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ABSTRACT: Recent advances in micro- and nanoscale fabrication techniques allow
for the construction of rigid, helically shaped microswimmers that can be actuated
using applied magnetic fields. These swimmers represent the first steps toward the
development of microrobots for targeted drug delivery and minimally invasive surgical
procedures. To assess the performance of these devices and improve on their design,
we perform shape optimization computations to determine swimmer geometries that
maximize speed in the direction of a given applied magnetic torque. We directly assess
aspects of swimmer shapes that have been developed in previous experimental studies,
including helical propellers with elongated cross sections and attached payloads. From
these optimizations, we identify key improvements to existing designs that result in swimming speeds that are 70−470% of their
original values.
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Micro- and nanoscale magnetic structures have served as
essential building blocks to a number of devices,

including microfluidic pumps,1 controlled and localized micro-
mixers,2,3 and high-throughput DNA size selectors.4 One of the
most novel and notable applications of these magnetic particles
has been in the construction of micro- and nanoscale
biomimetic swimmers.5−13 These devices are powered by
time-dependent magnetic fields and utilize locomotion
strategies similar to those exhibited by swimming cells and
microorganisms to move in an environment where viscosity
dominates and inertial effects are negligible.14,15 While often
referred to as artificial swimmers, they are not true self-
propelled bodies since they are driven by an applied magnetic
torque. Two significant examples are the rigid, helical swimmers
developed in Zhang et al.8−10 and Ghosh and Fischer.7 These
swimmers have been shown to be highly controllable and able
to follow complex swimming paths in three dimensions. These
characteristics are particularly attractive for future biomedical
applications as microrobots for highly targeted drug delivery
and precise, minimally invasive surgical procedures.16,17

Key to the performance of these devices is their geometry. It
is their helical shape that couples rotation and translation18 and
allows the torque generated by an applied rotating magnetic
field to induce translation. While both the Zhang et al. and
Ghosh and Fischer swimmers rely on this strategy for
propulsion, there are distinct differences in their geometries
that arise due to the different techniques used to synthesize
them. The geometric differences lead to different hydrodynamic
mobilities and couplings of the applied magnetic torque to the
linear translation velocity. A natural question to ask is what
swimmer geometries maximize this coupling. To help answer

this question, we turn here to the computational techniques of
shape optimization.19,20 Optimization techniques have already
been successful in elucidating aspects of microorganism
locomotion, including the beat patterns of flagellated
cells,21−24 wave shapes in lubrication-layer propulsion and
pumping,25,26 and effective slip-velocities generated by ciliated
organisms.27 We show here that these methods are also
powerful tools in establishing design principles for artificial
microswimmers. An important aspect of our approach is the use
of a boundary integral formulation28,29 of the Stokes equations
to accurately determine the swimming speed and how it varies
with swimmer shape. This complete treatment of the
hydrodynamics allows us to move beyond simple drag-based
models and consider the effects of the finite thickness of the
propeller as well as attached cargo, important geometric
features of both the Zhang et al. and Ghosh and Fischer
swimmers.
While the microswimmers in Zhang et al. and Ghosh and

Fischer are constructed using very different techniques, they are
both rigid bodies that contain magnetic material. The
interaction between this material and an applied magnetic
field results in a torque, τ, on the swimmers, allowing for
actuation and direction by the applied field. If this field is
spatially uniform, as it was in both experiments, the magnetic
force on the swimmers will be zero, F = 0. As a result,
translational motion requires there be a coupling between the
magnetic torque and the linear velocity. Given the small size of
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the swimmers, the Reynolds number18 associated with their
motion is Re ≈ 10−4−10−3, indicating that the effects of inertia
are negligible. Accordingly, there will be a linear relationship,
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between the swimmer’s linear velocity, U, and angular velocity,
Ω, and the applied force F and torque τ. These equations,
based on continuum fluid mechanics, can describe the average
motion of nanoscale structures much smaller than the Ghosh
and Fischer swimmer (for example, see Drazer et al.30). While
the relationship (eq 1) is linear, the entries of the 6 × 6
mobility matrix, , depend nonlinearly on the geometry of the
swimmer. The purpose of our study is to determine the
swimmer geometries that maximize the matrix entries that
couple the torque and linear velocity in a particular direction.
Since the Reynolds number is much less than 1, this shape will
not depend on the fluid viscosity. Also, due to the scale
invariance of low Reynolds number hydrodynamics, the
optimal shape will not depend on the overall size of the
swimmer. Only the speed will be affected by swimmer size. This
is important to note since the Ghosh and Fischer swimmer is
an order of magnitude smaller than that Zhang et al. Finding
the mobility matrix entries requires solution of the Stokes
equations
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for the pressure field, p, and fluid velocity u, when the total
force on the swimmer is zero, the torque is τ, and u = U + Ω ×
x on the surface of the swimmer. By taking τ = ei for i = 1, 2, or
3 and solving for the corresponding components of U and Ω,
the entries of the matrix that couple linear velocity and
applied torque can be found. Given the complexity of the
swimmer geometries, this problem is solved most accurately
and efficiently using a boundary integral formulation of Stokes
flow. As described in the Supporting Information, we utilize a
second-kind boundary integral equation for the tractions on a
rigid body and determine numerical solutions using the second-
order accurate trapezoidal rule for surface quadratures.29 This
formulation avoids the numerical ill-conditioning associated
with the standard first-kind integral equation,28 allowing us to
determine the surface tractions to the high accuracy necessary
for optimization.
A straightforward way of finding optimal shapes is to take a

particular parametrization of the swimmer geometry and
compute the mobility matrix entries for different values of
the shape parameters, seeking those values that maximize a
specified objective function. This simple approach is very useful
for improving the speed of the Zhang et al. swimmer where we
optimize over a single parameter that controls the orientation
of the propeller’s elongated cross-section.
A computational model of the Zhang et al. swimmer is

depicted in the top image of Figure 1a (cf. Figure 1g of Zhang
et al.8). The parametrization of this swimmer’s surface is
described in the Supporting Information, though to understand
the results that follow, we mention two aspects of this
parametrization. The first is that the centerline of the
swimmer’s propeller is given by the simple helix

α= ̂ + ̂ + ̂s b ks ks sX x y z( ) (cos sin )hel (3)

with α2 + b2k2 = 1. The parameter b is the radius of the helix,
while k and α determine its wavelength Λ = 2π/k and pitch λ =
αΛ. The helical axis and the swimming direction are taken to be
z.̂ The second aspect of the parametrization is that the
orientation of the propeller cross-section is controlled by a
rotation angle, γ. Figure 1a shows the swimmer shapes for α =
0.7 and k = 4π/L with γ = 0, π/4, and π/2. With γ = 0, we
model the Zhang et al. swimmer, while for γ = π/2, the long
axis of the propeller cross-section is turned to be perpendicular
to the helical axis.
With this description of the swimmer’s surface, we can solve

the boundary integral equations and obtain the mobility matrix
entries for the swimmer. We can validate these calculations by
comparing with the experimental results of Zhang et al.9 Given
the swimmer’s helical symmetry, the force and torque in the
swimming direction z ̂ can be approximated by Fz = RAUz +
RBΩz and τz = RBUz + RDΩz respectively, where Uz is the
swimming speed, Ωz is the rotational speed about z,̂ and RA, RB,
and RD are resistance coefficients. Zhang et al.9 performed a
series of experiments to estimate the resistance coefficients and
obtained RA

Z = 1.5 × 10−7 N·s/m, RB
Z = 1.6 × 10−14 N·s, and RD

Z

= 2.3 × 10−19 N·m·s. If we take the propeller length to be 49.7
μm and the viscosity to be η = 10−3Pa·s as they were in these
experiments, for the parameter values α = 0.7 and γ = 0 (Figure
1a, top image), our boundary integral calculations yield the
resistance coefficients, RA

BI = 9.37 × 10−8 N·s/m, RB
BI = 1.63 ×

10−14 N·s, and RD
BI = 1.01 × 10−18 N·m·s. These values,

especially RB
BI, are comparable to the measured values, despite

the slight differences in swimmer geometry and the hydro-
dynamic interactions with channel walls present in the
experiments. The wall interactions will become significant
when the distance (not provided in Zhang et al.9) from the

Figure 1. (a) Swimmer shapes with α = 0.7 and with the indicated
values of the propeller cross-section orientation parameter γ. The
Zhang et al.8−10 swimmer geometry corresponds to γ = 0 (top image).
(b) The rotation-translation coupling mobility matrix entry MB as a
function of γ for different values of the centerline slope parameter α.
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swimmer to the surface is comparable to the swimmer’s length
(see Spagnolie and Lauga31). Correspondence with the
experimental value of RB is particularly important since it is
this resistance coefficient that governs the speed-torque
coupling.
We now focus our attention on the mobility matrix entry MB

that determines the swimming speed when there is an applied
torque about the swimming direction. It is given by MB = Uz/τz
when all other components of the applied force and torque are
zero. Figure 1b shows how MB varies with the parameter γ, for
different values of α, while keeping both the size of the
swimmer’s head and the value of k = 4π/L fixed. We find that
the largest values of MB occur when γ = π/2. This corresponds
to the long axis of the propeller cross-section being
perpendicular to the swimming direction, giving an Archime-
dean screw (see Figure 1a, bottom image). Depending on the
value of α, we find that the Archimedean screw (γ = π/2)
swimmer has a speed between 165% to 170% faster than that of
the γ = 0 swimmer. These increases in speed are comparable to
those found for helices without the attached head29 but are
much greater than the modest speed increases of 9% that were
predicted using simple drag based models.10 Overall, the
highest value of MB = 0.32(pN·s)−1 was achieved when α = 0.8
and γ = π/2. This value is 1.8 times that of our computed value
for the Zhang et al. swimmer (α = 0.7 and γ = 0). It is
important to note that nearly all of this increase is due to the
reorientation of the propeller cross-section.
We demonstrated that by varying a single parameter that

controlled the orientation of the propeller cross-section the
speed of the Zhang et al. swimmer could be increased to 170%
of its original value. Identifying improvements to the Ghosh
and Fischer swimmer requires more sophisticated techniques of
shape optimization. Here, the optimization is performed over
the shape of an elongated propeller of circular cross-section.
A computational model of the Ghosh and Fischer swimmer

is shown in the top image of Figure 4 (cf. Figure 1B in Ghosh
et al.7). We describe its propeller surface as

θ θ θ= + +s s a s s sx X n n( , ) ( ) ( )[cos ( ) sin ( )]c 1 2 (4)

where arclength s ∈ [−L,L] and angle θ ∈ [0,2π) are the
coordinates, with ac(s) = a(1 − (s/L)2)1/2 the cross-sectional
radius, and n1(s) and n2(s) being two unit vectors orthogonal to
dX(s)/ds and to each other. We solve the Stokes equations, eq
1, subject to the condition u = U + Ω0 (z ̂ × x) on the swimmer
surface with translational velocity U and rotational speed Ω0.
We also require that F = 0 and that the torque has the form τ =
τ0z ̂ + T given T·z ̂ = 0 and τ0. The torque T ensures the axis of
rotation is aligned with z.̂ The unknowns are the translation
velocity U, the (scalar) rotation-rate Ω0, and the two (x and y)
components of the torque T. This set of conditions is chosen to
capture magnetic actuation where the swimmer is aligned and
rotated by the applied magnetic field. Again, z ̂ is the axis of
alignment, rotation, and the swimming direction. The goal is to
find the shape of X(s) that maximizes Uz = U·z ̂ when the torque
rotating the body, τ0z,̂ is held fixed. To do so, we begin with an
initial shape of X(s) and we use our boundary integral
formulation to compute Uz and its shape derivative. The shape
derivative quantifies how the swimming speed varies with
perturbations in X(s) while maintaining the conditions on the
applied force, torque, and angular velocity. With this
information, we then use a steepest ascent method to find a
subsequent swimmer shape that has a higher swimming speed
while satisfying the constraints that s remain an arclength

parametrization and that the total length LT = 2L and aspect
ratio ζ = L/a remain constant. The process is iterated to
generate a sequence of swimmer shapes with speeds that
approach a locally maximum value. A more detailed description
of our shape optimization can be found in the Supporting
Information.
Using this shape optimization routine, we first consider the

Ghosh and Fischer propeller in the absence of a payload and
explore how the optimal shape of X depends on the aspect ratio
of the propeller. Figure 2a shows the initial and final shapes

from side and top views for three representative optimizations.
The body aspect ratios ζ = 20, 30, and 50 are indicated for each
case. The changes in the propeller shape during each
optimization can be seen in Supplementary Videos 1, 2, and
3. Figure 2b shows the x and y components of X(s) for the final
swimmer shapes. Figure 3a shows the increase in speed over the
course of each optimization. We find that even though the
optimizations were initiated using complicated shapes, X(s)
evolves into what closely resembles a simple helix. We find that
as the aspect ratio of the body increases, the optimal shape has
a greater number of helical turns. From Figure 2, we also see
that the helical radius, the distance from the propeller
centerline to the z-axis, decreases with increasing ζ. We do
find, however, when normalized by the propeller cross-section
radius a, these values become very similar. Though not shown,
we also found that the z-component of each optimal centerline
is well fit by the line Z = α̅s with α̅ = 0.842.
To better understand these observations, we have computed

the speed for propellers with perfectly helical centerlines (see
eq 3), varying either α and k or α and b. We performed these
calculations for values of ζ between 20 and 100. The values of
the speed are shown in Figure 3b for the extreme cases of ζ =
20 and 100. We find that, for each case and regardless of the
aspect ratio, the speed attains its peak value when α ≈ 0.84 and

Figure 2. (a) Initial and optimized final shapes for bodies with aspect
ratios 20, 30, and 50. (b) The x and y components of X(s) for the
optimal shapes. The solid line corresponds to the case where ζ = 20,
the dashed line for ζ = 30, and the dash-dotted line for ζ = 50.
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b/a ≈ 2.2. These values of α and b together with the
inextensibility condition, b2k2 + α2 = 1, indicate that the
number of turns should increase as the aspect ratio increases.
This is indeed what was observed in the centerline
optimizations. We tested the optimality of a helical centerline
with α = 0.84 and b/a = 2.2 by using it as the initial shape for
X(s) in the centerline optimization. We found that the final
shape is only slightly different from the initial helix, and that the
speed is increased by at most 2%, demonstrating that helical
centerlines with α = 0.84 and b/a = 2.2 do indeed deliver nearly
optimal performance.
Figure 3c shows the speed of the optimal propeller as a

function of ζ. We find that it grows linearly with ζ and goes to
infinity as the propeller becomes thinner and thinner. To
understand this dependence, we again turn to a helical
centerline and utilize a resistive force model to obtain a
relationship between the swimming speed and the applied
torque. In this model, the force per unit length, q, is given by
q(s) = (C∥tt + C⊥(I − tt))v, where v is the velocity of the
centerline and C∥ and C⊥ are the drag coefficients for motions
parallel and perpendicular to the centerline, respectively. Using
Lighthill’s formula32 for these drag coefficients, C∥ = 2πη/
log(2Q/a) and C⊥ = 4πη/(log(2Q/a) + 0.5) where Q = 0.18π/
k, and taking the velocity of the centerline to be v = U + Ω0z ̂ ×
X, we can determine the following relationship between an
applied torque in the z-direction and the swimming speed when
the total force is zero:

τ α= −⊥ ⊥U k C C LC C/ ( )/(2 )z z (5)

This is shown as the dashed line in Figure 3c for the helix with
α = 0.84 and b/a = 2.2. We see that this model provides an
accurate estimate of the optimal speeds. Also, with these values
of α, b/a, and k = 0.25ζ/L, we see that Uz grows linearly with ζ.
It is interesting to note that, even though this drag based model
does accurately characterize the speed of the optimal shape, it
cannot be used to predict the shape itself. Resistive force theory

is a local approximation of the hydrodynamic force and does
not set a length scale in the optimization problem. As a result,
resistive force theory will always predict a body with an infinite
number of helical waves as the optimal shape.22 In Figure 3c,
we see this corresponds to the case where ζ → ∞ and the
swimming speed diverges.
Important to the utility of microswimmers will be the ability

to pick-up and deliver a cargo to a specific location. It is
essential to biomedical applications, especially targeted drug
delivery. Swimmers incorporating this functionality have been
explored experimentally by Tottori et al.33 and have a geometry
similar to the Ghosh and Fischer7 swimmer. The presence of
the cargo alters the overall swimmer geometry and so modifies
the mobility matrix entries (i.e., the coupling of torque to linear
velocity). We show here that these modifications dramatically
alter the optimal propeller shape. We revisit the centerline
optimization problem and now consider a swimmer with a
spherical cargo of fixed radius, R, attached to leading end of the
propeller. The swimmer shape over the course of an
optimization with ζ = 50 and R/L = 0.12 is shown in
Supplementary Video 4. In the Stokes flow problem, the cargo
is treated as a separate body a small distance away from the end
of the propeller, but they are taken to move together as a
connected rigid body. The hydrodynamic interactions between
the cargo and the propeller are naturally accounted for through
the boundary integral equations that we solve. The location of
the cargo relative to the propeller can affect the swimming
speed.34 During the optimization, the propeller attachment
point is allowed to move along the cargo’s surface, and so in
addition to the optimal propeller centerline shapes, there will
also be an optimal location for the propeller attachment point
to the payload.
We first use our approach to examine the swimmer geometry

used in Ghosh and Fischer. We can generate a close
approximation of this swimmer’s shape by taking L/R = 8.3,
a/R = 0.52, and a helical centerline (eq 3) with α = 0.65 and k

Figure 3. (a) The dimensionless speed over the course of the optimization for bodies with aspect ratio ζ = 20 (solid line), ζ = 30 (dashed line), and
ζ = 50 (dash-dotted line). (b) Contour plots showing the ηL2Uz/τ0 for simple helices with aspect ratios ζ = 20 and 100. In the top row, the contours
are shown as a function of α and kL/π, while the bottom row shows the contours as a function of α and b/a. (c) The dimensionless speed of the
optimal shapes as a function of the aspect ratio, ζ (black circles). The dashed line indicates the speeds of the optimal helices (α = 0.84 and b/a = 2.2)
as given by resistive force theory, eq 5.
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= 4π/L. The swimmer shape described by these parameters is
shown in the top image of Figure 4. Using the boundary

integral solver the nondimensional swimming speed, V =
ηR2Uz/τ0, is found to be VGF = 4.7 × 10−4, while the
nondimensional rotation rate, W = ηR3Ω0/τ0, is W

GF = 0.011.
Our gradient ascent method finds an optimal centerline
geometry for a swimmer with L/R = 8.3 and a/R = 0.52.
The result is the swimmer shape depicted in the bottom image

of Figure 4. It has a speed of V = 1.2 × 10−3, more than 2.5
times greater than the original design.
To understand this optimal shape, we perform a series of

centerline optimizations for propeller cross-section radii a/R =
0.2 and a/R = 0.4 and propeller half-lengths L ∈ [2R,8R] when
a/R = 0.2 and L ∈ [2R,10R] when a/R = 0.4. Figure 5 shows
the optimal swimmer shapes over the range of L/R for the two
values of a/R. The mobility coefficients for these shapes are
given in the Supporting Information. While we again achieve
optimal centerline shapes that resemble helices (see Figure 5),
they are quite different from those found for propellers without
a payload, even though the propeller aspect ratios are in the
same range. Take, for example, the optimal swimmer with ζ =
30 in Figure 2a and compare it to the corresponding case in
Figure 5a where a/R = 0.2 and L/R = 6. Both propellers have
the same value of ζ, but the centerline of the propeller with the
attached cargo has fewer helical waves and a larger helical
radius. These differences can be seen in detail by comparing the
position data in Figures 2b and 5b. For the case ζ = 50, a similar
comparison can be made between the final ζ = 50 shape in
Figure 2a and the final shape shown in the Supplementary
Video 4. We also note that, for a given propeller length, the
optimizations with a/R = 0.2 and a/R = 0.4 yield very similar
optimal shapes. We find, therefore, that the optimal swimmer
shape does not depend strongly on the aspect ratio of the
propeller but does on the size of the attached cargo. The
optimal shape does vary with propeller length. The centerline
position data (Figure 5b) show that both the number of helical
waves and the helical radius of the optimal shape increase as the
propeller gets longer. In addition to the propeller shape, we find
that the location of the cargo relative to the propeller is
important. For both choices of a/R, we see that, as the tail
length increases, the location of the cargo’s center moves
toward the helical axis while the propeller attachment point
moves to the side of the cargo.

Figure 4. A computational surface model that closely resembles that
developed in Ghosh and Fischer7 (top). For this swimmer, L/R = 8.3,
a/R = 0.52, and the centerline is described by eq 3 with α = 0.65 and k
= 4π/L. The middle image shows a swimmer with the same values of
a/R and L/R, but whose centerline has been optimized. The speeds of
each of these swimmers is indicated, with the optimized swimmer
having a higher speed by a factor of 2.55. Even higher speeds can be
achieved if one considers different propeller lengths and aspect ratios
as well as centerline shapes. The lower image shows a swimmer with
L/R = 5 and a/R = 0.2. With this propeller shape, the swimming speed
is increased by a factor of 4.68. The values of the nondimensional
rotation rates, W, are also shown for each swimmer shape.

Figure 5. (a) Optimal shapes for swimmers with an attached cargo for different values of L/R and a/R. (b) The x and y components of X(s) as a
function of s for the optimal shapes with a/R = 0.2 and normalized tail half-lengths L/R = 2 (dashed), 4 (solid), 6 (dash−dotted), and 8 (dotted).
(c) The swimming speeds of the optimal shapes as a function of the normalized tail half-length. The line with the square markers shows the values
when a/R = 0.4, while the line with the circular markers shows those for when a/R = 0.2.
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The speed of the optimal shape also varies with the
geometric parameters a/R and L/R. Figure 5c shows the
nondimensional speed of the optimal shape as a function of L/
R. For a given length, the values of the speed are higher for a/R
= 0.2 where the propeller is thinner. Interestingly, for both
cases of a/R, we find that the speed depends nonmonotonically
on the propeller length. This indicates that, for cargo of a given
size, there is an optimal propeller length. When a/R = 0.4, we
find the optimal tail half-length to be L ≈ 4R, while for a/R =
0.2, we see that it increases to L ≈ 5R. Based on these results,
the original Ghosh and Fischer design could be further
improved by reducing the propeller length and increasing its
aspect ratio. Such a swimmer is shown at the bottom of Figure
4, which gives a further increase in speed (assuming a fixed
payload radius) of 468% over the original Ghosh and Fischer
design. As a caveat, this optimized swimmer has a shorter,
thinner propeller of decreased surface area and volume. Thus, it
may take an applied magnetic field of much greater strength to
obtain the same net applied magnetic torque upon the
propeller to achieve its increased speed.
In this study, we utilized shape optimization and a boundary

integral formulation of Stokes flow to identify several key
design criteria for microswimmers and improvements to
current microswimmer designs. The results that we have
found are not only pertinent to the Zhang et al. and Ghosh and
Fischer designs, but apply more generally and provide guidance
in the design of new magnetic swimmers. We first
demonstrated that when the cross-section of the propeller is
elongated, its orientation matters. We showed that the long axis
of the propeller cross-section should be perpendicular to the
swimming direction. This orientation results in speeds
approximately 70% greater than the aligned case. We then
used shape optimization based on shape derivatives and a
steepest ascent method to find the propeller centerline shapes
that provide higher swimming speeds. We found that for
swimmers without an attached payload, regardless of the
propeller aspect ratio, a simple helical centerline with α = 0.84
and b/a = 2.2 is nearly optimal. These optimal shapes, however,
are drastically altered if there is a cargo attached to one end of
the swimmer. Here, we found that it was advantageous to have
the helical radius of the propeller similar to the radius of the
attached cargo, and fewer helical waves than one might expect.
We show such modifications to the original Ghosh and Fischer
design, keeping the propeller of roughly the same surface area
and volume, led to speeds 255% greater than the original value.
By assuming that the same amount of magnetic torque could be
applied on shorter, thinner propellers the increases could be yet
larger. In addition, we find that the translation speed depends
nonmonotonically on the tail half-length, with a maximum
value being achieved when L/R ≈ 4−5. In previous studies
aimed at optimizing planar flagellum beating for spermatozoa,24

a value L/R = 12 was reported for maximizing speed while
keeping the viscous dissipation fixed. They found that this ratio
was conserved across many species of sperm. It is interesting to
note that the optimal ratio is of the same order as that found
here despite profound differences in actuation mechanisms.
Also, as with our optimizations, the wave shape differs
substantially from the sawtooth pattern22 that is found to be
optimal when the sperm’s head is ignored.
There are several interesting directions to explore further.

First, in our optimization, we considered a rather general shape
space for the centerline. Given very specific methods of
micrometer-scale construction, such as the roll-up procedure

used by Zhang et al.8−10 or the glancing angle deposition
methods by Ghosh and Fischer,7 it would also be interesting to
understand how geometric constraints associated with these
construction techniques affect the optimal shapes. In this way,
the effectiveness of one construction procedure over another
could also be assessed. Still, it does appear that the deposition
methods of Ghosh and Fischer could be easily adapted to
investigate the optimized swimmers discussed here. In addition,
our shape optimization algorithm could be used to maximize
(or minimize) other quantities that are important to effective
operation of these devices. These include optimization under
conditions of an external flow, or where other forces, such as
gravity, might be present. Also, considering these swimmers
might be employed in suspension, it would be interesting to
optimize swimmer geometries to control the flow fields they
generate so as to suppress large-scale flow instabilities35,36 that
might arise from swimmer−swimmer hydrodynamic interac-
tions.37 In this study, we have identified design criteria based on
hydrodynamic considerations and maximization of speed for a
given torque. Our scheme could be modified to determine
shapes that maximize the stroke efficiency or the distance
traveled along the helical axis in one rotation. Indeed, the
rotation rates and stroke efficiency values are different for the
two optimal swimmers shown in Figure 4. It would be
interesting to see how shapes maximized for stroke efficiency
differed from those maximizing speed for a given torque. In
addition, our algorithm could be modified to incorporate slip
boundary conditions for the Stokes equations and determine
how they might affect the optimal shape. In addition, our
algorithm could be modified to incorporate slip boundary
conditions for the Stokes equations and determine how they
might affect the optimal shape. This would allow us to evaluate
alternative propulsion mechanisms, such as those employed by
chemically driven nanomotors and Janus particles,38 where slip-
layers are often present and used to drive swimmer motion. It
would also be of interest to explore how the torque itself
depends on the distribution of magnetic material within the
body. This could also be done using the shape optimization
techniques discussed here, through coupling it with Maxwell’s
equations. Finally, it is important to remember that our
optimization techniques may well be finding only local maxima
of our objective function (speed, under various constraints) and
that other search methods or initial shapes could lead to yet
faster devices.
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