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a b s t r a c t

We present a model and discretization that couples the Ericksen model of liquid crystals
with variable degree of orientation to the Allen–Cahn equations with a mass constraint.
The coupled systemmodels liquid crystal droplets with anisotropic surface tension effects
due to the liquid crystal molecular alignment. The total energy consists of the Ericksen
energy, phase-field (Allen–Cahn) energy, and a weak anchoring energy that couples the
liquid crystal to the diffuse interface. We describe our discretization of the total energy
along with a method to compute minimizers via a discrete gradient flow algorithm which
has a strictly monotone energy decreasing property. Numerical experiments are given in
three dimensions that illustrate a wide variety of droplet shapes that result from their
interaction with defects.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

This paper presents amethod for solving the Ericksenmodel coupled to the Allen–Cahn equations [1–3] in order tomodel
the equilibrium shapes of nematic liquid crystal (LC) droplets with anisotropic surface tension [4–6]. LCs have a variety of
applications, e.g. electronic displays [7–9], in addition to a host of potential applications in material science [10–25]. To the
best of our knowledge, coupling Ericksen to Allen–Cahn has never been done. The main contributions of the paper are the
numerical method and the three-dimensional simulations of LC droplets that illustrate the coupled model.

Nematic droplets have been studied at the continuum level, including experiments [26,27], modeling [28–32], and shape
minimization of LC droplets [33]. Numerically, molecular dynamics approaches [34,22] and PDE techniques [35–39] have
been used to simulate LC droplets at equilibrium aswell as dynamics. The above references use either a (regularized) Oseen–
Frank type ofmodel or the Landau–deGennesmodel (Q-tensor) [40,6]. Our paper, and [41], is the first to consider the Ericksen
model in the context of LC droplets.

Initial studies of dynamics and numerics for the Ericksen model can be found in [42,43]. More recently, a method was
developed in [44–46] to solve the Ericksen model without any ad hoc regularization term. The method was justified via
Γ -convergence, and simulations were shown in three dimensions illustrating novel defect structures.

In this paper, we present a coupled model that combines the Ericksen model with anisotropic surface tension to model
energy minimizing shapes of LC droplets. The rest of the paper is organized as follows. In Section 2, we present the coupled
model at the continuous level, and Section 3 describes our discretization of the continuous model using a finite element
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method. Section 4presents a gradient flowmethod for computingminimizers of the discrete energy, andnumerical examples
in three dimensions are presented in Section 5. We conclude with some discussion in Section 6.

2. Coupled model

We couple two energetic models (Ericksen and Allen–Cahn) to obtain an equilibrium model of LC droplets. The Allen–
Cahn energy [2,3] models the separation of two immiscible LC phases with anisotropic surface tension between the
phases [4,40,47–49,36,35]. The Ericksen energy models the elasticity of the LC medium [5,40,6,42] in each phase.

2.1. Phase field representation

Suppose we have a fixed hold-all domain Ω ⊂ Rd that partitions into two ‘‘phases’’. For simplicity, we assume both
phases contain liquid crystal material, i.e.Ω ≡ int

(
Ω1

lc ∪Ω2
lc

)
, whereΩ i

lc is the ith liquid crystal phase (i = 1, 2). In order
to avoid dealing with sharp interfaces, we use a phase field function φ : Ω → [−1,+1] to represent the coexistence of the
two phases, i.e. φ ≈ +1 inΩ1

lc and φ ≈ −1 inΩ2
lc [50].

2.2. Ericksen’s model

The state of the liquid crystal is modeled by a director field n : Ω ⊂ Rd
→ Sd−1 with unit length, and a scalar field

s : Ω ⊂ Rd
→ (− 1

2 , 1) called the degree-of-orientation [40,46]. Essentially, n specifies the averaged orientation of LC
molecules, and s represents howwell the individual LC molecules are aligned with n. The equilibrium state (s,n) is assumed
to minimize a ‘‘one-constant’’ energy.

2.2.1. Ericksen’s one-constant energy
The equilibrium state (s,n) of the liquid crystal is assumed to minimize the following energy functional:

Eerk(s,n) :=

∫
Ω

(
κ|∇s|2 + s2|∇n|

2) dx,
Ebulk(s) :=

∫
Ω

ω(s)dx,
(1)

where κ > 0. The function ω is C2, defined on −1/2 < s < 1, and satisfies [5,51,52]

1. lims→1ω(s) = lims→−1/2ω(s) = ∞,
2. ω(0) > ω(s∗) = mins∈[−1/2,1]ω(s) = 0 for some s∗ ∈ (0, 1),
3. ω′(0) = 0.

2.2.2. Theoretical framework
The initial theory for minimizers (and regularity) of (1) was developed in [51,52], where they introduced an auxiliary

variable u = sn which allows for rewriting the energy Eerk(s,n) as

Eerk(s,n) = Ẽ1(s,u) :=

∫
Ω

(
(κ − 1)|∇s|2 + |∇u|

2) dx, (2)

which derives from the identity nT
∇n = 0T because of the unit length constraint |n| = 1. This suggests the following

admissible class of solutions (minimizers) to be [51,52]:

K :={(s,u) : Ω → (−1/2, 1) × Rd
: (s,u) ∈ [H1(Ω)]d+1, u = sn,n ∈ Sd−1

}. (3)

Note: we use an abuse of notation and write (s,n) in K to be equivalent to (s,u) in K with u = sn.
Enforcing boundary conditions on (s,u) is done in the following way. Let (Γs,Γu) be open subsets of ∂Ω where we set

Dirichlet boundary conditions for (s,u). This yields the following restricted admissible class

K(g, r) :=
{
(s,u) ∈ K : s|Γs = g, u|Γu = r

}
, (4)

for some given functions (g, r) ∈ [W 1
∞
(Rd)]d+1 that satisfy the following in a neighborhood of ∂Ω: −1/2 < g < 1 and

r = gq, for some q ∈ Sd−1. If we further assume

g ≥ δ0 on ∂Ω, for some δ0 > 0, (5)

then n is H1 in a neighborhood of ∂Ω and satisfies n = g−1r = q ∈ Sd−1 on ∂Ω .
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If s is a non-zero constant, the energy Eerk(s,n) in (1) effectively reduces to the Oseen–Frank energy
∫
Ω

|∇n|
2. When s is

variable, it may vanish which relaxes the energy of defects. Indeed, discontinuities in n (i.e. defects) may still occur in the
singular set

S := {x ∈ Ω : s(x) = 0}, (6)

with finite energy: E[s,n] < ∞. Existence of minimizers was shown in [51,52]. Some analytical constructions can be found
in [40], and several numerical examples are given in [44].

The parameter κ in (1) influences whether defects occur or not. If the boundary condition for s is positive well away from
zero, and if κ is large, then

∫
Ω
κ|∇s|2dx dominates the energy and s stays positivewithinΩ . So, defects are less likely to occur.

If κ is small (say κ < 1), then
∫
Ω
s2|∇n|

2dx dominates, so s may vanish in some regions and induce a defect; see [44,45] for
examples of this effect.

2.3. Phase field model

2.3.1. Review of Allen–Cahn
LC droplets immersed in an isotropic medium induce an interface ∂Ωlc between the two phases that exhibits surface

tension. The energy of the interface Γ := ∂Ωlc, assuming a unit surface tension coefficient γ0 ≡ 1, is given by

J(Γ ) =

∫
Γ

γ0dS =

∫
Γ

1dS. (7)

In the phase field framework [53,50,54], the sharp interface is ‘‘smoothed out’’ and represented by steep transitions of φ,
i.e. where |∇φ| is large. Indeed, the surface energy (7) is replaced by a ‘‘diffuse’’ energy

Egr(φ) =
ϵ

2

∫
Ω

|∇φ|
2dx, (8)

where ϵ > 0 is the ‘‘layer thickness’’ of the phase field approximation. The intuition here is that the integrand in (8)
approximates a Dirac delta function δΓ concentrated on the interface Γ , i.e.∫

Γ

1dS =

∫
Ω

δΓ dx ≈

∫
Ω

ϵ

2
|∇φ|

2dx.

Note that the oriented unit normal vector ν of Γ is approximated by ∇φ/|∇φ|.
In addition to Egr, a mixing energy is added to the total energy to penalize mixing of the two phases:

Edw(φ) =
1
ϵ

∫
Ω

f (φ)dx, (9)

where f (t) =
1
4 (1 − t2)2 is a double-well potential. Combining (8) and (9) yields the standard Allen–Cahn energy:

Eac(φ) = Edw(φ) + Egr(φ) =
1
ϵ

∫
Ω

f (φ)dx +
ϵ

2

∫
Ω

|∇φ|
2dx. (10)

The admissible class for φ is simply H1(Ω) without any boundary conditions imposed.

2.3.2. Anisotropic surface tension
For LC droplets, the orientation of the LCmolecules are influenced by the two-phase interface. This is usually modeled by

adding a weak anchoring energy to the total energy of the system [40]. In the sharp interface setting, one adds an energy of
the form

E =

∫
Γ

γ (ν)dS,

where ν is the oriented unit normal vector of Γ . One possible choice for γ is given by [40]:

γ (ν,n) = α⊥(ν · n)2 + α∥[1 − (ν · n)2], α⊥, α∥ ≥ 0, (11)

where the first (second) term tends tomake theminimizing director fieldn perpendicular (parallel) to ν. Therefore, following
a similar derivation as for (8), and following [36,35], we arrive at the following weak anchoring energy:

Eanch,n(φ, s,n) :=
ϵ

2

∫
Ω

s2
{
α⊥(n · ∇φ)2 + α∥

[
|n|

2
|∇φ|

2
− (n · ∇φ)2

]}
dx, (12)

where we included the degree-of-orientation s to model a loss of anisotropy when orientational order vanishes. Note that
the integral is weighted by ϵ so that it scales similarly to (8).

Lastly, we also add an energetic term penalizing s to agree with s∗ on the diffuse interface:

Eanch,s(φ, s) :=
ϵ

2

∫
Ω

(s − s∗)2|∇φ|
2dx, (13)

which is needed to ensure that s does not trivially vanish on the interface, and so cause (12) to vanish as well.
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2.3.3. Incompressible droplets
We assume the LC droplets, as well as the surrounding isotropic medium are incompressible, i.e. their total volume is

conserved. It is well known [53,50] that the H−1 gradient flow of the energy (10) preserves the total volume in the sense
that

∫
Ω
φ(t, x)dx =

∫
Ω
φ(0, x)dx, for all t ≥ 0, where t is the gradient flow ‘‘time’’ variable.

In this paper, we are only concerned with the final energy minimizing shapes of LC droplets (not the gradient flow
history). Thus, we use a simpler L2 gradient flow to evolve the phase variable φ, simultaneously with the LC variables (see
Section 4). However, the L2 gradient flowdoes not preserve the volume, sowe add the following constraint to enforce volume
conservation:∫

Ω

φdx =

∫
Ω

φ0dx, (14)

where φ0 represents the initial distribution of the two phases. This gives the following admissible set for the Allen–Cahn
variable φ:

U(φ0) =

{
φ ∈ H1(Ω) :

∫
Ω

(φ − φ0)dx = 0
}
. (15)

2.4. Total energy

We seek to minimize the total energy:

E(φ, s,n) = WerkEerk(s,n) + WbulkEbulk(s) + (Wac + 2Wanch)Edw(φ) + WacEgr(φ)

+ Wanch
[
Eanch,n(φ, s,n) + Eanch,s(φ, s)

]
,

(16)

over all (φ, s,n) in the admissible setA := U(φ0)×K(g, r). Theweighting parametersWerk,Wbulk,Wac,Wanch are all positive
constants. Note that since Egr, Eanch,n, and Eanch,s all scale with ϵ|∇φ|

2, we choose the weight for Edw to beWac + 2Wanch. This
is done to ensure that mixing and diffusion are of comparable magnitude; otherwise, if Edw is not sufficiently penalized then
the droplets will ‘‘diffuse away’’.

3. Discretization

We state how the continuous energies in (16) are approximated and give the variational derivatives of the discrete
energies, which are needed in the gradient flow scheme.

In order to streamline the development of the method, we adopt some notational conveniences. Let (·, ·) : L2(Ω) ×

L2(Ω) → R be the L2(Ω) inner product, and a (·, ·) : H1(Ω) × H1(Ω) → R be the H1(Ω) inner product, i.e.

(u, v) =

∫
Ω

uv, (v,w) =

∫
Ω

v · w, a (u, v) =

∫
Ω

∇u · ∇v, a (v,w) =

∫
Ω

∇v · ∇w.

3.1. Domain mesh

We discretize the domain Ω with a conforming simplicial triangulation Th = {T }. The set of nodes (vertices) of Th is
denoted Nh; the number of nodes is n. We require Th to be weakly acute, namely

kij := −

∫
Ω

∇ηi · ∇ηj dx ≡ −a(ηi, ηj) ≥ 0 for all i ̸= j, (17)

where {ηi} are standard ‘‘hat’’ basis functions, with ηi associated with node xi ∈ Nh. This condition is necessary in order to
guarantee that the discrete Ericksen energy (21) is positive semi-definite and has a monotonicity property with respect to
normalizing the director field (see Lemma 2).

The condition (17) imposes a restriction on the mesh Th [55,56] (which is severe in three dimensions). For d = 2, one can
characterize (17) as follows.

Lemma1 (Weak Acuteness in TwoDimensions). For any pair of triangles T1, T2 in Th in two space dimensions that share a common
edge e, let αi be the angle in Ti opposite to e (for i = 1, 2). Then (17) holds if and only if α1 + α2 ≤ 180◦ for every edge e.

Generalizations of Lemma 1 to three dimensions, involving interior dihedral angles of tetrahedra, can be found in [57,58].
We point out that a non-obtuse mesh, which is automatically weakly-acute, of a simple rectangular region is simple to
generate.
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3.2. Ericksen

3.2.1. Finite element spaces
We define the following finite element spaces on the mesh Th:

Sh := {sh ∈ H1(Ω) : sh|T is affine for all T ∈ Th},

Uh := {uh ∈ [H1(Ω)]d : uh|T is affine in each component for all T ∈ Th},

Nh := {nh ∈ Uh : |nh(xi)| = 1 for all nodes xi ∈ Nh},

(18)

where Nh imposes the unit length constraint at the nodes of the mesh.
Let Ih be the Lagrange interpolation operator for either Sh or Uh. With this, we define the following discrete version of the

admissible class:

Kh := {(sh,uh) ∈ Sh × Uh : −1/2 < sh < 1 inΩ, uh = Ih(shnh) where nh ∈ Nh}. (19)

Next, take gh := Ihg and rh := Ihr to be the discrete Dirichlet data, and define the discrete spaces that include (Dirichlet)
boundary conditions

Sh(Γs, gh) := {sh ∈ Sh : sh|Γs = gh}, Uh(Γu, rh) := {uh ∈ Uh : uh|Γu = rh},

as well as the discrete admissible class with boundary conditions:

Kh(gh, rh) := {(sh,uh) ∈ Kh : sh ∈ Sh(Γs, gh),uh ∈ Uh(Γu, rh)} . (20)

Again, we use the abuse of notation where (sh,nh) inKh(gh, rh) is equivalent to (sh,uh) inKh(gh, rh) with uh = Ih(shnh). Note
that, because of (5), we can impose the Dirichlet condition nh = Ih[g−1

h rh] on ∂Ω .

3.2.2. Energy
The discrete form of the Ericksen energy Eerk is given by

Eh
erk(sh,nh) := κ

∫
Ω

|∇sh|2dx +
1
2

n∑
i,j=1

kij

(
sh(xi)2 + sh(xj)2

2

)
|nh(xi) − nh(xj)|2, (21)

which was derived and analyzed in [44]; note that the second term is a O(h) approximation of
∫
Ω
s2|∇n|

2. The advantage
of the discrete form is that it can handle the (nodal) unit length constraint as well as the degeneracy of the model without
regularization; see [44] for more information.

It is convenient to rewrite Eh
erk with a multi-linear form. Define e (·, ·; ·, ·) : Sh × Sh × Uh × Uh → R by

e (sh, zh; vh,wh) :=

N∑
i,j=1

kij

(
sh(xi)zh(xi) + sh(xj)zh(xj)

2

)
·
(
vh(xi) − vh(xj)

)
·
(
wh(xi) − wh(xj)

)
,

(22)

which is linear in each argument. Thus,

Eh
erk(sh,nh) = κa (sh, sh)+

1
2
e (sh, sh;nh,nh) , (23)

and the first variational derivatives are given by

δnhE
h
erk(sh,nh;wh) = e (sh, sh;nh,wh) , (24)

δshE
h
erk(sh,nh; zh) = 2κa (sh, zh)+ e (sh, zh;nh,nh) . (25)

As was shown in [44], Eh
erk satisfies the following monotonicity property with respect to the unit length constraint.

Lemma 2. Let Eh
erk(sh,nh) be defined by (23) and assume the mesh Th satisfies (17). If |nh(xi)| ≥ 1 at all nodes xi in Nh, then

Eh
erk(sh,nh) ≥ Eh

erk

(
sh,

nh

|nh|

)
.

The double well energy is discretized in a standard way:

Eh
bulk(sh) :=

∫
Ω

ω(sh)dx, (26)
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where φh ∈ Uh(φ0) is discussed in Section 3.3. The variational derivative of Eh
bulk is approximated by a convex splitting

technique [59,54,60] for time-stepping purposes. First, we split ω into a convex and a concave part, i.e. let ωc , ωe be convex
functions for all s ∈ (−1/2, 1) so that ω(s) = ωc(s) − ωe(s). Then set

δshE
h
bulk(s

k+1
h ; zh) :=

([
ω′

c(s
k+1
h ) − ω′

e(s
k
h)
]
, zh
)
, (27)

which yields the inequality

Eh
bulk(s

k+1
h ) − Eh

bulk(s
k
h) ≤ δshE

h
bulk(s

k+1
h ; sk+1

h − skh), (28)

for any skh and sk+1
h in Sh [44].

3.3. Allen–Cahn

We introduce the discrete version of (15):

Uh(φh,0) =

{
φh ∈ Sh :

∫
Ω

(φh − φh,0)dx = 0
}
, (29)

where φh,0 represents the (discrete) initial distribution of the two phases (e.g. φh,0 = Ihφ0); thus, we replace φ by φh in
Uh(φh,0). The standard Allen–Cahn energy terms, as well as Eanch,s, are discretized in the usual way:

Eh
dw(φh) := Edw(φh), Eh

gr(φh) := Egr(φh), Eh
anch,s(φh, sh) := Eanch,s(φh, sh), (30)

with variational derivatives given by

δφhE
h
gr(φh;ψh) := ϵa (φh, ψh) ,

δφhE
h
anch,s(φh, sh;ψh) := ϵ

(
(sh − s∗)2∇φh,∇ψh

)
,

δshE
h
anch,s(φh, sh; zh) := ϵ

(
|∇φh|

2(sh − s∗), zh
)
.

(31)

We discretize the double well f for the phase variable similar to ω, i.e. we write

f (t) =
1
4
(1 − 2t2 + t4) =

1
4
(1 + ξ0t2) −

1
4

[
(2 + ξ0)t2 − t4

]
=: fc(t) − fe(t), (32)

where ξ0 > 0 is sufficiently large. Then define

δφhE
h
dw(φ

k+1
h ;ψh) :=

1
ϵ

∫
Ω

[
f ′

c (φ
k+1
h ) − f ′

e (φ
k
h)
]
ψh dx, (33)

which yields the inequality

Eh
dw(φ

k+1
h ) − Eh

dw(φ
k
h) ≤ δφhE

h
dw(φ

k+1
h ;φk+1

h − φk
h), (34)

for all φk
h and φk+1

h in Sh [59,54,60].
The anisotropic anchoring energy Eanch,n is handled using a ‘‘lumped’’ approach. Define the multi-linear form c : Uh ×

P0 × Uh × P0 × Sh × Sh → R, where P0 is the space of piecewise constant, vector-valued functions such that

c⊥ (vh,∇φh,wh,∇ψh; sh, zh) :=

∑
Tj⊂Th

∫
Tj

Ih {(shzh)(vh · ∇φh)(wh · ∇ψh)} ,

c∥ (vh,∇φh,wh,∇ψh; sh, zh) :=∑
Tj⊂Th

∫
Tj

Ih
{
(shzh)[(vh · wh)(∇φh · ∇ψh) − (vh · ∇φh)(wh · ∇ψh)]

}
,

(35)

where Ih is the Lagrange interpolant. The finite element realization of (35) depends on which variables are held fixed; in any
case, the result is a block matrix, where each block is an N × N diagonal matrix.

With this, we define the discrete anchoring condition as

Eh
anch,n(φh, sh,nh) =

ϵ

2

[
α⊥c⊥ (nh,∇φh,nh,∇φh; sh, sh)+ α∥c∥ (nh,∇φh,nh,∇φh; sh, sh)

]
. (36)

Using [46, Lemma 6], Eh
anch,n satisfies the following monotonicity property with respect to the unit length constraint.

Lemma 3. Let Eh
anch,n(φh, sh,nh) be defined by (36). If |nh(xi)| ≥ 1 at all nodes xi in Nh, then

Eh
anch,n(φh, sh,nh) ≥ Eh

anch,n

(
φh, sh,

nh

|nh|

)
.
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The variational derivatives are as follows:

δφhE
h
anch,n(φh, sh,nh;ψh) = ϵ

[
α⊥c⊥ (nh,∇φh,nh,∇ψh; sh, sh)+ α∥c∥ (nh,∇φh,nh,∇ψh; sh, sh)

]
,

δshE
h
anch,n(φh, sh,nh; zh) = ϵ

[
α⊥c⊥ (nh,∇φh,nh,∇φh; sh, zh)+ α∥c∥ (nh,∇φh,nh,∇φh; sh, zh)

]
,

δnhE
h
anch,n(φh, sh,nh; vh) = ϵ

[
α⊥c⊥ (nh,∇φh, vh,∇φh; sh, sh)+ α∥c∥ (nh,∇φh, vh,∇φh; sh, sh)

]
,

(37)

which follow from the (multi-)linearity and symmetry of c⊥, c∥.

3.4. Total discrete energy

The discrete formulation is as follows. Define the admissible set Ah := Uh(φh,0) × Kh(gh, rh) and find (φh, sh,nh) ∈ Ah
such that the following energy is minimized:

Eh(φh, sh,nh) = WerkEh
erk(sh,nh) + WbulkEh

bulk(sh) + (Wac + 2Wanch)Eh
dw(φh) + WacEh

gr(φh)

+ Wanch
[
Eh
anch,n(φh, sh,nh) + Eh

anch,s(φh, sh)
]
.

(38)

4. Energy minimization scheme

We minimize the discrete energy Eh(φh, sh,nh) by an alternating direction method, i.e. we take gradient descent steps
with respect to nh, then with respect to sh, and then finally with respect to φh. This procedure is iterated until numerical
convergence is reached. To this end, we introduce a ‘‘step-size’’ δt > 0 that is used when decreasing the energy in each
direction.

Remark 4. Gamma-convergence of the discrete Ericksen energy Eh
erk(sh,nh) → Eerk(s,n) has been analyzed in [44,46].

In addition, the Gamma-convergence for a phase-field Cahn–Hilliard/Ericksen model was proved in [41]. The Gamma-
convergence of the coupled Allen–Cahn/Ericksen model considered here essentially follows from the same arguments as
in [41], and is not repeated here.

We emphasize that Γ -convergence does not provide a rate of convergence. In fact, it only implies convergence of
minimizing sequences up to subsequences, unless the limiting problem has a uniqueminimizer. In general, we do not expect
the functional E(φ, s,n) in (16) to have a unique minimizer. In this case, the Γ -convergence result only says that a sequence
of global discrete minimizers of (38) will converge to a globalminimizer of (16).

4.1. Decrease with respect to director

The director n is updated along the tangent space. Thus, we introduce a ‘‘tangent space’’ variation of Uh in (18):

U⊥

h (nh) = {vh ∈ Uh : vh(xi) · nh(xi) = 0, for all nodes xi ∈ Nh}, (39)

which preserves the unit length constraint to first order. With this, given (skh,n
k
h) in Kh(gh, rh), φk

h in Sh, we find tkh ∈

U⊥

h (n
k
h) ∩ H1

Γn (Ω) such that

ρ
(
tkh, vh

)
= −WerkδnhE

h
erk(s

k
h,n

k
h + tkh; vh) − WanchδnhE

h
anch,n(φ

k
h, s

k
h,n

k
h + tkh; vh),

or

ρ
(
tkh, vh

)
= −Werke

(
skh, s

k
h;n

k
h + tkh, vh

)
− Wanchϵ

[
α⊥c⊥

(
nk
h + tkh,∇φ

k
h, vh,∇φ

k
h; s

k
h, s

k
h

)
+ α∥c∥

(
nk
h + tkh,∇φ

k
h, vh,∇φ

k
h; s

k
h, s

k
h

) ]
,

(40)

for all vh ∈ U⊥

h (n
k
h) ∩ H1

Γn (Ω), where ρ > 0 is a damping factor. Using standard techniques, [44,46], one can show this
decreases the total energy, i.e. Eh(φk

h, s
k
h,n

k
h + tkh) ≤ Eh(φk

h, s
k
h, t

k
h).

Next, we apply a simple, node-wise, projection to enforce the unit length constraint, i.e.

nk+1
h (xi) :=

nk
h(xi) + tkh(xi)

|nk
h(xi) + tkh(xi)|

at all nodes xi ∈ Nh. (41)

This step also decreases the total energy [61,62,44,46], i.e.

Eh(φk
h, s

k
h,n

k+1
h ) ≤ Eh(φk

h, s
k
h,n

k
h + tkh).
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4.2. Decrease with respect to degree-of-orientation

The degree-of-orientation is updated with a standard gradient flow step. Given (skh,n
k+1
h ) in Kh(gh, rh), φk

h in Sh, we find
sk+1
h in Sh(Γs, gh) such that(

sk+1
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h
erk(s

k+1
h ,nk+1

h ; zh) − WbulkδshE
h
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]
,
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(42)

for all zh ∈ Sh ∩ H1
Γs
(Ω). Again, this step decreases the energy: Eh(φk

h, s
k+1
h ,nk+1

h ) ≤ Eh(φk
h, s

k
h,n

k+1
h ) [44,46].

4.3. Decrease with respect to phase

The phase is updated with a standard gradient flow step, with a constraint imposed by a Lagrange multiplier to enforce
volume conservation (recall (29)). Given (sk+1

h ,nk+1
h ) inKh(gh, rh), φk

h in Uh(φh,0), we find φk+1
h in Uh(φh,0), and λk+1 inR, such

that (
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1
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(43)

for all ψh ∈ Sh.
The saddle-point system (43) can be eliminated by a priori solving for λk+1. Choosing ψh = 1 reduces (43) to

λk+1

δt
= Cλf ′

c (1)
(
φk+1
h , 1

)
− Cλ

(
f ′

e (φ
k
h), 1

)
, Cλ :=

(Wac + 2Wanch)
ϵ|Ω|

, (44)

where we used that
(
φk+1
h − φk

h, 1
)

= 0. Plugging (44) into (43) yields the following variational problem: given (sk+1
h ,nk+1

h )
in Kh(gh, rh), φk

h in Uh(φh,0), we find φk+1
h in Uh(φh,0) such that
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(45)

for allψh ∈ Sh. The solution φk+1
h decreases the energy by standard arguments similar to those in [44,46]. In order to handle

the ‘‘outer-product’’ term in solving (45), e.g. (1, ψh)
(
φk+1
h , 1

)
, we used the Sherman–Morrison method.

Remark 5. Using a Lagrange multiplier to enforce global mass conservation is convenient because it eliminates the need
to solve a modified Cahn–Hilliard system (a fourth order PDE), which gives a conservation law for the change of mass in a
given volume. Indeed, with Cahn–Hilliard, mass is not created or destroyed, but simply enters or leaves the (local) volume
considered through a boundary flux.

For the purposes of investigating equilibrium phenomena (as done in this paper), a Lagrange multiplier is sufficient.
However, in the context of coarsening dynamics [38,39], using Allen–Cahn with a Lagrange multiplier will yield different
dynamics than with Cahn–Hilliard.

4.4. Energy decrease

During each iteration of our algorithm, the three steps in Sections 4.1, 4.2, and 4.3 are solved sequentially in aGauss–Seidel
type of approach. Each step is derived from a gradient flow step with respect to one of the variables, followed by applying
a semi-implicit ‘‘time’’-discretization. This has the advantage of removing any time-step restriction while guaranteeing that
each step monotonically decreases the energy. Thus, the entire scheme is monotone energy decreasing and so is robust,
i.e. the numerical scheme will always produce a (local) minimizer, regardless of the time-step. Of course, in principle, the
choice of time-step can affect the minimizer found but we did not experience this.

Other optimization techniques are possible, such as non-linear conjugate gradient or quasi-newton methods [63].
However, one may need to sacrifice robustness when using a faster method.

4.5. Implementation

The resultant algorithm is as follows. Given (φk
h, s

k
h,n

k
h), we solve (in sequence) (40), (41) to obtain nk+1

h , followed by
(42) to get sk+1

h , and then (45) to get φk+1
h . We implemented our method using the MATLAB/C++ finite element toolbox

FELICITY [64,65]. For all 3-D simulations, we used the algebraic multi-grid solver (AGMG) [66–69] to solve all linear elliptic
systems.

5. Numerical experiments

We present the results of several simulations that demonstrate the capabilities and limitations of the model. We start
with two examples illustrating the effects of homeotropic and planar anchoring, followed by an example of the formation of
a lens. Finally, we present the results of two simulations originally intended to produce the Saturn-ring defects. The domain
Ω in all cases is a unit cube, and all simulations were run on a 100 ×100 ×100 mesh with ϵ = 0.03,Werk = 1,Wbulk = 100,
Wac = 1,Wanch = 20, and κ = 1.

5.1. Expelling a defect from a droplet

We simulate a point defect moving to its equilibrium position from inside a droplet with planar anchoring. For this
simulation we set α∥ = 0, α⊥ = 1, and we start with a point defect at the center of an ellipsoidal droplet in one corner
of the domain. The exact initial conditions are

s = s∗ = 0.7,

n(x, y, z) =
(x, y, z) − (0.351, 0.32, 0.35)
|(x, y, z) − (0.351, 0.32, 0.35)|

,

φ(x, y, z) =

⎧⎨⎩1
(x − 0.351)2

0.222 +
(y − 0.32)2

0.162 +
(z − 0.35)2

0.182 < 1

−1 elsewhere onΩ.
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Fig. 1. Evolution of the droplet over a period of 700 time steps (Section 5.1). The blue arrows represent the director field, and the green region is the droplet
(represented by the φ = 0 iso-contour). The red ‘‘dot’’ is the s = 0.3 iso-contour, which represents the point defect.

(a) (b) (c)

Fig. 2. Three views of the final state of the system (Section 5.1). Figs. 2a and 2b show the entire system from the top and side, respectively. Fig. 2c shows the
director field (blue arrows) at the surface of the droplet (green). The red ‘‘dot’’ is the s = 0.3 iso-contour, which represents the point defect. The minimum
value of s at the final time step was 0.12.

The boundary conditions for s are the same as the initial conditions for s. The boundary conditions for n specify a point
defect near the upper right-hand corner of the domain:

n(x, y, z) =
(x, y, z) − (0.75, 0.75, 0.75)
|(x, y, z) − (0.75, 0.75, 0.75)|

.

The simulation was run with δt = .05 for 700 time steps, after which the system essentially attained equilibrium.
The evolution of the droplet is shown in Fig. 1, and several views of the final state of the system are shown in Fig. 2. Since

planar anchoring is favored by the droplet, having a point defect inside the droplet is not energetically favorable. Hence,
the point defect inside the droplet is expelled and obtains an equilibrium position essentially dictated by the boundary
conditions for n. The droplet changes shape to best accommodate planar anchoring on the interface. Since the droplet’s
boundary is a closed surface, this causes two ‘‘corners’’ to develop. The main ‘‘axis’’ of the droplet is basically aligned with
the director field n.
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Fig. 3. Evolution of the droplet over 8000 time steps (Section 5.2). Format is the same as Fig. 1.

(a) (b) (c)

Fig. 4. Three views of the final state of the system (Section 5.2). Figs. 4a and 4b show the entire system from top and side, respectively. Fig. 4c shows the
director field at the surface of the droplet. In this case, the director field is perpendicular to the droplet surface in the equilibrium state. Theminimum value
of s at the final time step was 0.10.

5.2. Moving a droplet via boundary conditions

We repeat the previous simulation with homeotropic anchoring, i.e. we let α∥ = 1 and α⊥ = 0. The initial and boundary
conditions are the same as in the previous section. This simulation was run for 8000 time steps with δt = 0.05.

The evolution of the droplet is shown in Fig. 3, and the final state of the system is shown in Fig. 4. In this case, homeotropic
anchoring prevents the defect from escaping the droplet for the following reason. Homeotropic anchoring prefers n to be
normal to the surface of the droplet. Since the droplet is close to spherical, and a point defect has n pointing in a radial
fashion, it is energetically favorable for the defect to stay inside the droplet near its center. Note that if Wanch were much
smaller, then this may not necessarily be the case.

Therefore, the droplet (and internal defect)moves toward the upper corner in order to accommodate the (outer) boundary
conditions for n. Thus, one can position a droplet through appropriate boundary conditions.
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5.3. Forming a lens

The boundary conditions for n can significantly affect the droplet shape, as this example shows. For this simulation, we
set α∥ = 1, α⊥ = 0, and we start with a point defect inside a LC droplet of radius 0.2. The exact initial conditions are

s = s∗ = 0.7,

n(x, y, z) =
(x, y, z) − (0.5, 0.5, 0.5)
|(x, y, z) − (0.5, 0.5, 0.5)|

,

φ(x, y, z) =

{
1 (x − 0.5)2 + (y − 0.5)2 + (z − 0.5)2 = 0.22

−1 otherwise.

The boundary conditions for s are the same as the initial conditions for s. The boundary conditions for the director are
simply n = (0, 0, 1). We ran this simulation for 400 time steps with δt = 0.2.

The choice of boundary conditions for n and homeotropic anchoring on the droplet causes a ‘‘frustration’’ in the director
field, which immediately induces a point defect below the droplet (in addition to the point defect inside the droplet). As
the gradient flow proceeds, the two point defects move together which acts to further deform the droplet. Eventually, the
external point defect enters the droplet and coalesces with the point defect in the center of the droplet (annihilating both
defects), and helps to reduce the elastic energy Eerk. This is shown in Figs. 5 and 6.

5.4. Breakup of ‘‘Saturn Ring’’: homeotropic anchoring

A well-known phenomenon in liquid crystals is the so-called Saturn ring defect [70,71]. The physical setting for its
occurrence is to have a rigid inclusion (e.g. a spherical particle in the LC domain) on which strong homeotropic boundary
conditions are imposed. The outer boundary conditions are vertical for the director. The result (at equilibrium) is for a line
of defect to occur on a circular curve that ‘‘orbits’’ the equator of the particle.

In this example, we investigate how weak anchoring and a deformable droplet affects the LC defect structure. Using the
same constants as in Section 5.3, we initialized a point defect at (0.5, 0.5, 0.5) and a LC droplet centered at the same point
with a radius of 0.2. The exact initial conditions are

s = s∗ = 0.7,

n(x, y, z) =
(x, y, z) − (0.5, 0.5, 0.5)
|(x, y, z) − (0.5, 0.5, 0.5)|

,

φ(x, y, z) =

{
1 (x − 0.5)2 + (y − 0.5)2 + (z − 0.5)2 = 0.22

−1 otherwise.

The boundary conditions for s are the same as the initial conditions for s. The boundary conditions for the director are
to have n pointing inwards along the sides of the domain Ω , with a smooth transition to up and down at the top and the
bottom ofΩ; this is done to avoid having a defect on the outer boundary of the LC domain. We ran this simulation for 900
time steps with δt = 0.2.

However, the Saturn ring does not form (see Figs. 7 and 8). Instead, the ring appears to ‘‘breakup’’ into eight point defects,
which slowly coalesce and disappear, with only one point defect remaining. As for the shape of the droplet, the homeotropic
anchoring interacts with the single point defect, creating a wedge like shape. The corners (or edges) of the wedge are
penalized by the Allen–Cahn energy Eac, which results in the slightly rounded wedge (similar to the rounded corners in
the previous examples).

In [46], theywere able to simulate the Saturn ringwhen a rigid colloidal particle is included. In their case, weak anchoring
(similar to (12), (13)) was also used, but the penalty parameter was more than a factor of 10 higher than our Wanch. Hence,
one can interpret the results in [46] as being for a rigid sphere with (effectively) strong homeotropic anchoring. In order to
approximate this setting with our method, we would need to increase Wanch for ‘‘stronger’’ weak anchoring and increase
Wac by an even larger amount to force the droplet to stay close to spherical. In addition, we would need to decrease ϵ to
maintain phase separation in our phase-field model, which would require a much smaller mesh spacing. Unfortunately, this
is outside the abilities of our current code implementation.

5.5. Breakup of ‘‘Saturn ring’’: planar anchoring

We ran the same set of conditions as in Section 5.4, except planar anchoring is used (i.e. α∥ = 0, α⊥ = 1). Again, we used
900 time steps with δt = 0.2.

Again, the Saturn ring does not form (see Figs. 9 and 10). The simulation quickly acquires a single point defect. The shape
of the droplet is drastically affected. Planar anchoring and the single point defect create a triangular wedge shape (compared
to Section 5.4). Moreover, the point defect is along an edge of the droplet, instead of at a corner point. As in Section 5.4, the
corners (or edges) of the wedge are penalized by the Allen–Cahn energy Eac, which results in a slightly rounded wedge.
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(a) Time step 0. (b) Time step 133.

(c) Time step 266. (d) Time step 400.

Fig. 5. A spherical droplet becoming a lens (Section 5.3). Four two-dimensional slices are shown at various time steps (droplet interface in green). The red
circles correspond to the s = 0.3 iso-contour.

(a) Time step 133. (b) Time step 400.

Fig. 6. Three dimensional view of lens droplet (Section 5.3). The final droplet shape is an ellipsoidal disk with a ‘‘corner’’ on the lateral side. No defects are
present.
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(a) Time step 0. (b) Time step 300.

(c) Time step 600. (d) Time step 900.

Fig. 7. Breakup of Saturn rings: homeotropic anchoring (Section 5.4). Four time steps are shown with arrows representing n (droplet is in green). The red
‘‘dots’’ are the s = 0.3 iso-contour, which represents the point defects. The minimum value of s at the final time step was 0.130037.

(a) Side view. (b) Top view.

Fig. 8. Final views of breakup of Saturn rings: homeotropic anchoring (Section 5.4). Views are from the side and the top at the final time step 900.
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(a) Time step 0. (b) Time step 300.

(c) Time step 600. (d) Time step 900.

Fig. 9. Breakup of Saturn rings: planar anchoring (Section 5.5). Four time steps are shown with arrows representing n (droplet is in green). The red ‘‘dot’’
is the s = 0.3 iso-contour, which represents the point defect. The minimum value of s at the final time step was 0.150222.

(a) Side view. (b) Top view.

Fig. 10. Final views of breakup of Saturn rings: planar anchoring (Section 5.5). Views are from the side and the top at the final time step 900.
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6. Conclusions

We introduced an Allen–Cahn phase field/Ericksen model and finite element scheme for two-phase nematic LC droplets.
We used a gradient flow method to explore gradient flow dynamics for finding energy minimizers. We presented several
numerical examples of how LC droplet shapes interact with defects and boundary conditions. Specifically, we showed that
droplets can be moved and reshaped by choosing appropriate boundary conditions. Furthermore, droplets can develop
faceting and corners or edges. The Saturn ring breakup phenomena suggest some interesting stability questions regarding
defects and droplets. For example, how stable is the Saturn ring defect with respect to surface tension forces and anchoring
penalty?

This work can be extended to include more general liquid crystal energies, and/or electro-static effects, or even flexo-
electric effects. The method could be used to compute optimal shapes of LC droplets, e.g. tactoids [33], nematic droplets on
fibers [32], and nematic shells [72]. Another interesting application is to couple Maxwell’s equations to the liquid crystal
system as a way to model micro lasers based on LC droplets [18].
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