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A FINITE ELEMENT METHOD FOR NEMATIC LIQUID CRYSTALS
WITH VARIABLE DEGREE OF ORIENTATION∗
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Abstract. We consider the simplest one-constant model, put forward by J. Ericksen, for nematic
liquid crystals with variable degree of orientation. The equilibrium state is described by a director
field nn and its degree of orientation s, where the pair (s,n) minimizes a sum of Frank-like energies
and a double well potential. In particular, the Euler–Lagrange equations for the minimizer contain
a degenerate elliptic equation for n, which allows for line and plane defects to have finite energy.
We present a structure preserving discretization of the liquid crystal energy with piecewise linear
finite elements that can handle the degenerate elliptic part without regularization, and we show
that it is consistent and stable. We prove Γ-convergence of discrete global minimizers to continuous
ones as the mesh size goes to zero. We develop a quasi-gradient flow scheme for computing discrete
equilibrium solutions and prove that it has a strictly monotone energy decreasing property. We
present simulations in two and three dimensions to illustrate the method’s ability to handle nontrivial
defects. The following online video illustrates the role of numerical analysis for the simulation of
liquid crystal phenomena: [Walker, Shawn. “Mathematical Modeling and Simulation of Nematic
Liquid Crystals (A Montage).” YouTube video, 04:13. Posted March 6, 2016. http://www.youtube.
com/watch?v=pWWw7 6cQ-U].

Key words. liquid crystals, finite element method, Γ-convergence, gradient flow, line defect,
plane defect
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1. Introduction. Complex fluids are ubiquitous in nature and industrial pro-
cesses and are critical for modern engineering systems [32, 41, 15]. A critical dif-
ficulty in modeling and simulating complex fluids is their inherent microstructure.
Manipulating the microstructure via external forces can enable control of the me-
chanical, chemical, optical, or thermal properties of the material. Liquid crystals
[47, 25, 21, 4, 3, 13, 7, 33, 34, 5, 46] are a relatively simple example of a material with
microstructure that may be immersed in a fluid with a free interface [53, 52].

Several numerical methods for liquid crystals have been proposed in [10, 29, 23,
35, 2] for harmonic mappings and liquid crystals with fixed degree of orientation; i.e.,
a unit vector field n(x) (called the director field) is used to represent the orientation
of liquid crystal molecules. See [28, 36, 49] for methods that couple liquid crystals
to Stokes flow. We also refer the reader to the survey paper [6] for more numerical
methods.

In this paper, we consider the one-constant model for liquid crystals with variable
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1358 R. H. NOCHETTO, S. W. WALKER, AND W. ZHANG

degree of orientation [26, 25, 47]. The state of the liquid crystal is described by a
director field n(x) and a scalar function s(x), −1/2 < s < 1, that represents the
degree of alignment that molecules have with respect to n. The equilibrium state is
given by (s,n), which minimizes the so-called one-constant Ericksen’s energy (2.1).

Despite the simple form of the one-constant Ericksen’s model, its minimizer may
have nontrivial defects. If s is a nonvanishing constant, then the energy reduces
to the Oseen–Frank energy, whose minimizers are harmonic maps that may exhibit
point defects (depending on boundary conditions) [14, 16, 20, 34, 33, 42]. If s is
part of the minimization of (2.1), then s may vanish to allow for line (and plane)
defects in dimension d = 3 [5, 46], and the resulting Euler–Lagrange equation for n is
degenerate. However, in [34] it was shown that both s and u = sn have strong limits,
which enabled the study of regularity properties of minimizers and the size of defects.
This inspired the study of dynamics [21] and corresponding numerics [8], which are
most relevant to our paper. However, in both studies the model was regularized to
avoid the degeneracy introduced by the s parameter.

We design a finite element method (FEM) without any regularization. We prove
stability and convergence properties and explore equilibrium configurations of liquid
crystals via quasi-gradient flows. Our method builds on [12, 9, 11] and consists of a
structure preserving discretization of (2.1). Given a weakly acute mesh Th with mesh
size h (see section 2.2), we use the subscript h to denote continuous piecewise linear
functions defined over Th, e.g., (sh,nh) is a discrete approximation of (s,n).

Our discretization of the energy is defined in (2.18) and requires that Th be
weakly acute. This discretization preserves the underlying structure and converges to
the continuous energy in the sense of Γ-convergence [17] as h goes to zero. Next, we
develop a quasi-gradient flow scheme for computing discrete equilibrium solutions. We
prove that this scheme has a strictly monotone energy decreasing property. Finally,
we carry out numerical experiments and show that our FEM and gradient flow allow
for computing minimizers that exhibit line and plane defects.

The paper is organized as follows. In section 2, we describe Ericksen’s model for
liquid crystals with variable degree of orientation and give details of our discretization.
Section 3 shows the Γ-convergence of our numerical method. A quasi-gradient flow
scheme is given in section 4, where we also prove a strictly monotone energy decreasing
property. Section 5 presents simulations in two and three dimensions that exhibit
nontrivial defects in order to illustrate the method’s capabilities.

2. Discretization of Ericksen’s model. We review the model [26] and relevant
analysis results from the literature. We then develop our discretization strategy and
show that it is stable. The space dimension d ≥ 2 can be arbitrary.

2.1. Ericksen’s one-constant model. Let the director field n : Ω ⊂ Rd →
Sd−1 be a vector-valued function with unit length, and let the degree of orientation
s : Ω ⊂ Rd → [− 1

2 , 1] be a real-valued function. The case s = 1 represents the state
of perfect alignment in which all molecules are parallel to n. Likewise, s = −1/2
represents the state of microscopic order in which all molecules are orthogonal to the
orientation n. When s = 0, the molecules do not lie along any preferred direction,
which represents the state of an isotropic distribution of molecules.

The equilibrium state of the liquid crystals is described by the pair (s,n) mini-
mizing a bulk-energy functional, which in the simplest one-constant model reduces to
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(2.1) E[s,n] :=

∫
Ω

(
κ|∇s|2 + s2|∇n|2

)
dx︸ ︷︷ ︸

=:E1[s,n]

+

∫
Ω

ψ(s)dx︸ ︷︷ ︸
=:E2[s]

,

with κ > 0 and double well potential ψ, which is a C2 function defined on −1/2 <
s < 1 that satisfies the following properties:

1. lims→1 ψ(s) = lims→−1/2 ψ(s) =∞,
2. ψ(0) > ψ(s∗) = mins∈[−1/2,1] ψ(s) = 0 for some s∗ ∈ (0, 1),
3. ψ′(0) = 0;

see [26]. Note that when the degree of orientation s equals a nonzero constant, the
energy (2.1) effectively reduces to the Oseen–Frank energy

∫
Ω
|∇n|2. The degree of

orientation s relaxes the energy of defects (i.e., discontinuities in n), which may still
have finite energy E[s,n] if the singular set

S := {x ∈ Ω, s(x) = 0}(2.2)

is nonempty; in this case, n /∈ H1(Ω).
By introducing an auxiliary variable u = sn [34, 3], we rewrite the energy as

(2.3) E1[s,n] = Ẽ1[s,u] :=

∫
Ω

(
(κ− 1)|∇s|2 + |∇u|2

)
dx,

which follows from the orthogonal splitting ∇u = n⊗∇s+s∇n due to the constraint
|n| = 1. Accordingly, we define the admissible class

A :={(s,u) : Ω→ (−1/2, 1)× Rd : (s,u) ∈ [H1(Ω)]d+1, u = sn,n ∈ Sd−1}.(2.4)

We say that the pair (s,u) satisfies the structural condition for Ericksen’s energy if

(2.5) u = sn, − 1/2 < s < 1 a.e. in Ω, and n ∈ Sd−1 a.e. in Ω.

Moreover, we may enforce boundary conditions on (s,u)—possibly on different parts
of the boundary. Let (Γs,Γu) be open subsets of ∂Ω, where we set Dirichlet boundary
conditions for (s,u). Then we have the restricted admissible class

A(g, r) := {(s,u) ∈ A : s|Γs = g, u|Γu = r}(2.6)

for some given functions (g, r) ∈ [W 1
∞(Rd)]d+1 that satisfy the structural condition

(2.5) on ∂Ω. We assume the existence of δ0 > 0 sufficiently small such that

(2.7) − 1

2
+ δ0 ≤ g(x), r(x) · ξ ≤ 1− δ0 for allx ∈ Rd, ξ ∈ Rd, |ξ| = 1,

and the potential ψ satisfies

(2.8) ψ(s) ≥ ψ(1− δ0) for s ≥ 1− δ0, ψ(s) ≥ ψ
(
−1

2
+ δ0

)
for s ≤ −1

2
+ δ0.

This is consistent with property 1 of ψ. If we further assume that

(2.9) g ≥ δ0 on ∂Ω,

then the function n is H1 in a neighborhood of ∂Ω and satisfies n = g−1r on ∂Ω.
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1360 R. H. NOCHETTO, S. W. WALKER, AND W. ZHANG

The existence of a minimizer (s,u) ∈ A(g, r) is shown in [34, 3], but this is also
a consequence of our Γ-convergence theory. It is worth mentioning that the constant
κ in E[s,n] of (2.1) plays a significant role in the occurrence of defects. Roughly
speaking, if κ is large, then

∫
Ω
κ|∇s|2dx dominates the energy and s is close to a

constant. In this case, defects with finite energy are less likely to occur. But if κ is
small, then

∫
Ω
s2|∇n|2dx dominates the energy, and s may become zero. In this case,

defects are more likely to occur. (This heuristic argument is later confirmed in the
numerical experiments.) Since the investigation of defects is of primary interest in
this paper, we consider the most significant case to be 0 < κ < 1.

We now describe our finite element discretization Eh[sh,nh] of the energy (2.1)
and its minimizer (sh,nh).

2.2. Discretization of the energy. Let Th = {T} be a conforming simplicial
triangulation of the domain Ω. We denote by Nh the set of nodes (vertices) of Th and
by N the cardinality of Nh (with some abuse of notation). We demand that Th be
weakly acute, namely,

(2.10) kij := −
∫

Ω

∇φi · ∇φjdx ≥ 0 for all i 6= j,

where φi is the standard “hat” function associated with node xi ∈ Nh. We indicate
with ωi = supp φi the patch of a node xi (i.e., the “star” of elements in Th that
contain the vertex xi). Condition (2.10) imposes a severe geometric restriction on Th
[22, 45]. We recall the following characterization of (2.10) for d = 2.

Proposition 2.1 (weak acuteness in two dimensions). For any pair of triangles
T1, T2 in Th that share a common edge e, let αi be the angle in Ti opposite to e (for
i = 1, 2). If α1 + α2 ≤ π for every edge e, then (2.10) holds.

Generalizations of Proposition 2.1 to three dimensions, involving interior dihedral
angles of tetrahedra, can be found in [30, 19].

We construct continuous piecewise affine spaces associated with the mesh, i.e.,

Sh := {sh ∈ H1(Ω) : sh|T is affine for all T ∈ Th},
Uh := {uh ∈ H1(Ω)d : uh|T is affine in each component for all T ∈ Th},
Nh := {nh ∈ Uh : |nh(xi)| = 1 for all nodes xi ∈ Nh}.

(2.11)

Let Ih denote the piecewise linear Lagrange interpolation operator on mesh Th with
values in either Sh or Uh. We say that a pair (sh,uh) ∈ Sh ×Uh satisfies the discrete
structural condition for Ericksen’s energy if there exists nh ∈ Nh such that

(2.12) uh = Ih[shnh], −1

2
< sh < 1 in Ω.

We then let gh := Ihg and rh := Ihr be the discrete Dirichlet data, and we introduce
the discrete spaces that include (Dirichlet) boundary conditions

Sh(Γs, gh) := {sh ∈ Sh : sh|Γs = gh}, Uh(Γu, rh) := {uh ∈ Uh : uh|Γu = rh},

along with the discrete admissible class

(2.13) Ah(gh, rh) :=
{

(sh,uh) ∈ Sh(Γs, gh)× Uh(Γu, rh) : (2.12) holds
}
.

In view of (2.9), we can also impose the Dirichlet condition nh = Ih[g−1
h rh] on ∂Ω.
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In order to motivate our discrete version of E1[s,n], note that for all xi ∈ Nh,

N∑
j=1

kij = −
N∑
j=1

∫
Ω

∇φi · ∇φjdx = 0

because
∑N
j=1 φj = 1 in the domain Ω; the set of hat functions {φj}Nj=1 is a partition

of unity. Therefore, for piecewise linear sh =
∑N
i=1 sh(xi)φi, we have∫

Ω

|∇sh|2dx = −
N∑
i=1

kiish(xi)
2 −

N∑
i,j=1,i6=j

kijsh(xi)sh(xj),

whence, exploiting kii = −
∑
j 6=i kij and the symmetry kij = kji, we get

(2.14)

∫
Ω

|∇sh|2dx =

N∑
i,j=1

kijsh(xi)
(
sh(xi)− sh(xj)

)
=

1

2

N∑
i,j=1

kij
(
sh(xi)− sh(xj)

)2
=

1

2

N∑
i,j=1

kij
(
δijsh

)2
,

where we define

(2.15) δijsh := sh(xi)− sh(xj), δijnh := nh(xi)− nh(xj).

With this in mind, we define the discrete energies to be

Eh1 [sh,nh] :=
κ

2

N∑
i,j=1

kij (δijsh)
2

+
1

2

N∑
i,j=1

kij

(
sh(xi)

2 + sh(xj)
2

2

)
|δijnh|2(2.16)

and

(2.17) Eh2 [sh] :=

∫
Ω

ψ(sh(x))dx,

for (sh,uh) ∈ Ah(gh,uh). The second summation in (2.16) does not come from
applying the standard discretization of

∫
Ω
s2|∇n|2dx by piecewise linear elements.

It turns out that this special form of the discrete energy preserves the key energy
inequality (Lemma 2.2), which allows us to establish our Γ-convergence analysis for the
degenerate coefficient s2 without regularization. Eventually, we seek an approximation
(sh,uh) ∈ Ah(gh, rh) of the pair (s,u) such that the discrete pair (sh,nh) minimizes
the discrete version of the bulk energy (2.1) given by

(2.18) Eh[sh,nh] := Eh1 [sh,nh] + Eh2 [sh].

The following result shows that definition (2.16) preserves the key structure (2.3)
of [3, 34] at the discrete level, which turns out to be crucial for our analysis as well.

We first introduce s̃h := Ih|sh| and two discrete versions of the vector field u,

(2.19) uh := Ih[shnh] ∈ Uh, ũh := Ih[s̃hnh] ∈ Uh.

Note that both pairs (sh,uh), (s̃h, ũh) ∈ Sh × Uh satisfy (2.12).
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Lemma 2.2 (energy inequality). Let the mesh Th satisfy (2.10). If (sh,uh) ∈
Ah(gh, rh), then for any κ > 0, the discrete energy (2.16) satisfies

Eh1 [sh,nh] ≥ (κ− 1)

∫
Ω

|∇sh|2dx+

∫
Ω

|∇uh|2dx =: Ẽh1 [sh,uh](2.20)

as well as

Eh1 [sh,nh] ≥ (κ− 1)

∫
Ω

|∇s̃h|2dx+

∫
Ω

|∇ũh|2dx =: Ẽh1 [s̃h, ũh].(2.21)

Proof. Since

sh(xi)nh(xi)− sh(xj)nh(xj) =
sh(xi) + sh(xj)

2

(
nh(xi)− nh(xj)

)
+
(
sh(xi)− sh(xj)

)nh(xi) + nh(xj)

2
,

using the orthogonality relation
(
nh(xi)− nh(xj)

)
·
(
nh(xi) + nh(xj)

)
= |nh(xi)|2 −

|nh(xj)|2 = 0 and (2.14) yields

∫
Ω

|∇uh|2dx =
1

2

N∑
i,j=1

kij |sh(xi)nh(xi)− sh(xj)nh(xj)|2

=
1

2

N∑
i,j=1

kij

(
sh(xi) + sh(xj)

2

)2

|δijnh|2 +
1

2

N∑
i,j=1

kij(δijsh)2

∣∣∣∣nh(xi) + nh(xj)

2

∣∣∣∣2 .
Exploiting the relations |nh(xi) − nh(xj)|2 + |nh(xi) + nh(xj)|2 = 4 and

(
sh(xi) +

sh(xj)
)2

= 2
(
sh(xi)

2 + sh(xj)
2
)
−
(
sh(xi)− sh(xj)

)2
, we obtain

(2.22)

∫
Ω

|∇uh|2dx =
1

2

N∑
i,j=1

kij
sh(xi)

2 + sh(xj)
2

2
|δijnh|2

+
1

2

N∑
i,j=1

kij(δijsh)2 −
N∑

i,j=1

kij(δijsh)2

∣∣∣∣nh(xi)− nh(xj)

2

∣∣∣∣2 ,
whence we infer that

(2.23) Eh1 [sh,nh] =

∫
Ω

(
(κ− 1)|∇sh|2 + |∇uh|2

)
dx+

N∑
i,j=1

kij(δijsh)2

∣∣∣∣δijnh2

∣∣∣∣2 .
The inequality (2.20) follows directly from kij ≥ 0 for i 6= j.

To prove (2.21), we note that (2.22) still holds if we replace (sh,uh) with (s̃h, ũh):

(2.24)

∫
Ω

|∇ũh|2dx =
1

2

N∑
i,j=1

kij
s̃h(xi)

2 + s̃h(xj)
2

2
|δijnh|2

+
1

2

N∑
i,j=1

kij(δij s̃h)2 −
N∑

i,j=1

kij(δij s̃h)2

∣∣∣∣nh(xi)− nh(xj)

2

∣∣∣∣2 .D
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We finally find that

Ẽh1 [s̃h, ũh] =

∫
Ω

(
|∇ũh|2 + (κ− 1)|∇s̃h|2

)
dx =

1

2

N∑
i,j=1

kij
s̃h(xi)

2 + s̃h(xj)
2

2
|δijnh|2

+
κ

2

N∑
i,j=1

kij(δij s̃h)2 −
N∑

i,j=1

kij(δij s̃h)2

∣∣∣∣nh(xi)− nh(xj)

2

∣∣∣∣2 ≤ Eh1 [sh,nh],

where we have dropped the last term and used the triangle inequality |δij s̃h| =∣∣s̃h(xi)− s̃h(xj)
∣∣ ≤ ∣∣sh(xi)− sh(xj)

∣∣ = |δijsh| along with kij ≥ 0 to obtain

(2.25) ‖∇s̃h‖2L2(Ω) =
1

2

N∑
i,j=1

kij(δij s̃h)2 ≤ 1

2

N∑
i,j=1

kij(δijsh)2 = ‖∇sh‖2L2(Ω).

This concludes the proof.

Remark 2.3 (relation between (2.20) and (2.21)). Both (2.20) and (2.21) account
for the variational crime that is committed when enforcing uh = shnh and ũh = s̃hnh
only at the vertices, and that mimics (2.3). Since we have a precise control of the
consistency error for (2.20), this inequality will be used later for the consistency (or
lim-sup) step of Γ-convergence of our discrete energy (2.16) to the original continuous
energy in (2.1). On the other hand, (2.21) has a suitable structure to prove the weak
lower semicontinuity (or lim-inf) step of Γ-convergence. This property is not obvious
when κ < 1, the most significant case for the formation of defects.

3. Γ-convergence of the discrete energy. In this section, we show that our
discrete energy (2.16) converges to the continuous energy (2.1) in the sense of Γ-
convergence. To this end, we first let the continuous and discrete spaces be

X := L2(Ω)× [L2(Ω)]d, Xh := Sh × Uh.

We next define E[s,n] as in (2.1) for (s,u) ∈ A(g, r) and E[s,u] = ∞ for (s,n) ∈
X \ A(g, r). Likewise, we define Eh[sh,nh] as in (2.18) for (sh,uh) ∈ Ah(gh, rh) and
Eh[s,n] =∞ for all (s,u) ∈ X \ Ah(gh, rh).

We split the proof of Γ-convergence into four subsections. In subsection 3.1, we use
the energy Ẽh1 [sh,uh] to show the consistency property (recall Remark 2.3), whereas

we employ the energy Ẽh1 [s̃h, ũh] in subsection 3.2 to derive the weak lower semi-
continuity property. Furthermore, our functionals exhibit the usual equi-coercivity
property for both pairs (s,u) and (s̃, ũ) but not for the director field n, which is only
well defined whenever the order parameter s 6= 0. We discuss these issues in sub-
section 3.3 and characterize the limits (s,u), (s̃, ũ), and (s,n). We eventually prove
Γ-convergence in subsection 3.4 by combining these results.

3.1. Consistency or lim-sup property. We prove the following: if (s,u) ∈
A(g, r), then there exist a sequence (sh,uh) ∈ Ah(gh, rh) converging to (s,u) in H1(Ω)
and a discrete director field nh ∈ Nh converging to n in L2(Ω \ S) such that

(3.1) E1[s,n] ≥ lim sup
h→0

Eh1 [sh,nh] ≥ lim sup
h→0

Ẽh1 [sh,uh].

We observe that if (s,u) /∈ A(g, r), then E1[s,n] = ∞ and (3.1) is valid for any
sequences (sh,uh) and (sh,nh) in light of (2.20).

We first show that we can always assume − 1
2 +δo ≤ s ≤ 1−δ0 for (s,u) ∈ A(g, r).
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1364 R. H. NOCHETTO, S. W. WALKER, AND W. ZHANG

Lemma 3.1 (truncation). Given (s,u) ∈ A(g, r), let (ŝ, û) be the truncations

ŝ(x) = min
{

1− δ0,max
(
− 1

2
+ δ0, s(x)

)}
, û(x) = ŝ(x) n(x) a.e. x ∈ Ω.

Then (ŝ, û) ∈ A(g, r) and

E1[ŝ,n] ≤ E1[s,n], E2[ŝ] ≤ E2[s].

The same assertion is true for any (sh,uh) ∈ Ah(gh, rh), except that the truncations
are defined nodewise, i.e., (Ihŝh, Ihûh) ∈ Ah(gh, rh).

Proof. The fact that (ŝ, û) satisfy the Dirichlet boundary conditions is a con-
sequence of (2.7). Moreover, (ŝ, û) ∈ [H1(Ω)]d+1 and the structural property (2.5)
holds by construction, whence (ŝ, û) ∈ A(g, r). We next observe that

∇ŝ = χΩ0
∇s, Ω0 :=

{
x ∈ Ω : −1

2
+ δ0 ≤ s(x) ≤ 1− δ0

}
;

see [27, Chap. 5, Exercise 17]. Consequently, we obtain

E1[ŝ,n] =

∫
Ω

κ|∇ŝ|2 + |ŝ|2|∇n|2 ≤
∫

Ω

κ|∇s|2 + |s|2|∇n|2 = E1[s,n],

as well as

E2[ŝ] =

∫
Ω

ψ(ŝ) ≤
∫

Ω

ψ(s) = E2[s],

because of (2.8). This concludes the proof.

To construct a recovery sequence (sh,uh) ∈ Ah(gh, rh) we need point values of
(s,u) and thus a regularization procedure of functions in the admissible class A(g, r).
We must enforce both the structural property (2.5) and the Dirichlet boundary con-
ditions s = g and u = r; neither is guaranteed by convolution. We are able to do this
provided Γs = Γu = ∂Ω and the Dirichlet datum g satisfies (2.9).

Proposition 3.2 (regularization of functions in A(g, r)). Let Γs = Γu = ∂Ω,
(s,u) ∈ A(g, r), and let g satisfy (2.9). Given ε > 0 there exists a pair (sε,uε) ∈
A(g, r) ∩ [W 1

∞(Ω)]d+1 such that

(3.2) ‖(s,u)− (sε,uε)‖H1(Ω) ≤ ε,

(3.3) − 1

2
+ δ0 ≤ sε(x), uε(x) · ξ ≤ 1− δ0 for all x ∈ Ω, ξ ∈ Rd, |ξ| = 1.

Proof. We construct a two-scale approximation with scales δ < σ, which satisfies
the boundary conditions exactly. We split the argument into several steps.

Step 1: Regularization with Dirichlet condition. Extend s− g ∈ H1
0 (Ω) by zero to

Rd \ Ω. Let ηδ be a smooth and nonnegative mollifier with support contained in the
ball Bδ(0) centered at 0 with radius δ. Define dδ : Rd → R by

dδ(x) := χΩ(x) min{δ−1dist(x, ∂Ω), 1},

which is Lipschitz in Rd, and observe that ∇dδ is supported in the boundary layer

ωδ := {x ∈ Ω : dist(x, ∂Ω) ≤ δ},
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and that |∇dδ| = δ−1χωδ . We consider the Lipschitz approximations of (s,u) given
by

sδ := dδ (s ∗ ηδ) +
(
1− dδ

)
g, uδ := dδ (u ∗ ηδ) +

(
1− dδ

)
r.

Since dδ vanishes on ∂Ω, we readily see that (sδ,uδ) = (g, r) on ∂Ω. Moreover, the
following properties are valid:

(3.4) sδ → s, uδ → u, |uδ| → |u| a.e. and in H1(Ω).

The last property is a consequence of the middle one via triangle inequality, and the
first two are similar. It thus suffices to show the first property for s. We simply write

∇(sδ − s) = ∇dδ(s− g) ∗ ηδ +∇dδ
(
g ∗ ηδ − g

)
+ dδ∇(s ∗ ηδ − s) +

(
dδ − 1

)
∇(s− g).

Since s− g ∈ H1(ωδ) and s− g = 0 on ∂Ω, we apply Poincaré’s inequality to deduce

‖s− g‖L2(ωδ) ≤ Cδ‖∇(s− g)‖L2(ωδ),

whence

‖∇dδ(s− g) ∗ ηδ‖L2(Ω) ≤ Cδ−1‖s− g‖L2(ωδ) ≤ C‖∇(s− g)‖L2(ωδ) → 0 as δ → 0.

Likewise, a similar argument gives, for the fourth term,∥∥(dδ − 1
)
∇(s− g)

∥∥
L2(Ω)

≤ C‖∇(s− g)‖L2(ωδ) → 0 as δ → 0.

On the other hand, the estimate ‖g ∗ ηδ − g‖L∞(Ω) ≤ δ‖∇g‖L∞(Rd) yields

‖g ∗ ηδ − g‖L2(ωδ) ≤ |ωδ|
1/2δ‖∇g‖L∞(Rd) ≤ Cδ

3
2 ‖∇g‖L∞(Rd),

which implies, for the second term above,∥∥∇dδ (g ∗ ηδ − g)∥∥L2(Ω)
≤ Cδ 1

2 ‖∇g‖L∞(Rd).

Finally, for the third term we recall that s ∈ H1(Rd) equals g outside Ω, and we
exploit the convergence ∇s ∗ ηδ → ∇s in L2(Ω) to obtain

‖dδ∇(s ∗ ηδ − s)‖L2(Ω) → 0 as δ → 0.

Step 2: Structural condition. Unfortunately, the pair (sδ,uδ) does not satisfy the
structural condition (2.5). We now construct a closely related pair that satisfies (2.5).
Recall that (g, r) ∈ [W 1

∞(Rd)]d+1 satisfy the bounds (2.7) in Rd, and hence so do the
extensions of (s,u) because s = g, u = r outside Ω. Thus, we can show that

−1

2
+ δ0 ≤ sδ(x), uδ(x) · ξ ≤ 1− δ0 for all x ∈ Ω, ξ ∈ Rd, |ξ| = 1;

we only argue with sδ because dealing with uδ · ξ is similar. We have a := − 1
2 + δ0 ≤

s ∗ η ≤ 1− δ0 =: b because ηδ ≥ 0 and the convolution preserves constants, whence

sδ ≤ dδb+ (1− dδ)b = b, sδ ≥ dδa+ (1− dδ)a = a in Ω.

We next introduce the second parameter σ > δ and the Lipschitz approximation of
the sign function

ρσ(t) = min
{

1,max{−1, t/σ}
}
,
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along with the two-scale approximation of (s,u),

sσ,δ := ρσ(sδ)|uδ|, uσ,δ := |ρσ(sδ)|uδ.

We note that |sσ,δ| = |uσ,δ| by construction, whence (2.5) holds, and (sσ,δ,uσ,δ) =
(g, r) on ∂Ω because ρσ(sδ) = 1 on ∂Ω, for σ ≤ δ0, according to (2.9); hence
(sσ,δ,uσ,δ) ∈ A(g, r) ∩ [W 1

∞(Ω)]d+1. It remains to show how to choose δ and σ,
which we do next.

Step 3: Convergence in H1 as δ → 0. In view of (3.4) we readily deduce that

sσ,δ → sσ := ρσ(s)|s|, uσ,δ → uσ := |ρσ(s)|u a.e. and in L2(Ω).

We now prove convergence also in H1(Ω). Since ∇ρσ(sδ) = σ−1χ{|sδ|≤σ}∇sδ, we get

∇ρσ(sδ)−∇ρσ(s) = σ−1
(
χ{|sδ|≤σ} − χ{|s|≤σ}

)
∇s+ σ−1χ{|sδ|≤σ}

(
∇sδ −∇s

)
.

Applying the Lebesgue dominated convergence theorem for the first term and (3.4)
for the second term yields, as δ → 0,

(3.5) ∇ρσ(sδ)→ ∇ρσ(s), ∇|ρσ(sδ)| → ∇|ρσ(s)| in L2(Ω).

The second convergence result is due to the fact that ∇|f | = sgn0(f)∇f for any
f ∈ W 1

1 (Ω), where sgn0(f) is the sign function that vanishes at 0 [27, Chap. 5,
Exercise 17]. We next write

∇(sσ,δ − sσ) = ∇
(
ρσ(sδ)− ρσ(s)

)(
|uδ| − |u|

)
+∇ρσ(s)

(
|uδ| − |u|

)
+ ρσ(sδ)∇(|uδ| − |u|

)
+∇

(
ρσ(sδ)− ρσ(s)

)
|u|+

(
ρσ(sδ)− ρσ(s)

)
∇|u|

and infer that ∇(sσ,δ − sσ) → 0 as δ → 0 in L2(Ω) upon using again the Lebesgue
dominated convergence theorem for the second and fifth terms, together with (3.4),
(3.5), and |u|, |uδ|, |ρσ(sδ)| ≤ 1 for the other terms.

Step 4: Convergence in H1 as σ → 0. It remains to prove

sσ = ρσ(s)|s| → s, uσ = |ρσ(s)|u→ u in H1(Ω).

To this end, we use again that ∇|s| = sgn0(s)∇s and write

∇(sσ − s) = ∇ρσ(s)|s|+
(
ρσ(s) sgn0(s)− 1

)
∇s.

Since ∇ρσ(s) = σ−1χ{|s|<σ}∇s, we readily obtain as σ → 0,

‖∇ρσ(s) |s| ‖L2(Ω) ≤ ‖∇s‖L2({|s|<σ}) → 0.

On the other hand, ρσ(t)→ sgn0(t) for all t ∈ R, whence

‖
(
ρσ(s) sgn0(s)− 1

)
∇s‖L2(Ω) → ‖χ{s=0}∇s‖L2(Ω) = 0 as σ → 0

because χ{s=0}∇s = 0 a.e. in Ω [27, Chap. 5, Exercise 17]. Recalling that |u| = |s|
a.e. in Ω, and thus χ{u=0} = χ{s=0}, a similar argument shows that uσ → u.

Step 5: Choice of σ and δ. Given ε > 0, we first use Step 4 to choose σ such that

‖(s,u)− (sσ,uσ)‖H1(Ω) ≤
ε

2
.

We finally resort to Step 3 to select δ < σ, depending on σ, such that

‖(sσ,uσ)− (sδ,σ,uδ,σ)‖H1(Ω) ≤
ε

2
.

Therefore, we obtain the desired regularized pair, i.e., sε := sδ,σ, uε := uδ,σ satisfies
(sε,uε) ∈ A(g, r) ∩ [W 1

∞(Ω)]d+1 along with (3.2) and (3.3). The proof is complete.
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We now fix ε > 0 and let (sε,h,uε,h) ∈ Xh be the Lagrange interpolants of
(sε,uε) ∈ A(g, r) given in Proposition 3.2, which are well defined because (sε,uε) ∈
[W 1
∞(Ω)]d+1 and satisfy (sε,h,uε,h) = (gh, rh) on ∂Ω. For any node xi, we set

nε,h(xi) =

{
uε,h(xi)/sε,h(xi) if sε,h(xi) 6= 0,

any unit vector otherwise

and observe that (2.12) holds, whence (sε,h,uε,h) ∈ Ah(gh, rh). In view of the energy
identity (2.23) and the property ‖(sε,h,uε,h) − (sε,uε)‖H1(Ω) → 0 as h → 0, to show
(3.1) it suffices to prove that the consistency term satisfies

Ch1 [sε,h,nε,h] :=

N∑
i,j=1

kij
(
δijsε,h

)2∣∣δijnε,h∣∣2 → 0 as h→ 0.(3.6)

Heuristically, if nε = uε/sε is in W 1
∞(Ω), then the sum (3.6) would be of order

h2
∫

Ω
|∇sε,h|2dx, which obviously converges to zero. However, such an argument fails

if the director field nε lacks high regularity, which is the case with defects. Since nε is
not regular in general when sε vanishes, the proof of consistency requires a separate
treatment of the region where nε is regular and the region where nε is singular. The
heuristic argument carries over in the regular region, while in the singular region we
appeal to basic measure theory. With this motivation in mind, we now prove the
following lemma.

Lemma 3.3 (lim-sup inequality). Let (sε,uε) ∈ A(g, r)∩[W 1
∞(Ω)]d+1 be the func-

tions constructed in Proposition 3.2, for any ε > 0, and let (sε,h,uε,h) ∈ Ah(gh, rh) be
their Lagrange interpolants. Then

E1[sε,nε] = lim
h→0

Eh1 [sε,h,nε,h] = lim
h→0

Ẽh1 [sε,h,uε,h] = Ẽ1[sε,uε].

Proof. Since ε is fixed, we simplify the notation and write (sh,nh) instead of
(sε,h,nε,h). In order to prove that Ch1 [sh,nh] → 0 in (3.6), we choose an arbitrary
δ > 0 and divide the domain Ω into two disjoint regions,

Sδ := {x ∈ Ω : |sε(x)| < δ}, Kδ := Ω \ Sδ,

and split Ch1 [sh,nh] into two parts,

Ih(Kδ) :=
∑

xi,xj∈Kδ

kij
(
δijsh

)2∣∣δijnh∣∣2, Ih(Sδ) :=
∑

xi or xj ∈ Sδ

kij
(
δijsh

)2∣∣δijnh∣∣2.
Step 1: Estimate on Kδ. Since both sε and uε are Lipschitz in Ω, the set Kδ is

a compact set and the field nε = s−1
ε uε is also Lipschitz in Kδ with a constant that

depends on ε and δ. Therefore, |δijnh| = |nh(xi) − nh(xj)| ≤ Cε,δh, because xi and
xj are connected by a single edge of the mesh, whence

Ih(Kδ) ≤ Cε,δh2
N∑

i,j=1

kij(δijsh)2 → 0 as h→ 0,

because 1
2

∑N
i,j=1 kij(δijsh)2 = ‖∇sh‖2L2(Ω) ≤ C‖∇sε‖

2
L2(Ω) <∞.

Step 2: Estimate on Sδ. If either xi or xj is in Sδ, without loss of generality, we
assume that xi ∈ Sδ. Since sε is Lipschitz, and sh = Ihsε is the Lagrange interpolant
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of sε, there is a mesh size h such that for any x in the star ωi of xi, |sh(x)− sh(xi)| ≤
Cεh ≤ δ, which implies that ωi ⊂ S2δ. Since |δijnh| ≤ 2, we get

Ih(Sδ) ≤ 4
∑

xi or xj ∈ Sδ

kij(δijsh)2 ≤ 8

∫
∪ωi
|∇sh|2dx ≤ 8

∫
S2δ
|∇sh|2dx,

where the union ∪ωi is taken over all nodes xi in Sδ. If d < p <∞, we infer that∫
S2δ
|∇sh|2dx ≤ C

(∫
S2δ
|∇Ihsε|pdx

) 2
p

→ C

(∫
S2δ
|∇sε|pdx

) 2
p

as h→ 0,

in view of the stability of the Lagrange interpolation operator Ih in W 1
p for p > d.

Step 3: The limit δ → 0. Combining Steps 1 and 2 gives, for all δ > 0,

lim
h→0

N∑
i,j=1

kij
(
δijsh

)2∣∣δijnh∣∣2 ≤ C(∫
S2δ
|∇sε|pdx

) 2
p

= C

(∫
Ω

|∇sε|pχ{|sε|≤2δ}dx

) 2
p

,

where χA is the characteristic function of the set A. By virtue of the Lebesgue
dominated convergence theorem, we obtain

lim
δ→0

∫
Ω

|∇sε|pχ{|sε|≤2δ}dx =

∫
Ω

|∇sε|pχ{sε=0}dx = 0,

because ∇sε(x) = 0 for a.e. x ∈ {sε = 0} [27, Chap. 5, Exercise 17]. This proves the
lemma.

3.2. Weak lower semicontinuity or lim-inf property. This property usually

follows from convexity. While it is obvious that the discrete energy Ẽh1 [sh,uh] in
(2.20) is convex with respect to ∇uh and ∇sh if κ ≥ 1, the convexity is not clear
if 0 < κ < 1. It is worth mentioning that if κ < 1, the convexity of the continuous
energy (2.3) is based on the fact that |u| = |s| a.e. in Ω, and hence the convex
part

∫
Ω
|∇u|2dx controls the concave part (κ − 1)

∫
Ω
|∇s|2dx [34]. However, for the

discrete energy (2.20), the equality |uh| = |sh| holds only at the vertices. Therefore,

it is not obvious how to establish the weak lower semicontinuity of Ẽh1 [sh,uh]. This
is why we exploit the nodal relations s̃h = |sh| = |uh| = |ũh| to derive an alternative

formula for Ẽh1 [s̃h, ũh]. Our next lemma hinges on (2.21) and makes the convexity of

Ẽh1 [Ih|sh|, ũh] with respect to ∇ũh completely explicit.

Lemma 3.4 (weak lower semicontinuity). The energy
∫

Ω
Lh(wh,∇wh)dx, with

Lh(wh,∇wh) := (κ− 1)|∇Ih|wh||2 + |∇wh|2,

is well defined for any wh ∈ Uh and is weakly lower semicontinuous in H1(Ω), i.e.,
for any weakly convergent sequence wh ⇀ w in the H1(Ω) norm, we have

lim inf
h→0

∫
Ω

Lh(wh,∇wh)dx ≥
∫

Ω

(κ− 1)|∇|w||2 + |∇w|2dx.

Proof. If κ ≥ 1, then the assertion follows from standard arguments. Here, we
only dwell upon 0 < κ < 1 and dimension d = 2, because the case d = 3 is similar.
After extracting a subsequence (not relabeled), we can assume that wh converges to
w strongly in L2(Ω) and pointwise a.e. in Ω.
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Step 1: Equivalent form of Lh. We let T be any triangle in the mesh Th, label
its three vertices as x0, x1, x2, and define e1 := x1 − x0 and e2 := x2 − x0. After
denoting wi

h = wh(xi) for i = 0, 1, 2, a simple calculation yields

∇wh = (w1
h −w0

h)⊗ e∗1 + (w2
h −w0

h)⊗ e∗2,

∇Ih|wh| = (|w1
h| − |w0

h|)e∗1 + (|w2
h| − |w0

h|)e∗2,

where {e∗i }2i=1 is the dual basis of {ei}2i=1, that is, e∗i · ej = Iij , and I = (Iij)
2
i,j=1 is

the identity matrix. Assuming |wi
h|+ |w0

h| 6= 0, we realize that

|wi
h| − |w0

h| =
wi
h + w0

h

|wi
h|+ |w0

h|
· (wi

h −w0
h).

We then obtain ∇Ih|wh| = Gh(wh) : ∇wh, where Gh(wh) is the 3-tensor,

Gh(wh) :=
w1
h + w0

h

|w1
h|+ |w0

h|
⊗ e1 ⊗ e∗1 +

w2
h + w0

h

|w2
h|+ |w0

h|
⊗ e2 ⊗ e∗2, on T,

and the contraction between a 3-tensor and a 2-tensor in dyadic form is given by

(g1 ⊗ g2 ⊗ g3) : (m1 ⊗m2) := (g1 ·m1)(g2 ·m2)g3.

Therefore, we have

Lh(wh,∇wh) = |∇wh|2 + (κ− 1)|Gh(wh) : ∇wh|2,

which expresses Lh(wh,∇wh) directly in terms of ∇wh and the nodal values of wh.
Step 2: Convergence of Gh(wh). Given ε > 0, Egoroff’s theorem [50] asserts that

wh → w uniformly on Eε,

for some subset Eε and |Ω\Eε| ≤ ε. We now consider the set Aε := {|w(x)| ≥ 2ε}∩Eε
and observe that there exists a sufficiently small hε such that for any x ∈ Aε,

|wh(x)| ≥ ε for all h ≤ hε.

If G(w) := w
|w| ⊗ I, then we claim that

(3.7)

∫
Aε

|Gh(wh)−G(w)|2dx→ 0 as h→ 0.

For any x ∈ Aε, let {Th} be a sequence of triangles such that x ∈ Th. Since |wh(x)| ≥ ε
and wh is piecewise linear, there exists a vertex of Th, which we label as x0

h, such that

|w0
h| ≥ ε. To compare Gh(wh) with wh(x)

|wh(x)| ⊗ I, we use that I = e1 ⊗ e∗1 + e2 ⊗ e∗2:

Gh(wh)− wh(x)

|wh(x)|
⊗ I =

∑
i=1,2

(
wi
h + w0

h

|wi
h|+ |w0

h|
− wh(x)

|wh(x)|

)
⊗ ei ⊗ e∗i .

We define H(x,y) := x+y
|x|+|y| and observe that for all x ∈ Aε, we have

Gh(wh)− wh(x)

|wh(x)|
⊗ I =

∑
i=1,2

(
H(w0

h,w
i
h)−H(wh(x),wh(x))

)
⊗ ei ⊗ e∗i .
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Next, we estimate

|H(w0
h,w

i
h)−H(wh(x),wh(x))| =

∣∣∣∣ |wh(x)|(w0
h + wi

h)− (|w0
h|+ |wi

h|)wh(x)

(|w0
h|+ |wi

h|)|wh(x)|

∣∣∣∣
≤
∣∣∣∣w0

h + wi
h − 2wh(x)

|w0
h|+ |wi

h|

∣∣∣∣+

∣∣∣∣ (|wh(x)| − |w0
h|)wh(x)

(|w0
h|+ |wi

h|)|wh(x)|

∣∣∣∣+

∣∣∣∣ (|wh(x)| − |wi
h|)wh(x)

(|w0
h|+ |wi

h|)|wh(x)|

∣∣∣∣ .
Since |w0

h|, |wh(x)| ≥ ε, and wh(x)−wh(xih) = ∇wh · (x−xih) for all x ∈ Th, we have∣∣H(w0
h,w

i
h)−H(wh(x),wh(x))| ≤ Ch

ε
|∇wh| for all x ∈ Aε ∩ Th.

Integrating on Aε, we obtain∫
Aε

∣∣∣∣Gh(wh)− wh(x)

|wh(x)|
⊗ I
∣∣∣∣2 dx ≤ Ch2

ε2

∫
Aε

|∇wh(x)|2dx→ 0 as h→ 0.

Since wh → w a.e. in Ω and wh
|wh|−

w
|w| is bounded, applying the dominated convergence

theorem, we infer that ∫
Aε

∣∣∣∣ wh

|wh|
− w

|w|

∣∣∣∣2 → 0 as h→ 0.

Combining these two limits, we deduce (3.7).
Step 3: Convexity. We now prove that the energy density

L(w,M) := |M |2 + (κ− 1)|G(w) : M |2

is convex with respect to any matrix M for any vector w; hereafter, G(w) = z ⊗ I
with z = w

|w| provided w 6= 0, or |z| ≤ 1 otherwise. Note that L(w,M) is a quadratic

function of M , so we need only show that L(w,M) ≥ 0 for any M and w. Thus, it
suffices to show that |G(w) : M | ≤ |M |.

Assume that M =
∑
i,jmijvi ⊗ vj , where {vi}2i=1 is the canonical basis on R2.

Then we have |M |2 =
∑2
i,j=1m

2
ij , and a simple calculation yields

G(w) : M =
∑
i

zivi ⊗ (v1 ⊗ v1 + v2 ⊗ v2) :

∑
k,l

mklvk ⊗ vl


=
∑
i,k,l

zimklδikvl =
∑
i,l

zimilvl,

where z =
∑2
i=1 zivi. Therefore, we obtain

|G(w) : M |2 =

2∑
j=1

(
2∑
i=1

zimij

)2

.

The Cauchy–Schwarz inequality yields(
2∑
i=1

zimij

)2

≤

(
2∑
i=1

z2
i

)(
2∑
i=1

m2
ij

)
≤

(
2∑
i=1

m2
ij

)
,
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which implies |G(w) : M |2 ≤ |M |2 and L(w,M) ≥ 0 for any matrix M and vector w.
A similar argument shows that Lh(wh,M) ≥ 0 for any matrix M and vector wh.

Step 4: Weak lower semicontinuity. Since Gh(wh) → G(w) in L2(Aε) according
to (3.7), Egoroff’s theorem yields

Gh(wh)→ G(w) uniformly on Bε,

where Bε ⊂ Aε and |Aε \Bε| ≤ ε. We claim that

(3.8) lim inf
h→0

∫
Ω

Lh(wh,∇wh)dx ≥
∫
Bε

L(w,∇w)dx.

Step 3 implies Lh(wh,∇wh) ≥ 0 for all x ∈ Ω. Hence,∫
Ω

Lh(wh,∇wh)dx ≥
∫
Bε

(
|∇wh|2 + (κ− 1)|Gh(wh) : ∇wh|2

)
dx.

A simple calculation yields∫
Ω

Lh(wh,∇wh)dx ≥
∫
Bε

L(w,∇wh)dx+ (κ− 1)Qh(w,wh),

where

Qh(w,wh) :=

∫
Bε

(
[(Gh(wh)−G(w)) : ∇wh]t[Gh(wh) : ∇wh]

+ (G(w) : ∇wh)t[(Gh(wh)−G(w)) : ∇wh]
)
dx.

Since L(w,∇wh) is convex with respect to ∇wh (Step 3), we have [27, sect. 8.2.2, p.
446]

lim inf
h→0

∫
Bε

L(w,∇wh)dx ≥
∫
Bε

L(w,∇w)dx.

To prove (3.8), it remains to show that Qh(w,wh) → 0 as h → 0. Since G(w)
and Gh(wh) are bounded and

∫
Ω
|∇wh(x)|2dx is uniformly bounded, we have

Qh(w,wh) ≤ C
∫
Bε

|Gh(wh)−G(w)||∇wh|2dx

≤ C max
Bε

∣∣Gh(wh)−G(w)
∣∣ ∫
Bε

|∇wh|2dx→ 0 as h→ 0,

due to the uniform convergence of Gh(wh) to G(w) in Bε. Therefore, we infer that
lim infh→0

∫
Ω
Lh(wh,∇wh)dx ≥

∫
Bε
L(w,∇w)dx.

Since the inequality above holds for arbitrarily small ε, taking ε→ 0 yields

lim inf
h→0

∫
Ω

Lh(wh,∇wh)dx ≥
∫

Ω\{w(x)=0}
L(w,∇w)dx =

∫
Ω

L(w,∇w)dx,

where the last equality follows from ∇w = 0 a.e. in the set {w(x) = 0} [27, Chap. 5,
Exercise 17, p. 292]. Finally, noting that G(w) : ∇w = ∇|w|, we get the assertion.
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3.3. Equi-coercivity. We now prove uniform H1-bounds for the pairs (sh,uh)
and (s̃h, ũh), which enables us to extract convergence subsequences in L2(Ω) and
pointwise a.e. in Ω. We then characterize and relate the limits of such sequences.

Lemma 3.5 (coercivity). For any (sh,uh) ∈ Ah(gh, rh), we have

Eh1 [sh,nh] ≥ min{κ, 1}max

{∫
Ω

|∇uh|2dx,
∫

Ω

|∇sh|2dx
}

as well as

Eh1 [sh,nh] ≥ min{κ, 1}max

{∫
Ω

|∇ũh|2dx,
∫

Ω

|∇Ih|sh||2dx
}
.

Proof. Inequality (2.20) of Lemma 2.2 shows that

Eh1 [sh,nh] ≥ (κ− 1)

∫
Ω

|∇sh|2dx+

∫
Ω

|∇uh|2dx.(3.9)

If κ ≥ 1, then Eh1 [sh,nh] obviously controls the H1-norm of uh with constant 1.
If 0 < κ < 1, then combining (2.16) with (2.22) yields

Eh1 [sh,nh] ≥ κ

2

N∑
i,j=1

kij (δijsh)
2

+
κ

2

N∑
i,j=1

kij

(
sh(xi)

2 + sh(xj)
2

2

)
|δijnh|2 ≥ κ

∫
Ω

|∇uh|2dx,

whence Eh1 [sh,nh] ≥ min{κ, 1}
∫

Ω
|∇uh|2dx as asserted. The same argument, but

invoking (2.21) and (2.24), leads to a similar estimate for
∫

Ω
|∇ũh|2dx.

Finally, we note that (2.16) implies

Eh1 [sh,nh] ≥ κ

2

N∑
i,j=1

kij(δijsh)2 = κ

∫
Ω

|∇sh|2dx.

Upon recalling s̃h = Ih|sh| and noting |δijsh| ≥ |δij s̃h| and kij ≥ 0, we deduce
‖∇sh‖L2(Ω) ≥ ‖∇s̃h‖L2(Ω) and complete the proof.

Lemma 3.6 (characterizing limits). Let {Th} satisfy (2.10), and let a sequence
(sh,uh) ∈ Ah(gh, rh) satisfy

(3.10) Eh1 [sh,nh] ≤ Λ for all h > 0,

with a constant Λ > 0 independent of h. Then there exist subsequences (not relabeled)
(sh,uh) ∈ Xh and (s̃h, ũh) ∈ Xh weakly converging in [H1(Ω)]d+1 such that

• (sh,uh) converges to (s,u) ∈ [H1(Ω)]d+1 in L2(Ω) and a.e. in Ω;
• (s̃h, ũh) converges to (s̃, ũ) ∈ [H1(Ω)]d+1 in L2(Ω) and a.e. in Ω;
• the limits satisfy s̃ = |s| = |u| = |ũ| a.e. in Ω;
• there exists a director field n defined in Ω such that nh converges to n in
L2(Ω \ S) and a.e. in Ω \ S and u = sn, ũ = s̃n a.e. in Ω.

Proof. The sequences (sh,uh) and (s̃h, ũh) are uniformly bounded in H1(Ω) ac-
cording to Lemma 3.5 (coercivity). Therefore, since H1(Ω) is compactly embedded
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in L2(Ω) [1], there exist subsequences (not relabeled) that converge in L2(Ω) and a.e.
in Ω to pairs (s,u) ∈ [H1(Ω)]d+1 and (s̃, ũ) ∈ [H1(Ω)]d+1, respectively.

Since sh → s and s̃h → s̃ as h→ 0, invoking the triangle inequality yields∣∣s̃− |s|∣∣ ≤ ∣∣s̃− s̃h∣∣+
∣∣s̃h − |sh|∣∣+

∣∣|sh| − |s|∣∣→ 0 as h→ 0,

which is a consequence of interpolation theory and (2.25), namely,

‖s̃h − |sh|‖L2(Ω) = ‖Ih|sh| − |sh|‖L2(Ω) ≤ Ch‖∇|sh|‖L2(Ω) ≤ Ch‖∇sh‖L2(Ω) ≤ CΛh.

A similar argument shows

‖|ũh| − Ih|ũh|‖L2(Ω) ≤ Ch‖∇|ũh|‖L2(Ω) ≤ Ch‖∇ũh‖L2(Ω) ≤ CΛh.

Since Ih|ũh| = s̃h → s̃ and |ũh| → |ũ| as h→ 0, we deduce |ũ| = s̃ a.e. in Ω. Likewise,
arguing instead with the pair (sh,uh), we infer that |u| = |s| a.e. in Ω.

We now define the limiting director field n in Ω \ S to be n = s−1u and see that
|n| = 1 a.e. in Ω\S; we define n in S to be an arbitrary unit vector. In order to relate
n with nh, we observe that both sh and nh are piecewise linear. Applying the classical
interpolation theory on each element T of Th, we obtain ‖shnh − Ih[shnh]‖L1(T ) ≤
Ch2‖∇sh ⊗∇nh‖L1(T ). Summing over all T ∈ Th, we get

‖shnh − Ih[shnh]‖L1(Ω) ≤ Ch2‖∇sh ⊗∇nh‖L1(Ω) ≤ Ch2‖∇sh‖L2(Ω)‖∇nh‖L2(Ω).

An inverse estimate gives ‖∇nh‖L2(Ω) ≤ Ch−1, because |nh| ≤ 1. Hence,

‖shnh − Ih[shnh]‖L1(Ω) ≤ CΛh→ 0 as h→ 0.

Since uh = Ih[shnh] → u as h → 0, we discover that also shnh → u a.e. in Ω as
h → 0. Consequently, for a.e. x ∈ Ω \ S we have sh(x) → s(x) 6= 0, whence sh(x)−1

is well defined for h small and

nh(x) =
sh(x)nh(x)

sh(x)
→ u(x)

s(x)
= n(x) as h→ 0.

Since |nh| ≤ 1, the Lebesgue dominated convergence theorem yields

‖nhχΩ\S − nχΩ\S‖L2(Ω) → 0 as h→ 0.

It remains only to prove ũ = s̃n a.e. in Ω. The same argument employed above gives

‖s̃hnh − Ih[s̃hnh]‖L1(Ω) ≤ CΛh→ 0 as h→ 0,

whence s̃hnh → ũ. This implies that s̃h(x)−1 is well defined for a.e. x ∈ Ω \ S and

nh(x) =
s̃h(x)nh(x)

s̃h(x)
→ ũ(x)

s̃(x)
= n(x) as h→ 0.

This completes the proof.

3.4. Γ-convergence. We are now in the position to prove the main result,
namely the convergence of global discrete minimizers. The proof is a minor varia-
tion of the standard one [18, 24].

D
ow

nl
oa

de
d 

06
/0

8/
17

 to
 1

67
.9

6.
14

5.
21

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1374 R. H. NOCHETTO, S. W. WALKER, AND W. ZHANG

Theorem 3.7 (convergence of global discrete minimizers). Let {Th} satisfy
(2.10). If (sh,uh) ∈ Ah(gh, rh) is a sequence of global minimizers of Eh[sh,nh] in
(2.18), then every cluster point is a global minimizer of the continuous energy E[s,n]
in (2.1).

Proof. In view of (2.18), assume there is a constant Λ > 0 such that

lim inf
h→0

Eh[sh,nh] = lim inf
h→0

(
Eh1 [sh,nh] + Eh2 [sh]

)
≤ Λ;

otherwise, there is nothing to prove. Applying Lemma 3.6 yields subsequences (not
relabeled) (s̃h, ũh) → (s̃, ũ) and (sh,uh) → (s,u) converging weakly in [H1(Ω)]d+1,
strongly in [L2(Ω)]d+1, and a.e. in Ω. Using Lemma 3.4, we deduce

Ẽ1[s̃, ũ] =

∫
Ω

(κ− 1)|∇s̃|2 + |∇ũ|2dx ≤ lim inf
h→0

Ẽh1 [s̃h, ũh] ≤ lim inf
h→0

Eh1 [sh,nh],

where the last inequality is a consequence of (2.21). Since sh converges a.e. in Ω to
s, so does ψ(sh) to ψ(s). Now apply Fatou’s lemma to arrive at

E2[s] =

∫
Ω

ψ(s) =

∫
Ω

lim
h→0

ψ(sh) ≤ lim inf
h→0

∫
Ω

ψ(sh) = lim inf
h→0

Eh2 [sh].

Consequently, we obtain

Ẽ1[s̃, ũ] + E2[s] ≤ lim inf
h→0

Eh[sh,nh] ≤ lim sup
h→0

Eh[sh,nh].

Moreover, the triple (s,u,n) given by Lemma 3.6 satisfies the structure property (2.5).
In view of Proposition 3.2, given ε > 0 arbitrary, we can always find a pair

(tε,vε) ∈ A(g, r) ∩ [W 1
∞(Ω)]d+1 such that

Ẽ1[tε,vε] + E2[tε] = E1[tε,mε] + E2[tε] ≤ inf
(t,m)∈A(g,r)

E[t,m] + ε ≤ E[s,n] + ε,

where mε := t−1
ε vε if tε 6= 0; otherwise, mε is an arbitrary unit vector. Apply Lemma

3.3 to (tε,vε) and mε to find (tε,h,vε,h) ∈ Ah(gh, rh), mε,h ∈ Nh such that

E1[tε,mε] = lim
h→0

Eh1 [tε,h,mε,h].

On the other hand, (2.8) and (3.3) imply that 0 ≤ ψ(tε,h) ≤ max{ψ(− 1
2 + δ0), ψ(1−

δ0)}, and we can invoke the Lebesgue dominated convergence theorem to infer that

E2[tε] =

∫
Ω

lim
h→0

ψ(tε,h) = lim
h→0

∫
Ω

ψ(tε,h) = lim
h→0

Eh2 [tε,h].

Therefore, collecting the preceding estimates, we arrive at

Ẽ1[s̃, ũ] + E2[s] ≤ lim sup
h→0

Eh[sh,nh] ≤ lim
h→0

Eh[tε,h,mε,h] ≤ E[s,n] + ε.

We now prove that Ẽ1[s̃, ũ] = E1[s,n]. We exploit the relation ũ = s̃n a.e. in Ω
with |n| = 1, together with the fact that n admits a weak gradient in Ω \ S, to find
the orthogonal decomposition ∇ũ = ∇s̃⊗ n + s̃∇n a.e. in Ω \ S. Hence,

Ẽ1[s̃, ũ] =

∫
Ω\S

(κ− 1)|∇s̃|2 + |∇ũ|2dx =

∫
Ω\S

κ|∇s̃|2 + s̃2|∇n|2dx

=

∫
Ω\S

κ|∇s|2 + s2|∇n|2dx ≡ E1[s,n],
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because s̃ = |s| and ‖∇|s|‖L2(Ω\S) = ‖∇s‖L2(Ω\S). Note that the singular set S does
not contribute, because ‖∇s‖L2(S) = ‖s∇n‖L2(S) = 0. Finally, letting ε → 0, we see
that the pair (s,n) is a global minimizer of E as asserted.

If the global minimizer of the continuous energy E[s,n] is unique, then Theorem
3.7 readily implies that the discrete energy minimizer (sh,nh) converges to the unique
minimizer of E[s,n]. This theorem is about global minimizers only, both discrete and
continuous. In the next section, we design a quasi-gradient flow to compute discrete
local minimizers and show its convergence (see Theorem 4.2). In general, convergence
to a global minimizer is not available, and neither are rates of convergence, due to
the lack of continuous dependence results. However, if local minimizers of E[s,n]
are isolated, then there exist local minimizers of Eh[sh,nh] that Γ-converge to (s,n)
[18, 24].

4. Quasi-gradient flow. We consider a gradient flow methodology consisting
of a gradient flow in s and a minimization in n as a way to compute minimizers of
(2.1) and (2.18). We begin with its description for the continuous system and verify
that it has a monotone energy decreasing property. We then do the same for the
discrete system.

4.1. Continuous case. We introduce the following subspace to enforce Dirichlet
boundary conditions on open subsets Γ of ∂Ω:

(4.1) H1
Γ(Ω) = {v ∈ H1(Ω) : v = 0 on Γ}.

Let the sets Γs,Γn satisfy Γn = Γu ⊂ Γs ⊂ ∂Ω, and let (2.9) be valid on Γs. Therefore,
the traces n = q := g−1r and nh = qh := Ih[g−1

h rh] are well defined on Γn.

4.1.1. First order variation. Consider the bulk energy E[s,n], where the pair
(s,u), with u = sn, is in the admissible class A(g, r) defined in (2.4). We take a
variation z ∈ H1

0 (Ω) of s and obtain δsE[s,n; z] = δsE1[s,n; z] + δsE2[s; z], the first
variation of E in the direction z, where

δsE1[s,n; z] = 2

∫
Ω

(∇s · ∇z + |∇n|2sz) dx and δsE2[s; z] =

∫
Ω

ψ′(s)z dx.

Next, we introduce the space of tangential variations of n:

V ⊥(n) =
{
v ∈ H1(Ω)d : v · n = 0 a.e. in Ω

}
.(4.2)

In order to satisfy the constraint |n| = 1, we take a variation v ∈ V ⊥(n) of n and get

δnE[s,n; v] = δnE1[s,n; v] = 2

∫
Ω

s2(∇n · ∇v) dx.

Note that variations in V ⊥(n) preserve the unit length constraint up to second order
accuracy [47]: |n + tv|2 = 1 + t2|v|2 and |n + tv| ≥ 1 for all t ∈ R.

4.1.2. Quasi-gradient flow. We consider an L2-gradient flow for E with re-
spect to the scalar variable s:∫

Ω

∂tsz dx := −δsE1[s,n; z]− δsE2[s; z] for all z ∈ H1
Γs(Ω);
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1376 R. H. NOCHETTO, S. W. WALKER, AND W. ZHANG

here, we enforce stationary Dirichlet boundary conditions for s on the set Γs ⊂ ∂Ω,
whence z = 0 on Γs. A simple but formal integration by parts yields∫

Ω

∂tsz dx = −
∫

Ω

(
− 2∆s+ 2|∇n|2s+ ψ′(s)

)
z dx for all z ∈ H1

Γs(Ω),

where we use the implicit Neumann condition ν · ∇s = 0 on ∂Ω \ Γs, and ν is the
outer unit normal on ∂Ω. Therefore, s satisfies the (nonlinear) parabolic PDE:

∂ts = 2∆s− 2|∇n|2s− ψ′(s).(4.3)

Given s satisfying (2.9) on Γs, let n satisfy |n| = 1 a.e. in Ω, the stationary
Dirichlet boundary condition n = q on the open set Γn ⊂ ∂Ω, and the following
degenerate minimization problem:

E[s,n] ≤ E[s,m] for all |m| = 1 a.e. Ω,

with the same boundary condition as n. This implies

(4.4) δnE[s,n; v] = 0 for all v ∈ V ⊥(n) ∩H1
Γn

(Ω)d.

4.1.3. Formal energy decreasing property. Differentiating the energy with
respect to time, we obtain

∂tE[s,n] = δsE[s,n; ∂ts] + δnE[s,n; ∂tn].

By virtue of (4.3) and (4.4), we deduce that

∂tE[s,n] = −δsE[s,n; ∂ts] = −
∫

Ω

|∂ts|2 dx.(4.5)

Hence, the bulk energy E is monotonically decreasing for our quasi-gradient flow.

4.2. Discrete case. Let skh ∈ Sh(Γs, gh) and nkh ∈ Nh(Γn,qh) denote finite
element functions with Dirichlet conditions skh = gh on Γs and nkh = qh on Γn,
where k indicates a “time-step” index (see section 4.2.2 for the discrete gradient flow
algorithm). To simplify notation, we use the following:

ski := skh(xi), nki := nkh(xi), zi := zh(xi), vi := vh(xi).

4.2.1. First order variation. First, we introduce the discrete version of (4.2),

V ⊥h (nh) = {vh ∈ Uh : vh(xi) · nh(xi) = 0 for all nodes xi ∈ Nh}.(4.6)

Next, the first order variation of Eh1 in the direction vh ∈ V ⊥h (nkh) ∩ H1
Γn

(Ω) at the

director variable nkh reads

δnhE
h
1 [skh,n

k
h; vh] =

N∑
i,j=1

kij

(
(ski )2 + (skj )2

2

)
(δijn

k
h) · (δijvh),(4.7)

whereas the first order variation of Eh1 in the direction zh ∈ Sh∩H1
Γs

(Ω) at the degree

of orientation variable skh consists of two terms,

δshE
h
1 [skh,n

k
h; zh] = κ

N∑
i,j=1

kij
(
δijs

k
h

)
(δijzh) +

N∑
i,j=1

kij |δijnkh|2
(
ski zi + skj zj

2

)
.(4.8)
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To design an unconditionally stable scheme for the discrete gradient flow of Eh2 [sh],
we employ the convex splitting technique in [51, 43, 44]. We split the double well
potential into a convex and concave part: let ψc and ψe be both convex for all s ∈
(−1/2, 1) so that ψ(s) = ψc(s)− ψe(s), and set

δshE
h
2 [sk+1

h ; zh] :=

∫
Ω

[
ψ′c(s

k+1
h )− ψ′e(skh)

]
zhdx.(4.9)

Lemma 4.1 (convex-concave splitting). For any skh and sk+1
h in Sh, we have∫

Ω

ψ(sk+1
h )dx−

∫
Ω

ψ(skh)dx ≤ δshEh2 [sk+1
h ; sk+1

h − skh].

Proof. A simple calculation, based on the mean-value theorem and the convex
splitting ψ = ψc − ψe, yields∫

Ω

(
ψ(sk+1

h )− ψ(skh)
)
dx = δshE

h
2 [sk+1

h ; sk+1
h − skh] + T,

where

T =

∫
Ω

∫ 1

0

[
ψ′c(s

k
h + θ(sk+1

h − skh))− ψ′c(sk+1
h )

]
(sk+1
h − skh) dθ dx

+

∫
Ω

∫ 1

0

[
ψ′e(s

k
h)− ψ′e(skh + θ(sk+1

h − skh))
]
(sk+1
h − skh) dθ dx.

The convexity of both ψc and ψe implies T ≤ 0, as desired.

4.2.2. Discrete quasi-gradient flow algorithm. Our scheme for minimizing
the discrete energy Eh[sh,nh] is an alternating direction method, which minimizes
with respect to nh and evolves sh separately in the steepest descent direction during
each iteration. Therefore, this algorithm is not a standard gradient flow.

Algorithm (discrete quasi-gradient flow): Given (s0
h,n

0
h) in Sh(Γs, gh)×Nh(Γn,qh),

iterate Steps (a)–(c) for k ≥ 0.

Step (a): Minimization. Find tkh ∈ V ⊥h (nkh)∩H1
Γn

(Ω) such that nkh+ tkh minimizes

the energy Eh1 [skh,n
k
h + vh] for all vh in V ⊥h (nkh) ∩H1

Γn
(Ω), i.e., tkh satisfies

δnhE
h
1 [skh,n

k
h + tkh; vh] = 0 for all vh ∈ V ⊥h (nkh) ∩H1

Γn
(Ω).

Step (b): Projection. Normalize nk+1
i :=

nki+tki
|nki+tki |

at all nodes xi ∈ Nh.

Step (c): Gradient flow. Using (skh,n
k+1
h ), find sk+1

h in Sh(Γs, gh) such that∫
Ω

sk+1
h − skh
δt

zhdx=−δshEh1 [sk+1
h ,nk+1

h ; zh]−δshEh2 [sk+1
h ; zh] for all zh∈Sh∩H1

Γs(Ω).

We impose Dirichlet boundary conditions on both skh and nkh. Note that the scheme
has no restriction on the time step thanks to the implicit Euler method in Step (c).

4.3. Energy decreasing property. The quasi-gradient flow scheme in section
4.2.2 has a monotone energy decreasing property, which is a discrete version of (4.5),
provided the mesh Th is weakly acute, namely it satisfies (2.10) [22, 45].
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Theorem 4.2 (energy decrease). Let Th satisfy (2.10). The iterate (sk+1
h ,nk+1

h )
of the algorithm (discrete quasi-gradient flow) of section 4.2.2 exists and satisfies

Eh[sk+1
h ,nk+1

h ] ≤ Eh[skh,n
k
h]− 1

δt

∫
Ω

(sk+1
h − skh)2dx.

Equality holds if and only if (sk+1
h ,nk+1

h ) = (skh,n
k
h) (equilibrium state).

Proof. Steps (a) and (b) are monotone, whereas Step (c) decreases the energy.
Step (a): Minimization. Since Eh1 is convex in nkh for fixed skh, there exists a

tangential variation tkh which minimizes Eh1 [skh,n
k
h+vkh] among all tangential variations

vkh. The fact that Eh2 is independent of the director field nkh implies

Eh[skh,n
k
h + tkh] ≤ Eh[skh,n

k
h].

Step (b): Projection. Since the mesh Th is weakly acute, we claim that

nk+1
h =

nkh + tkh
|nkh + tkh|

⇒ Eh1
[
skh,n

k+1
h

]
≤ Eh1

[
skh,n

k
h + tkh

]
.

We follow [2, 9]. Let vh = nkh + tkh and wh = vh
|vh| and observe that |vh| ≥ 1 and wh

is well defined. By (2.16) (definition of discrete energy), we need only show that

kij
(ski )2 + (skj )2

2

∣∣wh(xi)−wh(xj)
∣∣2 ≤ kij (ski )2 + (skj )2

2

∣∣vh(xi)− vh(xj)
∣∣2

for all xi, xj ∈ Nh. Because kij ≥ 0 for i 6= j, this is equivalent to showing that
|wh(xi) −wh(xj)| ≤ |vh(xi) − vh(xj)|. This follows from the fact that the mapping
a 7→ a/|a| defined on {a ∈ Rd : |a| ≥ 1} is Lipschitz continuous with constant 1. Note
that equality above holds if and only if nk+1

h = nkh or, equivalently, tkh = 0.
Step (c): Gradient flow. Since Eh1 is quadratic in terms of skh, and since

2sk+1
h

(
sk+1
h − skh

)
=
(
sk+1
h − skh

)2
+
∣∣sk+1
h

∣∣2 − ∣∣skh∣∣2,
reordering terms gives

Eh1 [sk+1
h ,nk+1

h ]− Eh1 [skh,n
k+1
h ] = R1 − Eh1 [sk+1

h − skh,nk+1
h ] ≤ R1,

where

R1 := δshE
h
1 [sk+1

h ,nk+1
h ; sk+1

h − skh].

On the other hand, Lemma 4.1 implies

Eh2 [sk+1
h ]− Eh2 [skh] =

∫
Ω

ψ(sk+1
h )dx−

∫
Ω

ψ(skh)dx ≤ R2 := δshE
h
2 [sk+1

h ; sk+1
h − skh].

Combining both estimates and invoking Step (c) of the algorithm yields

Eh[sk+1
h ,nk+1

h ]− Eh[skh,n
k+1
h ] ≤ R1 +R2 = − 1

δt

∫
Ω

(sk+1
h − skh)2 dx ≤ 0,

which is the assertion. Note finally that equality occurs if and only if sk+1
h = skh and

nk+1
h = nkh, which corresponds to an equilibrium state. This completes the proof.
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5. Numerical experiments. We present computational experiments to illus-
trate our method, which was implemented with the MATLAB/C++ finite element
toolbox FELICITY [48]. For all three-dimensional simulations, we used the alge-
braic multigrid solver AGMG [39, 37, 38, 40] to solve the linear systems in Steps (a)
and (c) of the quasi-gradient flow algorithm. In two dimensions, we simply used the
“backslash” command in MATLAB.

5.1. Tangential variations. Solving Step (a) of the algorithm requires a tan-
gential basis for the test function and the solution. However, forming the matrix
system is easily done by first ignoring the tangential variation constraint (i.e., arbi-
trary variations), followed by a simple modification of the matrix system.

Let Atkh = B represent the linear system in Step (a), and suppose d = 3. Multi-
plying by a discrete test function vh, we have

vThAtkh = vThB for all vh ∈ RdN .

Next, using nkh, find r1, r2 such that {nkh, r1, r2} forms an orthonormal basis of R3

at each node xi, i.e., find an orthonormal basis of V ⊥h (nkh). Next, expand tkh =
Φ1r1 + Φ2r2 and make a similar expansion for vh. After a simple rearrangement and
partitioning of the linear system, one finds it decouples into two smaller systems: one
for Φ1 and one for Φ2. After solving for Φ1, Φ2, define the nodal values of tkh by the
formula tkh = Φ1r1 + Φ2r2.

5.2. Point defect in two dimensions. For the classic Frank energy
∫

Ω
|∇n|2,

a point defect in two dimensions has infinite energy [47]. This is not the case for the
energy (2.1), because s can go to zero at the location of the point defect, so the term∫

Ω
s2|∇n|2 remains finite.
We simulate the gradient flow evolution of a point defect moving to the center of

the domain (Ω is the unit square). We set κ = 2 and take the double well potential
to have the following splitting:

ψ(s) = ψc(s)− ψe(s)
= 63.0s2 − (−16.0s4 + 21.33333333333s3 + 57.0s2),

with local minimum at s = 0 and global minimum at s = s∗ := 0.750025 (see section
2.1, and note that a vertical shift makes ψ(s∗) = 0 without affecting the gradient flow).
We impose the following Dirichlet boundary conditions for s and n on Γs = Γn = ∂Ω:

(5.1) s = s∗, n =
(x, y)− (0.5, 0.5)

|(x, y)− (0.5, 0.5)|
.

Initial conditions on Ω for the gradient flow are s = s∗ and a regularized point defect
away from the center.

Figure 1 shows the evolution of the director field n and the scalar degree of
orientation parameter s. One can see the regularizing effect of s. We note that an
L2-gradient flow scheme, instead of the quasi- (weighted) gradient flow we use, yields
a much slower evolution to equilibrium.

5.3. Plane defect in three dimensions. Next, we simulate the gradient flow
evolution of the liquid crystal director field toward a plane defect in the unit cube
Ω = (0, 1)3. This is motivated by an exact solution found in [47, sect. 6.4]. We set κ =
0.2 and remove the double well potential. We impose the following mixed boundary
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0 0.5 1
0

0.5

1
Time Index: 1

0 0.5 1
0

0.5

1
Time Index: 15

0 0.5 1
0

0.5

1
Time Index: 30

0 0.5 1
0

0.5

1
Time Index: 45

0 0.5 1
0

0.5

1
Time Index: 120

0 0.5 1
0

0.5

1
Time Index: 230

Fig. 1. Evolution of a point defect toward its equilibrium state (section 5.2). Time step is
δt = 0.02. The minimum value of s, at time index 230, is 2.0226 · 10−2.

conditions for (s,n): Dirichlet conditions on Γs = Γn = ∂Ω ∩ ({z = 0} ∪ {z = 1}) :

z = 0 : s = s∗, n = (1, 0, 0),

z = 1 : s = s∗, n = (0, 1, 0)
(5.2)

and Neumann conditions ν · ∇s = 0 and ν · ∇n on the remaining part of ∂Ω. These
conditions are not covered in section 3, but we explore them computationally. The
exact solution (s,n) (at equilibrium) only depends on z and is given by

n(z) = (1, 0, 0) for z < 0.5, n(z) = (0, 1, 0) for z > 0.5,

s(z) = 0 at z = 0.5, and s(z) is linear for z ∈ (0, 0.5) ∪ (0.5, 1.0).
(5.3)
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0
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Time Index: 1
Z

0
0.5

1 0
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1
0

0.5

1
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0.5

1 0
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1
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0.5

1

Y

Time Index: 25

X

Z

0
0.5

1 0
0.5

1
0

0.5

1

Y

Time Index: 250

X

Z

Fig. 2. Evolution toward an (equilibrium) plane defect (section 5.3). The director field n is
shown at five different horizontal slices. The time step used was δt = 0.02.

Initial conditions on Ω for the gradient flow are s = s∗ and a regularized point defect
away from the center of the cube.

Figure 2 shows the evolution of the director field n toward the plane defect. Only
a few slices are shown in Figure 2 because of the simple form of the equilibrium
solution.

Figure 3 (left) shows the components of n evaluated along a one-dimensional
vertical slice. Clearly, the numerical solution approximates the exact solution well,
except at the narrow transition region near z = 0.5. Furthermore, Figure 3 (right)
shows the corresponding evolution of the degree of orientation parameter s (evaluated
along the same one-dimensional vertical slice). One can see the regularizing effect of
s, i.e., at equilibrium, s ≈ 0.008 at the z = 0.5 plane (the defect plane of n). Our
numerical experiments suggest that s|z=0.5 → 0 as the mesh size goes to zero.

5.4. Fluting effect and propeller defect. This example further investigates
the effect of κ on the presence of defects. An exact solution of a line defect in a right
circular cylinder is given in [47, sect. 6.5], where it is shown that for κ sufficiently
large (say κ > 1), the director field is smooth, but if κ is sufficiently small, then a
line defect in n appears along the axis of the cylinder. Our numerical experiments
confirm this.

To further illustrate this effect, we conducted a similar experiment for a unit cube
domain Ω = (0, 1)3. Again, for simplicity we remove the double well potential. We
set Dirichlet boundary conditions for (s,n) on the vertical sides of the cube Γs =
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Fig. 3. Evolution toward an (equilibrium) plane defect (section 5.3); time step is δt = 0.02.
Left: plots of the three components of n, evaluated along the vertical line x = 0.5, y = 0.5, are shown
at three time indices (solid blue curve: n ·e1, dashed black curve: n ·e2, dotted red curve: n ·e3). At
equilibrium, n is nearly piecewise constant with a narrow transition region around z = 0.5. Right:
plots of the degree of orientation s, corresponding to n, are shown. The equilibrium solution is
piecewise linear, with a kink at z = 0.5, where s ≈ 0.008.

0 0.5 1
0

0.5

1

X

Y

0 0.5 1
0

0.5

1  

X

 
0.3

0.4

0.5

0.6

0.7

Fig. 4. Equilibrium state (section 5.4) of n and s. One horizontal slice (z = 0.5) is plotted: n
on the left, s on the right (n and s are approximately independent of z). The director field points
out of the plane (i.e., n · e3 6= 0), and s > 0.278, so there is no defect.

Γn = ∂Ω ∩ ({x = 0} ∪ {x = 1} ∪ {y = 0} ∪ {y = 1}), with

s = s∗, n(x, y, z) =
(x, y)− (0.5, 0.5)

|(x, y)− (0.5, 0.5)|
,(5.4)

and Neumann conditions ν · ∇s = 0 and ν · ∇n = 0 on the top and bottom parts of
∂Ω; this situation is not covered in section 3. Figure 4 shows the equilibrium solution
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Fig. 5. Evolution toward an (equilibrium) “propeller” defect (section 5.4). Director field n is
shown at five different horizontal slices through the cube. The time step used was δt = 0.02.

when κ = 2. The z-component of n is not zero, i.e., it points out of the plane of
the horizontal slice that we plot. This is referred to as the “fluting effect” (or escape
to the third dimension [47]). In this case, the degree of orientation parameter s is
bounded well away from zero, so the director field is smooth (i.e., no defect).

Next, we choose κ = 0.1 and initialize our gradient flow scheme with s = s∗ and
a regularized point defect away from the center of the cube for n.

Figure 5 shows the evolution of the director field n toward a “propeller” defect
(two plane defects intersecting). Figure 6 shows n and s in their final equilibrium
state at the z = 0.5 plane. Both n and s are nearly uniform with respect to the z
variable. The regularizing effect of s is apparent, i.e., s ≈ 2 × 10−5 near where n
has a discontinuity. The three-dimensional shape of the defect resembles two planes
intersecting near the x = 0.5, y = 0.5 vertical line, i.e., the defect looks like an “X”
extruded in the z direction.

5.5. Floating plane defect. This example investigates the effect of the domain
shape on the defect. The setup here is essentially the same as that in section 5.4, with
κ = 0.1, except the domain is the rectangular box Ω = (0, 1) × (0, 0.7143) × (0, 1).
Figure 7 shows n and s in their final equilibrium state at the z = 0.5 plane. Both
n and s are approximately uniform with respect to the z variable. Instead of the
propeller defect, we get a “floating” plane defect aligned with the major axis of the
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Fig. 6. Equilibrium state of a “propeller” defect (section 5.4). One horizontal slice (z = 0.5)
is plotted: n on the left, s on the right (n and s are nearly independent of z). The z-component of
n is zero, and s ≈ 2× 10−5 near the discontinuity in n.
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X
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X
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Fig. 7. Equilibrium state of a floating plane defect on a rectangular domain (section 5.5).
One horizontal slice (z = 0.5) is plotted: n on the left, s on the right (n and s are approximately
independent of z). The z-component of n is zero, and s > 0 with s ≈ 7×10−5 near the discontinuity
in n.

box. Again, the regularizing effect of s is apparent, i.e., s ≈ 7 × 10−5 near where n
has a discontinuity.

6. Conclusion. We introduced and analyzed a robust finite element method
(FEM) for a degenerate energy functional that models nematic liquid crystals with
variable degree of orientation. We also developed a quasi-gradient flow scheme for
computing energy minimizers, with a strict monotone energy decreasing property.
The numerical experiments show a variety of defect structures that Ericksen’s model
exhibits. Some of the defect structures are high dimensional with surprising shapes
(see Figure 6). We mention that [31] also found a “propeller” (or “X”) shaped defect
within a two-dimensional Landau–deGennes (Q-tensor) model. An interesting exten-
sion of this work would be to couple the effect of external fields (e.g., magnetic and
electric fields) to the liquid crystal as a way of driving and manipulating the defect
structures.

Acknowledgment. We thank L. Ambrosio for useful discussions regarding the
regularization argument in Proposition 3.2.
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