + c. (3.48)
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Hence

∫
y

h0 dx =
∞∑

j=1

ξ0 c · ∫
Y φj dx

λj − ξ0

∫
Y
φj dx + c (3.49)

=
⎛
⎝ ∞∑

j=1

ξ0

λj − ξ0

∫
Y
φj dx ⊗

∫
Y
φj dx + I

⎞
⎠ ∮

h0 (3.50)

= μ̃eff(ξ0)
∮

h0, (3.51)

and the formula for μeff(ω0) follows noting that μeff(ω0) = μ̃eff(ξ0).
Formula (2.17) follows from an eigenfunction expansion of χ ẽ. Here, we use the eignfunctions

given by (2.20). The set of these functions form a complete orthonormal set over the space of
continuous functions periodic in Y with zero average and square integrable gradient that are zero
in R, with inner product 〈ψ ,φ〉 = ∫

Y/R ∇ψ · ∇φ dx.
Let

χ ẽ = w + r + q, (3.52)

where w satisfies

∇ ·
(
εd

rel(ω0)(∇w + ẽ)
)

= 0 in Y \ R; (3.53)

r satisfies

∇ ·
(
εd

rel(ω0)(∇r + ∇q)
)

= 0 in Y \ R; (3.54)

and q satisfies 	q = 0 in Y \ R and q = −ẽ · x in R. The functions w and r admit the eigenfunction
expansion

w =
∞∑

n=1

anψμn and r =
∞∑

n=1

bnψμn . (3.55)

Multiplying (3.53) by ∇ψμn
, integrating over Y \ R, and using the jump condition n ·

εp,rel(ω0)(∇w + ẽ)|∂P− = n · (∇w + ẽ)|∂P+ , we deduce that

an = −ẽ ·

∫
M

∇ψμn
+ εp,rel(ω0)

∫
P

∇ψμn

1 − μn + εp,rel(ω0)μn
. (3.56)

In a similar way, from (3.54), we deduce that

bn = −
∫

M ∇q · ∇ψμn
+ εp,rel(ω0)

∫
P ∇q · ∇ψμn

1 − μn + εp,rel(ω0)μn
. (3.57)

Using the orthogonality and substituting (3.52) and (3.55)–(3.57) into (3.26) with ṽ = ẽ, we
obtain

εeffẽ · ẽ = (εp,rel(ω0)θP + θM
)
ẽ · ẽ

+ θY\R

∞∑
n=1

(
1 + μn(εp,rel − 1)

)
(an + bn)2

+
∫

M
∇q · ∇q + εp,rel

∫
P

∇q · ∇q. (3.58)

And the proof of theorem 2.7 (2) is concluded.
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4. Conclusion
The frequency-dependent effective dielectric permittivity and magnetic permeability are
described by two types of subwavelength resonances: a plasmon resonance generating frequency-
dependent positive or negative effective dielectric properties and an artificial magnetic resonance
generating a frequency-dependent effective magnetic permeability. In this article, we show how to
employ these two resonances to rationally design double negative metamaterials. We numerically
calculate the effective properties for metamaterial crystals made from coated sphere geometries
and identified frequency intervals in the near infrared–optical regime where the metamaterial
exhibits double negative behaviour. The term double negative refers to simultaneously negative
effective magnetic permeability and dielectric permittivity, implying that the propagation of
energy is opposite to the direction of phase velocity. The dependence of the sign of the
effective magnetic permeability and effective dielectric permittivity depends on frequency.
Frequency intervals corresponding to band gaps as well as intervals of normal dispersion
and double negative dispersion are controlled explicitly through the geometry as seen in the
theory and numerical experiments. Here, phenomenological modelling is not used but instead
all results follow directly the Maxwell system on substituting a power series representation of
the solution and examining leading order behaviour. We expect similar rigorous arguments to
show that the power series represents the solution in three dimensions and this is a project for
future work.
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