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Abstract We derive error estimates for the piecewise linear finite element approximation of
the Laplace–Beltrami operator on a bounded, orientable, C3, surface without boundary on
general shape regular meshes. As an application, we consider a problem where the domain is
split into two regions: one which has relatively high curvature and one that has low curvature.
Using a graded mesh we prove error estimates that do not depend on the curvature on the
high curvature region. Numerical experiments are provided.
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1 Introduction

Since the publication of the seminal paper [16], there has been a growing interest in the
discretization of surface partial differential equations (PDEs) using finite element methods
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(FEMs). Such interest is motivated by important applications related to physical and biolog-
ical phenomena, and also by the potential use of numerical methods to answer theoretical
questions in geometry [16,17,33].

In this paper, we focus on linear finite element methods for the Poisson problem with the
Laplace–Beltrami operator on � ⊂ R

3, a C3 two-dimensional compact orientable surface
without boundary. That is, we consider

−��u = f on �.

In order to motivate the results in our paper, we start by giving a short overview of previ-
ous results. A piecewise linear finite element method is proposed and analyzed in [16,17].
The basic idea is to consider a piecewise linear approximation of the surface, and pose a
finite element method over the discretized surface. Discretizing the surface, of course, cre-
ates a geometric error, however, the advantage is that for a given discretization a surface
parametrization is not necessary.

In [12] a generalization of the piecewise linear FEM is considered, based on higher order
polynomials that approximate both the geometry and the PDE; the same paper proposes a
variant of the method which employs parametric elements, and the method is posed on the
surface, originating thus no geometric error. Discontinuous Galerkin schemes are considered
in [1,11], andHDGandmixed versions are considered in [8]. Adaptive schemes are presented
in [3,7,10,13,14]. An alternative approach, where a discretization of an outer domain induces
the finite element spaces is proposed in [26,27]. See also [4,6,14,28,29]. In [2,7,9,30], the
PDE itself is extended to a neighborhood of the surface before discretization.

Other problems and methods were considered as well, as a multiscale FEM for PDEs
posed on rough surface [18], and stabilized methods [4,21,22,29]. In [23] the finite element
exterior calculus framework was considered. Finally, transient and nonlinear PDEs were also
subject of consideration, as reviewed in [17].

A common ground between all aforementioned papers is that the a-priori choices of
the surface discretization do not consider how to locally refine the mesh following some
optimality criterion. It is however reasonable to expect that some geometrical traits, as the
curvatures, have a local influence on the solution, and thus themesh refinement could account
for that locally. Not surprisingly, numerical tests using adaptive schemes confirm that high
curvature regions require refined meshes [3,6,10,13]. This is no different from problems in
nonconvex flat domains, where corner singularities arise, and meshes are used to tame the
singularity at an optimal cost [31,32].

As far as we can tell, the development and analysis of a-priori strategies to deal with high
curvature regions have not been an object of investigation, so far. In this paper we consider
a simple setting: We suppose that the domain � = �1 ∪ �2, and assume that the maximum
of the principal curvatures in �1 is much larger than those in �2. We then seek a graded
mesh that gives us optimal error estimate. Of course, in the region �1 the triangles will be
much smaller than the mesh size in regions far from �1. We consider the method originally
proposed by Dziuk [16].

To carry out the analysis, we first need to track the geometric constants carefully. This, as
far as we can tell, has not explicitly appeared in literature, although it is not a difficult task.
We do this by following [16,17] although in some cases we give different arguments while
trying to be as precise as possible. The estimate we obtain is found below in (41). If u�

h is
the finite element solution approximation to u then the result reads (see sections below for
precise notation):

123



1738 J Sci Comput (2018) 77:1736–1761

∥
∥
∥∇�

(

u − u�
h

)∥
∥
∥
L2(�)

≤ Ccp

[

(�h + �h)‖ f ‖L2(�)

+
∥
∥
∥ f − f �

h

∥
∥
∥
L2(�)

]

+ C

⎛

⎝
∑

T∈Th
h2T

∥
∥∇2

�u
∥
∥
2
L2(T �)

⎞

⎠

1/2

.

Here f �
h is an approximation to f , cp is the Poincaré’s constant, and the numbers �h , �h

are geometric quantities. For instance, �h = maxT κ2
T h

2
T where hT is the diameter of the

triangle T and κT measures the maximum principal curvatures on T � (T � is the surface
triangle corresponding to T ; see sections below). The important point here is that �h + �h

can be controlled locally. That is, if one wants to reach a certain tolerance, one needs to make
hT small enough only depending on the geometry in T �. We point out that maxT κT large is
a necessary but not sufficient condition for cp to be large, this is related to a dumbbell shape
of the surface. Surface with bumps for instance can allow large maxT κT and cp = O(1).

On the other hand, ‖∇2
�u‖L2(T �) does not depend only on the local geometry. In order

to deal with this term, in the case of two sub-regions, we prove local H2 regularity results.
Combining the local regularity and the a-priori error estimate (41) we are able to define a
mesh grading strategy and prove Theorem 16. The error estimate contained in Theorem 16
is independent of the curvature in region �1, and in some sense is the best error estimate one
can hope for given the available information.

The paper is organized as follows. In Sect. 2 we set the notation and derive several
fundamental estimates highlighting the influence of the curvatures. Section 3 regards the
finite element and interpolation approximations. Finally, we present in Sect. 4 a local H2

estimate and a mesh grading scheme culminating in an error estimate that is independent of
the bad curvature. The paper ends with numerical results in Sect. 5.

2 Preliminaries

As mentioned above, we assume that � is bounded, orientable,C3 surface without boundary.
Furthermore, we assume that there is a high curvature region�1 � �, and define�2 = �\�1.
For f ∈ L2(�) with

∫

�
f d A = 0, let u ∈ H̊1(�) be such that

∫

�

∇�u · ∇�v d A =
∫

�

f v d A for all v ∈ H̊1(�), (1)

where H̊1(�) = {v ∈ H1(�): ∫

�
v d A = 0}. We denote by ∇� the tangential gradient [33],

and (1) is nothing but the weak formulation of the Poisson problem for the Laplace–Beltrami
operator. Existence and uniqueness of solution follows easily from the Poincaré’s inequal-
ity (Lemma 8) and the Lax–Milgram theorem. Details on the definition of ∇�v are given
below. Consider now a triangulation �h of the surface �. By that we mean that �h is a
two-dimensional compact orientable polyhedral C0 surface, and denoting by Th the set of
closed nonempty triangles such that ∪T∈Th T = �h , we assume that all vertices belong to
�, and that any two triangles have as intersection either the empty set, a vertex or an edge.
Let hT = diam(T ) and h = max{hT : T ∈ Th}. For all T ∈ Th assume that there is a
three-dimensional neighborhood NT of T where for every x ∈ NT there is a unique closest
point a(x) ∈ � (see Fig. 1) such that

x = a(x) + d(x)ν(x), (2)

123



J Sci Comput (2018) 77:1736–1761 1739

Γ

N

ν

x

a(x)

d > 0

d < 0

Fig. 1 Diagram of closest point map (2). The exact surface is denoted by� which is contained in the “tubular”
neighborhoodN . Since d is the signed distance function to �, the zero level set of d coincides with �

d(x) is the signed distance function from x to � and define ν(x) = (∇d(x))t and note
that ν(a(x)) = ν(x) and it is the unit normal to � at a(x). Note that by using local tubular
neighborhoods, we avoid unnecessary restrictions on the mesh size.

Here we would like to explain some notational conventions that we use. From now on,
the gradient of a scalar function will be a row vector. The normal vector ν is a column vector
(as well as νh which is defined below).

We can now define, for every T ∈ Th , the surface triangle T � = {a(x): x ∈ T }. Then
� = ∪T∈Th T

�. For x ∈ NT , define the self-adjoint extended Weingarten operator [15]
H(x) : R

3 → R
3 by H(x) = ∇2d(x) and let κi (x), i = 1, 2, and 0 be the eigenvalues of

H(x). We note that κ1(a(x)) and κ2(a(x)) are the principal curvatures. We note that

κi (x) = κi (a(x))

1 + d(x)κi (a(x))
(3)

for curvature of parallel surfaces [20, Lemma 14.17] (also see [13]).
We assume the natural geometrical condition (see also [12] for a similar condition).

|d(x)|max{|κ1(a(x))|, |κ2(a(x))|} ≤ c0 < 1 for all x ∈ NT , (4)

where c0 is sufficiently small.
At the estimates that follow in this paper we denote by C a generic constant that might

not assume the same value at all occurrences, but that does not depend on hT , u, f or on �.
It might however depend for instance on the shape regularity of T ∈ Th .

Given T ∈ Th , let
κT = ‖H‖L∞(T ) := max

i j
‖Hi j‖L∞(T ), (5)

and νh ∈ R
3 be unit-normal vector to T such that νh · ν > 0. We note that since H

is symmetric, κT is also equivalent to the L∞ norm of the spectral radius of H(a(·)), or
max{|κ1(a(·))|L∞(T ), |κ2(a(·))|L∞(T )}, since from (4) we have

1

1 + c0
|κi (a(x))| ≤ |κi (x)| ≤ 1

1 − c0
|κi (a(x))|.

Assumption Throughout the paper we will assume

h2T κ2
T ≤ c1 < 1 for all T ∈ Th, (6)

where c1 is sufficiently small.
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It is easy to see that

‖d‖L∞(T ) ≤ Ch2T κT , (7)

‖ν − νh‖L∞(T ) ≤ ChT κT . (8)

To show (7), assume without loss of generality that T ⊂ R
2 × {0} and that ν3, ν3,h > 0. Let

Ihd be the Lagrange linear interpolant of d in T . Since d vanishes at the vertices, Ihd ≡ 0.
By [19] we have

‖d‖L∞(T ) + hT ‖∂d/∂xi‖L∞(T ) = ‖d − Ihd‖L∞(T ) + hT ‖∂(d − Ihd)/∂xi‖L∞(T )

≤ Ch2T ‖∇2d‖L∞(T ), (9)

for i = 1, 2. Next, to prove (8), start by noting that νth = (0, 0, 1), and then the estimate
for the first two components ‖νi‖L∞(T ) = ‖∂d/∂xi‖L∞(T ) of ν follow from (9) and (5). The
third component estimate follows from

‖ν3 − 1‖L∞(T ) ≤ ‖(ν3 − 1)(ν3 + 1)‖L∞(T ) = ∥
∥ν23 − 1

∥
∥
L∞(T )

≤ ‖ν1‖2L∞(T ) + ‖ν2‖2L∞(T )

≤ Ch2T κ2
T ≤ ChT κT .

Here we used (6).
From (7) and (5) we see that

‖dH‖L∞(T ) ≤ Ch2T κ2
T . (10)

Therefore, making c1 sufficiently small in (6) so that the eigenvalues of d(x)H(x) are
smaller or equal to 1/2 for every x ∈ �h , then we will have

‖(I − dH)−1‖L∞(T ) ≤ C. (11)

We define tangential projections onto � and �h , respectively, as P = I − ν ⊗ ν and
Ph = I − νh ⊗ νh , where q ⊗ r = qr t for two column vectors q and r . We recall that the
tangential derivatives for a functions defined on a neighborhood of � (or �h) are given by

∇�v = (∇v)P, ∇�hv = (∇v)Ph . (12)

By using that ν · ν = 1, we have

0 = 1

2
∇(ν · ν) = (∇ν)ν = H(x)ν(x) for all x ∈ T, (13)

Hence, we, of course, have
PH = H = HP, (14)

which we use repeatedly. Also, we can show that

P(I − dH)−1ν = 0. (15)

Indeed, ν = (I−dH)ν by (13) and so P(I−dH)−1ν = P(I−dH)−1(I−dH)ν = Pν = 0.

2.1 Local Parametrization

Let T̂ = {(θ1, θ2): 0 ≤ θ1, θ2 ≤ 1, 0 ≤ θ1 + θ2 ≤ 1} be the reference triangle. Fix T ∈ Th ,
let x0 be one of the vertices, and let x1 and x2 be vectors in R

3 representing two edges of T
(i.e. T = {x0+θ1x1+θ2x2: 0 ≤ θ1, θ2 ≤ 1, 0 ≤ θ1+θ2 ≤ 1}). Let X : T̂ → T be given by
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X(θ1, θ2) = x0 + θ1x1 + θ2x2. We also define Y : T̂ → T � by Y(θ1, θ2) = a(X(θ1, θ2)).
Since ∇X = [x1, x2] we have (∇X)tνh = 0. From the definition of a we have

∇a(x) = P(x) − d(x)H(x),

and, hence
∇Y = (P − dH)∇X. (16)

Therefore, using that P and H are symmetric and (13) we have (∇Y)tν = 0. Collecting the
two results we have

(∇X)tνh = 0, (∇Y)tν = 0. (17)

Given a function η ∈ L1(T �) we define the pullback lift η� ∈ L1(T ) as

η�(x) = η(a(x)),

and for η ∈ L1(T ) we define the push-forward lift η� ∈ L1(T �) as

η�(a(x)) = η(x), (18)

and associate η̂ : T̂ → R defined by

η̂(θ1, θ2) = η(X(θ1, θ2)) = η�(Y(θ1, θ2)).

Note that (η�)
� = η for η ∈ L1(T �) and (η�)� = η for η ∈ L1(T ).

Consider also the metric tensors

GX (θ1, θ2) = (∇X(θ1, θ2)
)t∇X(θ1, θ2), GY (θ1, θ2) = (∇Y(θ1, θ2)

)t∇Y(θ1, θ2).

From the definition of tangential derivative it is possible to show [33, Section 4.2.1] (see also
(2.2) in [17]) that for a function η : �h → R,

∇�hη(X) = ∇η̂G−1
X ∇X t , ∇�η�(Y) = ∇η̂G−1

Y ∇Y t ,

and multiplying by ∇X and ∇Y we gather that

∇η̂ = ∇�hη(X)∇X, ∇η̂ = ∇�η�(Y)∇Y . (19)

Hence,

∇�hη(X) = ∇�η�(Y)∇YG−1
X ∇X t , (20)

∇�η�(Y) = ∇�hη(X)∇XG−1
Y ∇Y t . (21)

Note that we can also write

P = ∇YG−1
Y ∇Y t , Ph = ∇XG−1

X ∇X t . (22)

To see that this is the case, note first from (17) that ∇YG−1
Y ∇Y tν = 0. Next, consider for

ε > 0 an arbitrary differentiable curve s: (−ε, ε) → T̂ and α(t) = Y(s(t)). Then

∇YG−1
Y ∇Y tα′ = ∇YG−1

Y ∇Y t∇Ys′ = α′ = Pα′,

since α′ is tangent to �. The same arguments hold for the identity regarding Ph .
The following identities have appeared in the literature under different forms; see for

example [12,13]. Again, we give a proof for completeness and to show the independence of
C with respect to �.
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Lemma 1 Let η : �h → R be differentiable, and define its forward lift η� as in (18). It then
holds that

∇�hη =
(

∇�η� ◦ a
)

Q on �h, (23)

where Q = (I − dH)Ph, and

∇�η� ◦ a = (∇�hη)R on �h, (24)

where R = [

I − (νh−ν)⊗(ν−νh)
νh ·ν

]

(I −dH)−1P. Moreover, there exists a constant C such that

‖Q‖L∞(T ) + ‖R‖L∞(T ) ≤ C. (25)

Proof Using (20) and (16) we get

∇�hη(X) = ∇�η�(Y)[I − d(X)H(X)]∇XG−1
X ∇X t

where we used that ∇�η�ν ⊗ ν = 0. Then (23) follows from (22).
To prove (24), we use (16) and (14) to get∇Y = P[I −d(X)H(X)]∇X . Hence, we have

(∇Y)t = (∇X)t [I − d(X)H(X)]P. (26)

Using (14) we get

(I − dH)P(I − dH)−1
(

I − νh ⊗ ν

νh · ν

)

= P(I − dH)(I − dH)−1
(

I − νh ⊗ ν

νh · ν

)

= P

(

I − νh ⊗ ν

νh · ν

)

.

However,

P

(

I − νh ⊗ ν

νh · ν

)

= I − ν ⊗ ν − νh ⊗ ν

νh · ν
+ (ν ⊗ ν)νh ⊗ ν

νh · ν
= I − νh ⊗ ν

νh · ν
.

This gives

(I − dH)P(I − dH)−1
(

I − νh ⊗ ν

νh · ν

)

= I − νh ⊗ ν

νh · ν
(27)

So, from (27), (26) and (17) we have

(∇Y)t (I − dH)−1
(

I − νh ⊗ ν

νh · ν

)

= (∇X)t
(

I − νh ⊗ ν

νh · ν

)

= (∇X)t .

Thus, using (21) and the above identity we gather that

∇�η�(Y) = ∇�hη(X)

(

I − ν ⊗ νh

νh · ν

)

(I − dH)−1∇YG−1
Y ∇Y t

= ∇�hη(X)

(

I − ν ⊗ νh

νh · ν

)

(I − dH)−1P,

from (22). Clearlywe have (∇�hη) νh⊗νh = 0 = (∇�hη) νh⊗ν, and P(I−dH)−1ν⊗ν = 0
follows from (15). So we get

∇�η�(Y) = ∇�hη

[

I − (νh − ν) ⊗ (ν − νh)

νh · ν

]

(I − dH)−1P.

Here we used that (νh − ν) ⊗ (ν − νh) = −νh ⊗ νh − ν ⊗ ν + νh ⊗ ν + ν ⊗ νh . This
proves (24). Finally, (25) follows from (8), (10), (11) and (6). ��
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Next, we write an integration identity.

Lemma 2 Let η ∈ L1(T ). Then, if d A is the surface measure in T � and d Ah is the surface
measure in T it follows that

∫

T �

η� d A =
∫

T
ηδT d Ah, (28)

where

δT =
√

det
(

GYG
−1
X

)

. (29)

Proof The result follows from the change of variables formulas [15]
∫

T �

η� d A =
∫

T̂
η̂
√

detGY dθ1 dθ2,

∫

T̂
η̂

√

detG−1
X dθ1 dθ2 =

∫

T
η d Ah .

��
Combining (28), (23) and (24), we have that

∫

T
∇�hη · ∇�hψ d Ah =

∫

T �

∇�η�Q� · ∇�ψ�Q� 1

δ�
T

d A, (30)

∫

T �

∇�η� · ∇�ψ� d A =
∫

T
∇�hηR · ∇�hψRδT d Ah . (31)

Next, we prove some bounds for δT .

Lemma 3 Assuming that (6) holds and defining δT by (29) we have that

‖δT − 1‖L∞(T ) ≤ Ch2T κ2
T , (32)

∥
∥
∥
∥

1

δT
− 1

∥
∥
∥
∥
L∞(T )

≤ Ch2T κ2
T . (33)

Proof From (16) and (17) we have

GY = ∇X t (I − dH − ν ⊗ ν)∇Y

= ∇X t (I − dH)∇Y

= ∇X t (I − dH)2∇X − ∇X t (I − dH)ν ⊗ ν∇X .

Using (13) we get
(∇X)t (I − dH)ν ⊗ ν∇X = ∇X tν ⊗ ν∇X .

By (17),

(∇X)tνh ⊗ νh∇X = (∇X)tνh ⊗ ν∇X = (∇X)tν ⊗ νh∇X = 0.

Hence,
(∇X)tν ⊗ ν∇X = (∇X)t (ν − νh) ⊗ (ν − νh)∇X .

Therefore, we get

GY = (∇X)t [(I − dH)2 − (ν − νh) ⊗ (ν − νh)]∇X,

or GY = (∇X)t (I + B)∇X where B = −2dH + d2H2 − (ν − νh) ⊗ (ν − νh). Therefore,

GYG
−1
X = I + M where M = ∇X t B∇XG−1

X .
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It is clear that ‖∇X‖L∞(T ) ≤ ChT . Also, not difficult to see that ‖G−1
X ‖L∞(T ) ≤ Ch−2

T .
Moreover, using (8) and (10) we gather that ‖B‖L∞(T ) ≤ Ch2T κ2

T . Hence, ‖M‖L∞(T ) ≤
Ch2T κ2

T . Since M is symmetric, consider the spectral decomposition M = V�V−1, where
� = diag(λ1, λ2) and V is orthogonal. Denoting the ith column of V by vi , we have that
λi = vti Mvi and then ‖λi‖L∞(T ) ≤ Ch2T κ2

T (for i = 1, 2). We also note that

GYG
−1
X = I + V�V−1 = V (I + �)V−1.

Therefore, we obtain

δ2T = det
(

GYG
−1
X

)

= det(V ) det(I + �) det(V−1) = (1 + λ1)(1 + λ2),

which yields
∥
∥δ2T − 1

∥
∥
L∞(T )

≤ Ch2T κ2
T .

Using that δT − 1 = (δ2T − 1)/(δT + 1), we obtain (32). The inequality (33) follows from
the previous inequality and the fact (δ−1

T − 1) = δ−1
T (1 − δT ). ��

Remark 4 An alternative way to prove Lemma 3 is to use [13, Proposition 2.1] given by

δT (x) = ν · νh
(

1 − d(x)κ1(x))(1 − d(x)κ2(x))
)

,

the identity 1 − ν · νh = 1
2 |ν − νh |2 and (3), (4), (7) and (8).

We can now state the following result which follows from Lemmas 1 and 3, and
Eqs. (30), (31).

Lemma 5 Assuming the hypotheses of Lemmas 1 and 3, we have that
∥
∥
∥∇�η�

∥
∥
∥
L2(T �)

≤ C‖∇�hη‖L2(T ) ≤ C
∥
∥
∥∇�η�

∥
∥
∥
L2(T �)

.

In the following, we use the notation Diu = (∇�u)i , and write ∇2
�u as the 3 × 3 matrix

with entries Di D ju (also denoted by Di j u).

Lemma 6 Assuming that (6) holds, we have
∥
∥∇2

�h
η
∥
∥
L2(T )

≤ C
∥
∥
∥∇2

�η�
∥
∥
∥
L2(T �)

+ C
(

hT κ2
T + h2T κT γT

)
∥
∥
∥∇�η�

∥
∥
∥
L2(T �)

,

where γT = maxi j ‖∇Hi j‖L∞(T ).

Proof Let w = ∇�hη. Using (23) we see that for x ∈ T ,

wi (x) = (Ph)ik (I − d(x)H(x))k j D jη
�(a(x)),

where we use Einstein summation convention.
Using the product rule and the fact that Ph is constant we have

∇�hwi (x) = J1(x) + J2(x) + J3(x),

where

J1 = −(Ph)ik Hkj

(

D jη
� ◦ a

)

∇�h d,

J2 = −(Ph)ikd
(

D jη
� ◦ a

)

∇�h Hkj ,

J3 = (Ph)ik(I − dH)k j∇�h

(

D jη
� ◦ a

)

.
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We start with J3. Using (23) we have

∇�h

(

D jη
� ◦ a

)

(x) = ∇�D jη
�(a(x))Q

Hence, using (25), (28), (32) and (6) we get
∥
∥
∥∇�h

(

D jη
� ◦ a

)∥
∥
∥
L2(T )

≤ C
∥
∥
∥∇�

2η�
∥
∥
∥
L2(T �)

.

If we combine this inequality with (10) and (6), we have

‖J3‖L2(T )) ≤ C
∥
∥
∥∇�

2η�
∥
∥
∥
L2(T �)

.

Next, using (12) and the fact νth Ph = 0, we obtain

∇�h d = (∇d)Ph = νt Ph = (ν − νh)
t Ph .

Hence, using (8), (5), (28), (32) and (6) yields

‖J1‖L2(T ) ≤ ChT κ2
T

∥
∥
∥∇�η�

∥
∥
∥
L2(T �)

.

Similarly, (7), (28), (32) and (6) yield

‖J2‖L2(T ) ≤ Ch2T κT γT

∥
∥
∥∇�η�

∥
∥
∥
L2(T �)

.

Combining the above estimates gives the desired result. ��

We note that a similar result, with the γT dependence, can also be found in [5, Lemma 2.1]

Remark 7 Note that the C3 regularity imposed on � is needed in Lemma 6. That seems
unavoidable, at least under the choice of the local mapping (2) used in the analysis. The same
regularity is used in [13].

3 Finite Element Spaces and Local Approximations

We introduce the following finite dimensional approximation of (1). The finite element space
is given by

Sh =
{

vh ∈ C0(�h):
∫

�h

vh d Ah = 0, vh |T is linear for all T ∈ Th
}

,

S�
h =

{

v�
h : vh ∈ Sh

}

.

For fh ∈ L2(�h) with
∫

�h
fh d Ah = 0, let uh ∈ Sh such that

∫

�h

∇�h uh · ∇�hvh d Ah =
∫

�h

fhvh d Ah for all vh ∈ Sh . (34)

Existence and uniqueness of the finite-dimensional problem (34) follows from noting that if
uh is a solution with fh = 0, then uh must be constant with zero average. Thus uh = 0.

We will need a Poincaré’s inequality, as follows [17].
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Lemma 8 Assuming � ⊂ R
3 a C3 two-dimensional compact orientable surface without

boundary, there exists a constant cp such that

‖φ‖L2(�) ≤ cp‖∇�φ‖L2(�) for all φ ∈ H̊1(�). (35)

Then we can state a simple energy estimate.

Lemma 9 Let u solve (1), then

‖∇�u‖L2(�) ≤ cp‖ f ‖L2(�). (36)

Before proving an a-priori estimate for u�
h − u we will need to prove an important lemma

that measures the inconsistency in going from � to �h . First, we need to develop notation to
use in the next proof. Since δT d Ah = d A with respect to a given triangle T and its lifting
T �, let us define

δh(x) = δT , if x ∈ T .

Lemma 10 Let vh and zh belong to Sh. Then the following holds
∣
∣
∣
∣

∫

�h

∇�hvh · ∇�h zh d Ah −
∫

�

∇�v�
h · ∇�z

�
h d A

∣
∣
∣
∣
≤ C�h

∥
∥
∥∇�v�

h

∥
∥
∥
L2(�)

∥
∥
∥∇�z

�
h

∥
∥
∥
L2(�)

(37)

∣
∣
∣
∣

∫

�h

vhzh d Ah −
∫

�

v�
hz

�
h d A

∣
∣
∣
∣
≤ C�h

∥
∥
∥v�

h

∥
∥
∥
L2(�)

∥
∥
∥z�h

∥
∥
∥
L2(�)

, (38)

where �h = maxT∈Th κ2
T h

2
T .

Proof Using (28) we get
∣
∣
∣
∣

∫

�h

vhzh d Ah −
∫

�

v�
hz

�
h d A

∣
∣
∣
∣
=

∣
∣
∣
∣
∣

∫

�

v�
hz

�
h

(

1

δ�
h

− 1

)

d A

∣
∣
∣
∣
∣

Hence, (38) follows from (33).
To prove (37) we use (30) to get

∫

�h

∇�hvh · ∇�h zh d Ah =
∫

�

(

∇�v�
hQ

�
)

·
(

∇�z
�
hQ

�
) 1

δ�
h

d A.

Using that ∇�(·)P = ∇�(·) we have
∫

�h

∇�hvh · ∇�h zh d Ah =
∫

�

∇�v�
hM · ∇�z

�
h d A,

where

M = 1

δ�
h

(PQ�)(PQ�)t .

On the other hand, again using that ∇�(·)P = ∇�(·) we get
∫

�

∇�v�
h · ∇�z

�
h d A =

∫

�

∇�v�
h P · ∇�z

�
h d A.

Hence,
∣
∣
∣
∣

∫

�h

∇�hvh · ∇�h zh d Ah −
∫

�

∇�v�
h · ∇�z

�
h d A

∣
∣
∣
∣
=

∣
∣
∣
∣

∫

�

∇�v�
h(M − P) · ∇�z

�
h d A

∣
∣
∣
∣
.

(39)
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We now proceed to bound (M − P). We first use (14), to get on �h

PQ� ◦ a = PQ = P(I − dH)Ph = (I − dH)PPh .

Hence, we get

M ◦ a = 1

δh
(I − dH)S(I − dH),

where S = PPh P , and then the triangle inequality yields

‖M − P‖L∞(T �) =
∥
∥
∥δ−1

h (I − dH)S(I − dH) − P
∥
∥
∥
L∞(T )

≤
∥
∥
∥δ−1

h (I − dH)S(I − dH) − S
∥
∥
∥
L∞(T )

+ ‖S − P‖L∞(T ).

Now using (10), (6) and (33) and the fact that S is bounded we obtain

∥
∥
∥δ−1

h (I − dH)S(I − dH) − S
∥
∥
∥
L∞(T )

≤ Ch2T κ2
T .

Since Pνh ⊗ νP = Pν ⊗ νh P = Pν ⊗ νP = 0 we have that on �h ,

S = P(I − νh ⊗ νh)P = P(I − (νh − ν) ⊗ (νh − ν))P.

Finally using that P2 = P we have

S − P = −P(νh − ν) ⊗ (νh − ν)P.

Therefore, it follows from (8) that ‖S− P‖L∞(T ) ≤ Ch2T κ2
T . Using the previous inequalities

we obtain
‖M − P‖L∞(T �) ≤ Ch2T κ2

T ,

and hence
‖M − P‖L∞(�) ≤ C�h,

and thus (37) follows from this inequality and (39). ��

Theorem 11 Let u ∈ H̊1(�) be the solution of (1) and let uh ∈ Sh that solves (34). Assume
that f �

h satisfies ‖ f �
h ‖L2(�) ≤ C‖ f ‖L2(�). Then there exists a constant C such that

∥
∥
∥∇�

(

u − u�
h

)∥
∥
∥
L2(�)

≤ C min
φh∈Sh

∥
∥
∥∇�

(

u − φ�
h

)∥
∥
∥
L2(�)

+Ccp

(

�h‖ f ‖L2(�) +
∥
∥
∥ f − f �

h

∥
∥
∥
L2(�)

)

,

where �h = maxT∈Th κ2
T h

2
T is as in Lemma 10.

Proof For an arbitrary φh ∈ Sh , set ξh = uh − φh and ξ�
h = u�

h − φ�
h . By Lemma 5 we have

∥
∥
∥∇�ξ�

h

∥
∥
∥
L2(�)

≤ C‖∇�h (uh − φh)‖L2(�h)
.
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Then, we write for an arbitrary constant c

‖∇�h (uh − φh)‖2L2(�h)
=

∫

�h

∇�h uh · ∇�h ξhd Ah −
∫

�h

∇�hφh · ∇�h ξh d Ah

=
∫

�h

fhξh d Ah −
∫

�h

∇�hφh · ∇�h ξh d Ah by (34)

=
∫

�h

fhξh d Ah −
∫

�

f · ξ�
h d A

+
∫

�

∇�u · ∇�ξ�
h d A −

∫

�h

∇�hφh · ∇�h ξh d Ah, by (1)

= J1 + J2 + J3 + J4,

where after using that
∫

�
f d A = 0 = ∫

�h
fh d Ah ,

J1 =
∫

�h

fh (ξh − c) d Ah −
∫

�

f �
h

(

ξ�
h − c

)

d A, J2 =
∫

�

(

f �
h − f

) (

ξ�
h − c

)

d A,

J3 =
∫

�

∇�

(

u − φ�
h

)

· ∇�ξ�
h d A, J4 =

∫

�

∇�φ�
h · ∇�ξ�

h d A −
∫

�h

∇�hφh · ∇�h ξh d Ah .

By applying (38) and the Poincaré’s inequality (35) we get

J1 ≤ C cp�h

∥
∥
∥ f �

h

∥
∥
∥
L2(�)

∥
∥
∥∇�ξ�

h

∥
∥
∥
L2(�)

,

where we chose c = 1
|�|

∫

�
ξ�
h d A. Using the Cauchy–Schwarz inequality and the Poincaré’s

inequality (35) we have

J2 ≤ cp
∥
∥
∥ f �

h − f
∥
∥
∥
L2(�)

∥
∥
∥∇�ξ�

h

∥
∥
∥
L2(�)

.

Using the Cauchy–Schwarz inequality we get

J3 ≤
∥
∥
∥∇�(u − φ�

h)

∥
∥
∥
L2(�)

∥
∥
∥∇�ξ�

h

∥
∥
∥
L2(�)

.

Using (37) gives

J4 ≤ C �h

∥
∥
∥∇�φ�

h

∥
∥
∥
L2(�)

∥
∥
∥∇�ξ�

h

∥
∥
∥
L2(�)

Hence, combining the above results we get
∥
∥
∥∇�ξ�

h

∥
∥
∥
L2(�)

≤ Ccp

(

�h‖ f ‖L2(�) +
∥
∥
∥ f �

h − f
∥
∥
∥
L2(�)

)

+C

(∥
∥
∥∇�(u − φ�

h)

∥
∥
∥
L2(�)

+ �h

∥
∥
∥∇�φ�

h

∥
∥
∥
L2(�)

)

,

where we used that ‖ f �
h ‖L2(�) ≤ ‖ f ‖L2(�). If we use the triangle inequality and (36) we

obtain ∥
∥
∥∇�φ�

h

∥
∥
∥
L2(�)

≤
∥
∥
∥∇�

(

u − φ�
h

)∥
∥
∥
L2(�)

+ cp ‖ f ‖L2(�) .

The result now follows after taking the minimum over φh ∈ Sh and use the fact that �h ≤ 1
which follows from (6). ��

Let Ih,� be the standard Lagrange interpolant in �h onto Sh and define Ihη� = (Ih,�η)� ∈
S�
h . We then have the following estimate.
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Lemma 12 Let u be the solution of (1). Then,

‖∇�(u − Ihu)‖L2(�) ≤ Ccp(�h + �h)‖ f ‖L2(�) +
⎛

⎝
∑

T∈Th

h2T
∥
∥∇2

�u
∥
∥
2
L2(T �)

⎞

⎠

1/2

,

where �h = maxT∈Th h
3
T γT κT and γT was defined in Lemma 6.

Proof Recall that u� is the pullback lift of u. Using Lemma 5, and approximation properties
of the Lagrange interpolant, we have

‖∇�(u − Ihu)‖L2(T �) ≤ C‖∇�h (u� − Ih,�u�)‖L2(T ) ≤ ChT
∥
∥∇2

�h
u�

∥
∥
L2(T )

.

We get from Lemma 6 that

‖∇�(u − Ihu)‖L2(T �) ≤ C
(

hT
∥
∥∇2

�u
∥
∥
L2(T �)

+ (

h2T κ2
T + h3T κT γT

) ‖∇�u‖L2(T �)

)

. (40)

The result follows easily by summing over T and applying (36). ��
We can combine Theorem 11 and Lemma 12 to get the following theorem.

Theorem 13 Assume that the hypothesis of Theorem 11 holds. Then,
∥
∥
∥∇�

(

u − u�
h

)∥
∥
∥
L2(�)

≤ Ccp

(

(�h + �h)‖ f ‖L2(�) +
∥
∥
∥ f − f �

h

∥
∥
∥
L2(�)

)

+C

⎛

⎝
∑

T∈Th

h2T
∥
∥∇2

�u
∥
∥
2
L2(T �)

⎞

⎠

1/2

. (41)

4 Graded Meshes for Two Subdomains

In this section we consider the case where there is a high curvature region �1 � �, and
�2 = �\�1. We let κ(i) = ‖H‖L∞(�i ) and assume that κ(1) � κ(2). We also let κ =
‖H‖L∞(�) = κ(1). We use our above results from the previous sections and local regularity
results in order to grade a mesh so that the error is balanced.

We start by just stating the global regularity result which is found in [17]. We note that
this result does not fit our graded meshing strategy; instead, we establish Lemma 15.

Lemma 14 Assume that � is a C3 orientable compact surface without boundary, and that
u ∈ H̊1(�) solves (1). Then u ∈ H2(�), and there exists a constant C that is independent of
the curvatures of � such that

∥
∥∇2

�u
∥
∥
L2(�)

≤ (1 + Ccpκ)‖ f ‖L2(�).

Applying Theorem 13 and Lemma 14 it easily follows that
∥
∥
∥∇�

(

u − u�
h

)∥
∥
∥
L2(�)

≤ Ccp
∥
∥
∥ f − f �

h

∥
∥
∥
L2(�)

+C
(

h+ cp(�h +�h + κh)
)‖ f ‖L2(�). (42)

Then, requiring �h + �h ≤ h(1 + κ) we get
∥
∥
∥∇�

(

u − u�
h

)∥
∥
∥
L2(�)

≤ Ccp‖ f − fh‖L2(�) + Ch
(

1 + cp(1 + κ)
)‖ f ‖L2(�). (43)
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Of course, this is not a very good estimate in the case κ = κ(1) � κ(2) since we would
have the mesh size far away from �1 still depending on κ(1). Instead, we would like to have
the mesh size to only depend on κ(2) a distance order one away from �1. In order to do this
we will need a local regularity result, as follows.

Lemma 15 (Weighted-H2 regularity) Let u ∈ H2(�) be the solution of (1), and consider
the subset �2 ⊆ �. Let ρ ∈ W 1,∞(�) be such that supp ρ ⊆ �2. Then there is an universal
constant C such that

∥
∥ρ∇2

�u
∥
∥
L2(�2)

≤ C‖ρ‖W 1,∞(�)

(

1 + cp(1 + κ(2))
)‖ f ‖L2(�). (44)

Proof Note that Di (ρ
2D ju) = 2ρDiρD ju + ρ2Di j u, and

∫

�2

ρ2Di j uDi j u d A =
∫

�2

Di j uDi

(

ρ2D ju
)

d A − 2
∫

�2

ρDi j uDiρD ju d A

≤
∫

�2

Di j uDi

(

ρ2D ju
)

d A + 2‖∇�ρ‖L∞(�)‖ρDi j u‖L2(�2)
‖D ju‖L2(�2)

≤
∫

�2

Di j uDi

(

ρ2D ju
)

d A + 2‖∇�ρ‖2L∞(�)‖D ju‖2L2(�2)
+ 1

2
‖ρDi j u‖2L2(�2)

.

Then
∫

�2

ρ2Di j uDi j u d A ≤ 2
∫

�2

Di j uDi

(

ρ2D ju
)

d A + 4|∇�ρ|2L∞(�)‖D ju‖2L2(�2)
.

From Lemma 19,

3
∑

i, j=1

∫

�2

Di j uDi

(

ρ2D ju
)

d A

=
3

∑

j=1

∫

�2

��uD j

(

ρ2D ju
)

d A −
∫

�2

ρ2(tr(H)H − 2H2)∇�u · ∇�u d A

≤
∫

�2

��u
(

2ρ∇�ρ · ∇�u + ρ2��u
)

d A + C(κ(2))2
∫

�2

ρ2|∇�u|2 d A

≤ C
(

‖∇�ρ‖L∞(�)‖ρ��u‖L2(�2)
‖∇�u‖L2(�2)

+ ‖ρ��u‖2L2(�2)

+ (κ(2))2‖ρ‖2L∞(�)‖∇�u‖2L2(�2)

)

.

Thus,

3
∑

i, j=1

∫

�2

(ρDi j u)2 d A

≤ C

(

‖ρ��u‖2L2(�2)
+

(

‖∇�ρ‖L∞(�) + κ(2)‖ρ‖L∞(�)

)2 ‖∇�u‖2L2(�2)

)

.

The result now follows after using the energy estimate (36). ��
Lemma 15 holds with a generic function ρ, but we will apply the result with ρ(x) =

dist(x, �1) which is a 1-Lipschitz function.
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4.1 The Graded Mesh

We start by defining d1 = (

1 + cp(1 + κ(2))
)

/(1 + cpκ(1)). We then define the region
D1 = {x ∈ �: dist(�1, x) ≤ d1}. We also let T̃ 1

h = {T ∈ Th : T � ∩ D1 �= ∅} and define
T̃ 2
h = {T ∈ Th : T /∈ T̃ 1

h }. We set h1 = hd1. Finally, we let ρ(x) = dist(x, �1) and also set
ρT = dist(T �, �1) for all T ∈ Th , where ρ(·) is defined using the geodesic distance [25] and
‖∇ρ‖L∞(�2) ≤ 1.

Our graded mesh will then satisfy:

(M1) �h + �h ≤ h(1 + κ(2))

(M2) hT ≤ h1 for every T ∈ T̃ 1
h

(M3) hT ≤ min{ρT , 1}h for every T ∈ T̃ 2
h

We recall that �h and �h were respectively defined in Theorem 11 and Lemma 12.
A few comments are in order. First, note that condition (M1) is completely local, and in

the case O(κ(1)) = O(κ(2)), condition (M1) would be necessary to get an estimate of the
form (43), as the argument above (43) shows.

Note that if O(κ(1)) = O(κ(2)) then O(h1) = O(h). The mesh size for triangles that
are unit distance from �1 (i.e. ρT = O(1)) can be chosen so that O(hT ) = O(h). In the
intermediate region a grading giving by (M3) needs to be satisfied. Finally, note that there
is a smooth transition for triangles in the border of D1. Indeed, if ρT = d1 then by (M3),
hT ≤ d1h = h1

We now state and prove our main result.

Theorem 16 Suppose that u ∈ H̊1(�) solves (1) and uh ∈ Sh solves (34). Assume that the
mesh satisfies (M1–M3). Then we have

∥
∥
∥∇�

(

u − u�
h

)∥
∥
∥
L2(�)

≤ C
(

1 + cp(1 + κ(2))
)

h‖ f ‖L2(�) + Ccp
∥
∥
∥ f − f �

h

∥
∥
∥
L2(�)

. (45)

Before proving the result let us state a few comments. Note that the right hand side of (45)
looks like the right hand side of (43) with κ(2) instead of κ . Therefore, with the available
information, (45) is essentially the best result we can hope for. So, we found a graded mesh
where one has a fine mesh in the region where the curvature is high to get the best error
estimate.

Proof (of Theorem 16) By (41) and our assumption (M1) we have
∥
∥
∥∇�

(

u − u�
h

)∥
∥
∥
L2(�)

≤ Ccp

(

(1 + κ(2))h ‖ f ‖L2(�) +
∥
∥
∥ f − f �

h

∥
∥
∥
L2(�)

)

+C

⎛

⎝
∑

T∈Th

h2T
∥
∥∇2

�u
∥
∥
2
L2(T �)

⎞

⎠

1/2

.

Next, we estimate
∑

T∈Th

h2T
∥
∥∇2

�u
∥
∥
2
L2(T �)

=
∑

T∈T̃ 1
h

h2T
∥
∥∇2

�u
∥
∥
2
L2(T �)

+
∑

T∈T̃ 2
h

h2T
∥
∥∇2

�u
∥
∥
2
L2(T �)

.

By our (M2) we get
∑

T∈T̃ 1
h

h2T
∥
∥∇2

�u
∥
∥
2
L2(T �)

≤ Ch21
∥
∥∇2

�u
∥
∥
2
L2(�)

,
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and we gather from Lemma 14 that

∑

T∈T̃ 1
h

h2T
∥
∥∇2

�u
∥
∥
2
L2(T �)

≤ Ch21

(

1 + cpκ
(1)

)2 ‖ f ‖2L2(�)
= Ch2

(

1+cp(1+κ(2))
)2 ‖ f ‖2L2(�)

.

The other term we bound in the following way by using (M3):

∑

T∈T̃ 2
h

h2T
∥
∥∇2

�u
∥
∥
2
L2(T �)

≤
∑

T∈T̃ 2
h

h2T
ρ2
T

∥
∥ρ∇2

�u
∥
∥
2
L2(T �)

≤ h2
∥
∥ρ∇2

�u
∥
∥
2
L2(�2)

.

Now using (44), we have

∑

T∈T̃ 2
h

h2T
∥
∥∇2

�u
∥
∥
2
L2(T �)

≤ Ch2
(

1 + cp(1 + κ(2))
)2 ‖ f ‖2L2(�)

.

The result now follows. ��
4.2 An L2(�) Estimate

We now derive an error estimate in the L2(�) norm, based on the usual duality argument.
We note that the conditions (M1–M3) are no longer enough to guarantee a h2 convergence
that is independent of κ(1). Actually, (M1) is reinforced by imposing that

(M4) �h ≤ h2(1 + κ(2))

Theorem 17 Suppose that u ∈ H̊1(�) solves (1) and uh ∈ Sh solves (34). Assume that f �
h

satisfies ‖ f �
h ‖L2(�) ≤ C‖ f ‖L2(�), and that the mesh satisfies (M1–M4). Then we have

∥
∥
∥u − u�

h

∥
∥
∥
L2(�)

≤ Ch2ϒ
(

ϒ + cp + h(1 + κ(2))(cp + hϒ)
)‖ f ‖L2(�)

+Ccp(cp + hϒ)

∥
∥
∥ f − f �

h

∥
∥
∥
L2(�)

.

Here ϒ = 1 + cp(1 + κ(2)).

Proof First, let v ∈ H̊1(�) be the weak solution of

−��v = u − ũ�
h on �

where

ũ�
h = u�

h − 1

|�|
∫

�

u�
h d A.

Then
∥
∥
∥u − ũ�

h

∥
∥
∥

2

L2(�)
=

∫

�

∇�v · ∇�

(

u − ũ�
h

)

d A

=
∫

�

∇�(v − Ihv) · ∇�

(

u − ũ�
h

)

d A

−
∫

�

∇� Ihv · ∇� ũ
�
h d A +

∫

�

f Ihv d A,
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where we used (1). Then, using (34), the fact that derivatives of constants are zero, and that
∫

�
f d A = 0 = ∫

�h
fh d Ah , we can show that

∥
∥
∥u − ũ�

h

∥
∥
∥

2

L2(�)
= J1 + J2 + J3 + J4,

where

J1 =
∫

�

f �
h (Ihv − c)d A −

∫

�h

fh(Ihv − c)�d Ah

J2 =
∫

�

(

f − f �
h

)

(Ihv − c) d A

J3 =
∫

�

∇�(v − Ihv) · ∇�

(

u − u�
h

)

d A,

J4 =
∫

�h

∇�h ((Ihv)�) · ∇�h uh d Ah −
∫

�

∇� Ihv · ∇�u
�
h d A.

Here we choose c = 1
|�|

∫

�
Ihv d A. Using (38), the Poincaré’s inequality (35), and that

‖ f �
h ‖L2(�) ≤ C‖ f ‖L2(�),

J1 ≤ Ccp�h‖ f ‖L2(�)‖∇�(Ihv)‖L2(�).

Using the Poincaré’s inequality (35) we get

J2 ≤ Ccp
∥
∥
∥ f − f �

h

∥
∥
∥
L2(�)

‖∇�(Ihv)‖L2(�).

Using (37) we get

J4 ≤ C�h

∥
∥
∥∇�u

�
h

∥
∥
∥
L2(�)

‖∇�(Ihv)‖L2(�).

Using the triangle inequality and the energy estimate (36) we have

J4 ≤ C�h

(∥
∥
∥∇�

(

u�
h − u

)∥
∥
∥
L2(�)

+ cp ‖ f ‖L2(�)

)

‖∇�(Ihv)‖L2(�) .

To bound J3 we use the Cauchy–Schwarz inequality

J3 ≤
∥
∥
∥∇�

(

u�
h − u

)∥
∥
∥
L2(�)

‖∇�(Ihv − v)‖L2(�) .

Using Lemma 12 we get the estimate

‖∇�(v − Ihv)‖2L2(�)
≤C c2p (�h + �h)

2
∥
∥
∥u − ũ�

h

∥
∥
∥

2

L2(�)
+

∑

T∈Th

h2T
∥
∥∇2

�v
∥
∥
2
L2(T �)

.

As we did in the proof of Theorem 16 [using (M1–M3)] we can show that

∑

T∈Th

h2T
∥
∥∇2

�v
∥
∥
2
L2(T �)

≤ C h2ϒ2
∥
∥
∥u − ũ�

h

∥
∥
∥

2

L2(�)
.

Hence, using (M1) we have

‖∇�(v − Ihv)‖L2(�) ≤ Ch ϒ

∥
∥
∥u − ũ�

h

∥
∥
∥
L2(�)

. (46)
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Therefore, we get the bound

J3 ≤ Chϒ

∥
∥
∥∇�

(

u�
h − u

)∥
∥
∥
L2(�)

∥
∥
∥u − ũ�

h

∥
∥
∥
L2(�)

.

Using (46), the triangle inequality and a energy estimate we have

‖∇�(Ihv)‖L2(�) ≤ C(cp + hϒ)

∥
∥
∥u − ũ�

h

∥
∥
∥
L2(�)

.

It follows then that

J1 + J2 + J4 ≤ C(cp + hϒ)
(

cp �h‖ f ‖L2(�) + cp
∥
∥
∥ f − f �

h

∥
∥
∥
L2(�)

+ �h

∥
∥
∥∇�

(

u�
h − u

)∥
∥
∥
L2(�)

)

×
∥
∥
∥u − ũ�

h

∥
∥
∥
L2(�)

.

Therefore,
∥
∥
∥u − ũ�

h

∥
∥
∥
L2(�)

≤ C(cp + hϒ)

(

cp�h‖ f ‖L2(�) + cp
∥
∥
∥ f − f �

h

∥
∥
∥
L2(�)

)

+C
(

(cp + hϒ)�h + hϒ
)
∥
∥
∥∇�

(

u�
h − u

)∥
∥
∥
L2(�)

.

We gather from (M4) and (45) that
∥
∥
∥u − ũ�

h

∥
∥
∥
L2(�)

≤ C(cp + hϒ)h2ϒ‖ f ‖L2(�) + Ccp(cp + hϒ)

∥
∥
∥ f − f �

h

∥
∥
∥
L2(�)

+C
(

(cp + hϒ)(1 + κ(2))h2 + hϒ
)

hϒ‖ f ‖L2(�). (47)

The triangle inequality yields

∥
∥
∥u − u�

h

∥
∥
∥
L2(�)

≤
∥
∥
∥u − ũ�

h

∥
∥
∥
L2(�)

+ 1

|�|1/2
∣
∣
∣
∣

∫

�

u�
h d A

∣
∣
∣
∣
. (48)

We now use that
∫

�h
uh d Ah = 0 and (38) to get

1

|�|1/2
∣
∣
∣
∣

∫

�

u�
h d A

∣
∣
∣
∣
= 1

|�|1/2
∣
∣
∣
∣

∫

�

u�
h d A −

∫

�h

uh d Ah

∣
∣
∣
∣
≤ C�h

∥
∥
∥u�

h

∥
∥
∥
L2(�)

.

Using the triangle inequality, (35) and (36) we gather that

1

|�|1/2
∣
∣
∣
∣

∫

�

u�
h d A

∣
∣
∣
∣
≤ C

(

�h

∥
∥
∥u�

h − u
∥
∥
∥
L2(�)

+ �hc
2
p‖ f ‖L2(�)

)

.

Finally, from (48), (6), and (M4) we have
∥
∥
∥u − u�

h

∥
∥
∥
L2(�)

≤ C
∥
∥
∥u − ũ�

h

∥
∥
∥
L2(�)

+ Ccph
2ϒ‖ f ‖L2(�).

The result follows from this inequality and (47). ��
Remark 18 Although we only proved results for domains without boundaries, we anticipate
that our analysis will carry over to surfaces with boundary. In fact, in the next section we will
provide numerical experiments for a surface � with a boundary.
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Fig. 2 Visualization of the surface �

5 Numerical Experiments

We consider a simple example of a surface with a high curvature “ridge,” and show our
adapted mesh as well as properties of the solution.

5.1 Surface Parameterization

Let � be the surface parameterized by

X(x, y) =
(

x, y, 1 −
√

x2 + 5 · 10−2y2 + 2.5 · 10−5

)

, for (x, y) ∈ U, (49)

whereU = {(x, y) ∈ R
2: x2+ y2 < 1} (see Fig. 2). The curvature regions�1,�2 are defined

by

U1 =
{

(x, y) ∈ R
2 :

( x

0.05

)2 +
( y

0.5

)2 ≤ 1

}

, �1 = X(U1), �2 = � \ �1. (50)

This leads to the following maximum curvatures on �1, �2:

κ(1) = max
�1

κ = 199.970, κ(2) = max
�2

κ = 8.701,
κ(1)

κ(2)
= 22.984.

5.2 “Exact” Solution

We use zero boundary conditions on ∂� and choose the right-hand-side f : � → R to be

f (x, y, z) =
{

50.0 exp
(

1
(x−0.2)2+y2−0.2

)

, if (x − 0.2)2 + y2 < 0.2,

0, else.
(51)
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Fig. 3 Plot of the “exact” solution u on �

Note that f is similar to a “bump” function [24] and is C∞(�) and has compact support on
�.

In lieu of an exact analytic solution, we compute a reference “exact” solution (denoted u)
on a mesh consisting of 3,679,489 vertices and 7,356,928 triangles obtained from refining
an initial coarse mesh. The number of free degrees-of-freedom of the reference solution is
3,677,441 (after eliminating boundary degrees-of-freedom). See Fig. 3 for a plot of u.

We also plot an approximation of |∇2
�u| to illustrate how the hessian is influenced by the

high curvature of the domain, which is concentrated at the high curvature ridge of the surface
(see Fig. 4).

5.3 Adapted Mesh and Solution

Our adaptedmesh is generated by first starting with a coarsemesh that satisfies (10), (6), (11).
We then iteratively check the criteria in (M1), (M2), (M3) in Sect. 4.1. At each iteration, if
any triangle does not satisfy the criteria, then it is marked for refinement. We then refine all
marked triangles using standard longest-edge bisection. Figure 5 shows a plot of our final
adapted mesh.

Figure 6 shows the “pointwise” error |∇�(u − uh)|, where uh is the numerical solution
on the adapted mesh. Note that the graded mesh, essentially, eliminates the error in the high
curvature region. However, the grading strategy does not specifically account for f , so the
error is larger where f is large.

123



J Sci Comput (2018) 77:1736–1761 1757

Fig. 4 Plot of the hessian of u (viewed from the top). Note that it peaks in the high curvature region

Fig. 5 Visualization of the adapted mesh of � using our grading criteria
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Fig. 6 Plot of |∇�(u − uh)| (viewed from the top). The adapted mesh essentially eliminates the error in the
high curvature region

Appendix A: One Technical Result

Lemma 19 Assume that � is a C3 two-dimensional compact orientable surface without
boundary, and that u ∈ H2(�). Then

3
∑

i, j=1

∫

�2

Di j uDi

(

ρ2D ju
)

d A

=
3

∑

j=1

∫

�2

��uD j

(

ρ2D ju
)

d A −
∫

�2

ρ2(tr(H)H − 2H2)∇�u · ∇�u d A.

Proof In what follows, we use the two identities [17]
∫

�

Diuv d A = −
∫

�

uDiv d A +
∫

�

uv tr(H)νi d A, (52)

and
Di j u = D ji u + (H∇�u) jνi − (H∇�u)iν j , (53)

for all C3(�) functions u, v. Also we will use that of course

∇�u · ν = 0. (54)

We assume for the proof that u ∈ C3(�), and the general result follows from density
arguments. Following [17, Lemma 3.2], and using the Einstein summation convention,
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∫

�

Di j uDi

(

ρ2D ju
)

d A

= −
∫

�

Dii j u
(

ρ2D ju
)

d A +
∫

�

Di j uρ
2D ju tr(H)νi d A by (52)

= −
∫

�

Dii j u
(

ρ2D ju
)

d A by (54)

= −
∫

�

Di

[

D ji u + (H∇�u) jνi − (H∇�u)iν j
]

ρ2D ju d A by (53)

= −
∫

�

Di

[

D ji u + Hjk Dkuνi − Hik Dkuν j
]

ρ2D ju d A

= −
∫

�

(

Di ji u + Hjk Hii Dku − Hik Hi j Dku
)

ρ2D ju d A by (54)

= −
∫

�

(

Di ji uρ
2D ju + ρ2(tr(H)H − H2)∇�u · ∇�u

)

d A.

To handle the first term on the right hand side, we use (53) and the fact that Dii u = ��u
to write:

−
∫

�

Di ji uρ
2D ju d A = −

∫

�

[

D j��u + (H∇�Diu) jνi − (H∇�Diu)iν j
]

ρ2D ju d A

= −
∫

�

D j��uρ
2D ju + Hjk Dki uνiρ

2D ju d A,

where we used (54) in the last equation. But Dkiuνi = Dk(Diuνi ) − DiuHki = −DiuHki ,
and then

−
∫

�

Di ji uρ
2D ju d A =

∫

�

−D j��uρ
2D ju + Hjk DiuHkiρ

2D ju d A

=
∫

�

��uD j

(

ρ2D ju
)

+ ρ2H2∇�u · ∇�u d A.

In the last equation we used (52) and (54). This completes the proof. ��
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